/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "2D.h" #include "Blur.h" #include "Logging.h" #include "PathHelpers.h" #include "SourceSurfaceRawData.h" #include "Tools.h" #include "BufferEdgePad.h" #include "BufferUnrotate.h" #ifdef USE_NEON # include "mozilla/arm.h" # include "LuminanceNEON.h" #endif namespace mozilla { namespace gfx { /** * Byte offsets of channels in a native packed gfxColor or cairo image surface. */ #ifdef IS_BIG_ENDIAN # define GFX_ARGB32_OFFSET_A 0 # define GFX_ARGB32_OFFSET_R 1 # define GFX_ARGB32_OFFSET_G 2 # define GFX_ARGB32_OFFSET_B 3 #else # define GFX_ARGB32_OFFSET_A 3 # define GFX_ARGB32_OFFSET_R 2 # define GFX_ARGB32_OFFSET_G 1 # define GFX_ARGB32_OFFSET_B 0 #endif // c = n / 255 // c <= 0.04045 ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4)) * 255 + 0.5 static const uint8_t gsRGBToLinearRGBMap[256] = { 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 111, 112, 114, 115, 116, 118, 119, 121, 122, 124, 125, 127, 128, 130, 131, 133, 134, 136, 138, 139, 141, 142, 144, 146, 147, 149, 151, 152, 154, 156, 157, 159, 161, 163, 164, 166, 168, 170, 171, 173, 175, 177, 179, 181, 183, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 229, 231, 233, 235, 237, 239, 242, 244, 246, 248, 250, 253, 255}; static void ComputesRGBLuminanceMask(const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntSize& aSize, float aOpacity) { #ifdef USE_NEON if (mozilla::supports_neon()) { ComputesRGBLuminanceMask_NEON(aSourceData, aSourceStride, aDestData, aDestStride, aSize, aOpacity); return; } #endif int32_t redFactor = 55 * aOpacity; // 255 * 0.2125 * opacity int32_t greenFactor = 183 * aOpacity; // 255 * 0.7154 * opacity int32_t blueFactor = 18 * aOpacity; // 255 * 0.0721 int32_t sourceOffset = aSourceStride - 4 * aSize.width; const uint8_t* sourcePixel = aSourceData; int32_t destOffset = aDestStride - aSize.width; uint8_t* destPixel = aDestData; for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x++) { uint8_t a = sourcePixel[GFX_ARGB32_OFFSET_A]; if (a) { *destPixel = (redFactor * sourcePixel[GFX_ARGB32_OFFSET_R] + greenFactor * sourcePixel[GFX_ARGB32_OFFSET_G] + blueFactor * sourcePixel[GFX_ARGB32_OFFSET_B]) >> 8; } else { *destPixel = 0; } sourcePixel += 4; destPixel++; } sourcePixel += sourceOffset; destPixel += destOffset; } } static void ComputeLinearRGBLuminanceMask( const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntSize& aSize, float aOpacity) { int32_t redFactor = 55 * aOpacity; // 255 * 0.2125 * opacity int32_t greenFactor = 183 * aOpacity; // 255 * 0.7154 * opacity int32_t blueFactor = 18 * aOpacity; // 255 * 0.0721 int32_t sourceOffset = aSourceStride - 4 * aSize.width; const uint8_t* sourcePixel = aSourceData; int32_t destOffset = aDestStride - aSize.width; uint8_t* destPixel = aDestData; for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x++) { uint8_t a = sourcePixel[GFX_ARGB32_OFFSET_A]; // unpremultiply if (a) { if (a == 255) { /* sRGB -> linearRGB -> intensity */ *destPixel = static_cast( (gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_R]] * redFactor + gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_G]] * greenFactor + gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_B]] * blueFactor) >> 8); } else { uint8_t tempPixel[4]; tempPixel[GFX_ARGB32_OFFSET_B] = (255 * sourcePixel[GFX_ARGB32_OFFSET_B]) / a; tempPixel[GFX_ARGB32_OFFSET_G] = (255 * sourcePixel[GFX_ARGB32_OFFSET_G]) / a; tempPixel[GFX_ARGB32_OFFSET_R] = (255 * sourcePixel[GFX_ARGB32_OFFSET_R]) / a; /* sRGB -> linearRGB -> intensity */ *destPixel = static_cast( ((gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_R]] * redFactor + gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_G]] * greenFactor + gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_B]] * blueFactor) >> 8) * (a / 255.0f)); } } else { *destPixel = 0; } sourcePixel += 4; destPixel++; } sourcePixel += sourceOffset; destPixel += destOffset; } } void DrawTarget::PushDeviceSpaceClipRects(const IntRect* aRects, uint32_t aCount) { Matrix oldTransform = GetTransform(); SetTransform(Matrix()); RefPtr pathBuilder = CreatePathBuilder(); for (uint32_t i = 0; i < aCount; i++) { AppendRectToPath(pathBuilder, Rect(aRects[i])); } RefPtr path = pathBuilder->Finish(); PushClip(path); SetTransform(oldTransform); } void DrawTarget::FillRoundedRect(const RoundedRect& aRect, const Pattern& aPattern, const DrawOptions& aOptions) { RefPtr path = MakePathForRoundedRect(*this, aRect.rect, aRect.corners); Fill(path, aPattern, aOptions); } void DrawTarget::StrokeGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer, const Pattern& aPattern, const StrokeOptions& aStrokeOptions, const DrawOptions& aOptions) { RefPtr path = aFont->GetPathForGlyphs(aBuffer, this); Stroke(path, aPattern, aStrokeOptions, aOptions); } already_AddRefed DrawTarget::IntoLuminanceSource( LuminanceType aMaskType, float aOpacity) { // The default IntoLuminanceSource implementation needs a format of B8G8R8A8. if (mFormat != SurfaceFormat::B8G8R8A8) { return nullptr; } RefPtr surface = Snapshot(); if (!surface) { return nullptr; } IntSize size = surface->GetSize(); RefPtr maskSurface = surface->GetDataSurface(); if (!maskSurface) { return nullptr; } DataSourceSurface::MappedSurface map; if (!maskSurface->Map(DataSourceSurface::MapType::READ, &map)) { return nullptr; } // Create alpha channel mask for output RefPtr destMaskSurface = new SourceSurfaceAlignedRawData; if (!destMaskSurface->Init(size, SurfaceFormat::A8, false, 0)) { return nullptr; } DataSourceSurface::MappedSurface destMap; if (!destMaskSurface->Map(DataSourceSurface::MapType::WRITE, &destMap)) { return nullptr; } switch (aMaskType) { case LuminanceType::LUMINANCE: { ComputesRGBLuminanceMask(map.mData, map.mStride, destMap.mData, destMap.mStride, size, aOpacity); break; } case LuminanceType::LINEARRGB: { ComputeLinearRGBLuminanceMask(map.mData, map.mStride, destMap.mData, destMap.mStride, size, aOpacity); break; } } maskSurface->Unmap(); destMaskSurface->Unmap(); return destMaskSurface.forget(); } void DrawTarget::Blur(const AlphaBoxBlur& aBlur) { uint8_t* data; IntSize size; int32_t stride; SurfaceFormat format; if (!LockBits(&data, &size, &stride, &format)) { gfxWarning() << "Cannot perform in-place blur on non-data DrawTarget"; return; } // Sanity check that the blur size matches the draw target. MOZ_ASSERT(size == aBlur.GetSize()); MOZ_ASSERT(stride == aBlur.GetStride()); aBlur.Blur(data); ReleaseBits(data); } void DrawTarget::PadEdges(const IntRegion& aRegion) { PadDrawTargetOutFromRegion(this, aRegion); } bool DrawTarget::Unrotate(IntPoint aRotation) { unsigned char* data; IntSize size; int32_t stride; SurfaceFormat format; if (LockBits(&data, &size, &stride, &format)) { uint8_t bytesPerPixel = BytesPerPixel(format); BufferUnrotate(data, size.width * bytesPerPixel, size.height, stride, aRotation.x * bytesPerPixel, aRotation.y); ReleaseBits(data); return true; } return false; } int32_t ShadowOptions::BlurRadius() const { return AlphaBoxBlur::CalculateBlurRadius(Point(mSigma, mSigma)).width; } void DrawTarget::DrawShadow(const Path* aPath, const Pattern& aPattern, const ShadowOptions& aShadow, const DrawOptions& aOptions, const StrokeOptions* aStrokeOptions) { // Get the approximate bounds of the source path Rect bounds = aPath->GetFastBounds(GetTransform(), aStrokeOptions); if (bounds.IsEmpty()) { return; } // Inflate the bounds by the blur radius bounds += aShadow.mOffset; int32_t blurRadius = aShadow.BlurRadius(); bounds.Inflate(blurRadius); bounds.RoundOut(); // Check if the bounds intersect the viewport Rect viewport(GetRect()); viewport.Inflate(blurRadius); bounds = bounds.Intersect(viewport); IntRect intBounds; if (bounds.IsEmpty() || !bounds.ToIntRect(&intBounds) || !CanCreateSimilarDrawTarget(intBounds.Size(), SurfaceFormat::A8)) { return; } // Create a draw target for drawing the shadow mask with enough room for blur RefPtr shadowTarget = CreateShadowDrawTarget( intBounds.Size(), SurfaceFormat::A8, aShadow.mSigma); if (shadowTarget) { // See bug 1524554. shadowTarget->ClearRect(Rect()); } if (!shadowTarget || !shadowTarget->IsValid()) { return; } // Draw the path into the target for the initial shadow mask Point offset = Point(intBounds.TopLeft()) - aShadow.mOffset; shadowTarget->SetTransform(GetTransform().PostTranslate(-offset)); DrawOptions shadowDrawOptions( aOptions.mAlpha, CompositionOp::OP_OVER, blurRadius > 1 ? AntialiasMode::NONE : aOptions.mAntialiasMode); if (aStrokeOptions) { shadowTarget->Stroke(aPath, aPattern, *aStrokeOptions, shadowDrawOptions); } else { shadowTarget->Fill(aPath, aPattern, shadowDrawOptions); } RefPtr snapshot = shadowTarget->Snapshot(); // Finally, hand a snapshot of the mask to DrawSurfaceWithShadow for the // final shadow blur if (snapshot) { DrawSurfaceWithShadow(snapshot, offset, aShadow, aOptions.mCompositionOp); } } } // namespace gfx } // namespace mozilla