/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Matrix.h" #include "Quaternion.h" #include "Tools.h" #include #include #include #include // for FLT_EPSILON #include "mozilla/FloatingPoint.h" // for UnspecifiedNaN namespace mozilla { namespace gfx { /* Force small values to zero. We do this to avoid having sin(360deg) * evaluate to a tiny but nonzero value. */ double FlushToZero(double aVal) { // XXX Is double precision really necessary here if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) { return 0.0f; } else { return aVal; } } /* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is * undefined or very large, SafeTangent returns a manageably large value * of the correct sign. */ double SafeTangent(double aTheta) { // XXX Is double precision really necessary here const double kEpsilon = 0.0001; /* tan(theta) = sin(theta)/cos(theta); problems arise when * cos(theta) is too close to zero. Limit cos(theta) to the * range [-1, -epsilon] U [epsilon, 1]. */ double sinTheta = sin(aTheta); double cosTheta = cos(aTheta); if (cosTheta >= 0 && cosTheta < kEpsilon) { cosTheta = kEpsilon; } else if (cosTheta < 0 && cosTheta >= -kEpsilon) { cosTheta = -kEpsilon; } return FlushToZero(sinTheta / cosTheta); } template <> Matrix Matrix::Rotation(Float aAngle) { Matrix newMatrix; Float s = sinf(aAngle); Float c = cosf(aAngle); newMatrix._11 = c; newMatrix._12 = s; newMatrix._21 = -s; newMatrix._22 = c; return newMatrix; } template <> MatrixDouble MatrixDouble::Rotation(Double aAngle) { MatrixDouble newMatrix; Double s = sin(aAngle); Double c = cos(aAngle); newMatrix._11 = c; newMatrix._12 = s; newMatrix._21 = -s; newMatrix._22 = c; return newMatrix; } template <> Matrix4x4 MatrixDouble::operator*(const Matrix4x4& aMatrix) const { Matrix4x4 resultMatrix; resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21; resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22; resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23; resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24; resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21; resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22; resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23; resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24; resultMatrix._31 = aMatrix._31; resultMatrix._32 = aMatrix._32; resultMatrix._33 = aMatrix._33; resultMatrix._34 = aMatrix._34; resultMatrix._41 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._41; resultMatrix._42 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._42; resultMatrix._43 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + aMatrix._43; resultMatrix._44 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + aMatrix._44; return resultMatrix; } // Intersect the polygon given by aPoints with the half space induced by // aPlaneNormal and return the resulting polygon. The returned points are // stored in aDestBuffer, and its meaningful subspan is returned. template Span> IntersectPolygon( Span> aPoints, const Point4DTyped& aPlaneNormal, Span> aDestBuffer) { if (aPoints.Length() < 1 || aDestBuffer.Length() < 1) { return {}; } size_t nextIndex = 0; // aDestBuffer[nextIndex] is the next emitted point. // Iterate over the polygon edges. In each iteration the current edge // is the edge from *prevPoint to point. If the two end points lie on // different sides of the plane, we have an intersection. Otherwise, // the edge is either completely "inside" the half-space created by // the clipping plane, and we add curPoint, or it is completely // "outside", and we discard curPoint. This loop can create duplicated // points in the polygon. const auto* prevPoint = &aPoints[aPoints.Length() - 1]; F prevDot = aPlaneNormal.DotProduct(*prevPoint); for (const auto& curPoint : aPoints) { F curDot = aPlaneNormal.DotProduct(curPoint); if ((curDot >= 0.0) != (prevDot >= 0.0)) { // An intersection with the clipping plane has been detected. // Interpolate to find the intersecting curPoint and emit it. F t = -prevDot / (curDot - prevDot); aDestBuffer[nextIndex++] = curPoint * t + *prevPoint * (1.0 - t); if (nextIndex >= aDestBuffer.Length()) { break; } } if (curDot >= 0.0) { // Emit any source points that are on the positive side of the // clipping plane. aDestBuffer[nextIndex++] = curPoint; if (nextIndex >= aDestBuffer.Length()) { break; } } prevPoint = &curPoint; prevDot = curDot; } return aDestBuffer.To(nextIndex); } template Span> IntersectPolygon( Span> aPoints, const Point4DTyped& aPlaneNormal, Span> aDestBuffer); template Span> IntersectPolygon( Span> aPoints, const Point4DTyped& aPlaneNormal, Span> aDestBuffer); } // namespace gfx } // namespace mozilla