/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2011-2016 Google Inc. // Use of this source code is governed by a BSD-style license that can be // found in the gfx/skia/LICENSE file. #include "SkConvolver.h" #include "mozilla/Vector.h" #ifdef USE_SSE2 # include "mozilla/SSE.h" #endif #ifdef USE_NEON # include "mozilla/arm.h" #endif namespace skia { // Converts the argument to an 8-bit unsigned value by clamping to the range // 0-255. static inline unsigned char ClampTo8(int a) { if (static_cast(a) < 256) { return a; // Avoid the extra check in the common case. } if (a < 0) { return 0; } return 255; } // Convolves horizontally along a single row. The row data is given in // |srcData| and continues for the numValues() of the filter. template void ConvolveHorizontally(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow) { // Loop over each pixel on this row in the output image. int numValues = filter.numValues(); for (int outX = 0; outX < numValues; outX++) { // Get the filter that determines the current output pixel. int filterOffset, filterLength; const SkConvolutionFilter1D::ConvolutionFixed* filterValues = filter.FilterForValue(outX, &filterOffset, &filterLength); // Compute the first pixel in this row that the filter affects. It will // touch |filterLength| pixels (4 bytes each) after this. const unsigned char* rowToFilter = &srcData[filterOffset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int accum[4] = {0}; for (int filterX = 0; filterX < filterLength; filterX++) { SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX]; accum[0] += curFilter * rowToFilter[filterX * 4 + 0]; accum[1] += curFilter * rowToFilter[filterX * 4 + 1]; accum[2] += curFilter * rowToFilter[filterX * 4 + 2]; if (hasAlpha) { accum[3] += curFilter * rowToFilter[filterX * 4 + 3]; } } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. accum[0] >>= SkConvolutionFilter1D::kShiftBits; accum[1] >>= SkConvolutionFilter1D::kShiftBits; accum[2] >>= SkConvolutionFilter1D::kShiftBits; if (hasAlpha) { accum[3] >>= SkConvolutionFilter1D::kShiftBits; } // Store the new pixel. outRow[outX * 4 + 0] = ClampTo8(accum[0]); outRow[outX * 4 + 1] = ClampTo8(accum[1]); outRow[outX * 4 + 2] = ClampTo8(accum[2]); if (hasAlpha) { outRow[outX * 4 + 3] = ClampTo8(accum[3]); } } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |sourceDataRows| array, with each row // being |pixelWidth| wide. // // The output must have room for |pixelWidth * 4| bytes. template void ConvolveVertically( const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow) { // We go through each column in the output and do a vertical convolution, // generating one output pixel each time. for (int outX = 0; outX < pixelWidth; outX++) { // Compute the number of bytes over in each row that the current column // we're convolving starts at. The pixel will cover the next 4 bytes. int byteOffset = outX * 4; // Apply the filter to one column of pixels. int accum[4] = {0}; for (int filterY = 0; filterY < filterLength; filterY++) { SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY]; accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0]; accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1]; accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2]; if (hasAlpha) { accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3]; } } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of precision. accum[0] >>= SkConvolutionFilter1D::kShiftBits; accum[1] >>= SkConvolutionFilter1D::kShiftBits; accum[2] >>= SkConvolutionFilter1D::kShiftBits; if (hasAlpha) { accum[3] >>= SkConvolutionFilter1D::kShiftBits; } // Store the new pixel. outRow[byteOffset + 0] = ClampTo8(accum[0]); outRow[byteOffset + 1] = ClampTo8(accum[1]); outRow[byteOffset + 2] = ClampTo8(accum[2]); if (hasAlpha) { unsigned char alpha = ClampTo8(accum[3]); // Make sure the alpha channel doesn't come out smaller than any of the // color channels. We use premultipled alpha channels, so this should // never happen, but rounding errors will cause this from time to time. // These "impossible" colors will cause overflows (and hence random pixel // values) when the resulting bitmap is drawn to the screen. // // We only need to do this when generating the final output row (here). int maxColorChannel = std::max(outRow[byteOffset + 0], std::max(outRow[byteOffset + 1], outRow[byteOffset + 2])); if (alpha < maxColorChannel) { outRow[byteOffset + 3] = maxColorChannel; } else { outRow[byteOffset + 3] = alpha; } } else { // No alpha channel, the image is opaque. outRow[byteOffset + 3] = 0xff; } } } #ifdef USE_SSE2 void convolve_vertically_avx2(const int16_t* filter, int filterLen, uint8_t* const* srcRows, int width, uint8_t* out, bool hasAlpha); void convolve_horizontally_sse2(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha); void convolve_vertically_sse2(const int16_t* filter, int filterLen, uint8_t* const* srcRows, int width, uint8_t* out, bool hasAlpha); #elif defined(USE_NEON) void convolve_horizontally_neon(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha); void convolve_vertically_neon(const int16_t* filter, int filterLen, uint8_t* const* srcRows, int width, uint8_t* out, bool hasAlpha); #endif void convolve_horizontally(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha) { #ifdef USE_SSE2 if (mozilla::supports_sse2()) { convolve_horizontally_sse2(srcData, filter, outRow, hasAlpha); return; } #elif defined(USE_NEON) if (mozilla::supports_neon()) { convolve_horizontally_neon(srcData, filter, outRow, hasAlpha); return; } #endif if (hasAlpha) { ConvolveHorizontally(srcData, filter, outRow); } else { ConvolveHorizontally(srcData, filter, outRow); } } void convolve_vertically( const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow, bool hasAlpha) { #ifdef USE_SSE2 if (mozilla::supports_avx2()) { convolve_vertically_avx2(filterValues, filterLength, sourceDataRows, pixelWidth, outRow, hasAlpha); return; } if (mozilla::supports_sse2()) { convolve_vertically_sse2(filterValues, filterLength, sourceDataRows, pixelWidth, outRow, hasAlpha); return; } #elif defined(USE_NEON) if (mozilla::supports_neon()) { convolve_vertically_neon(filterValues, filterLength, sourceDataRows, pixelWidth, outRow, hasAlpha); return; } #endif if (hasAlpha) { ConvolveVertically(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } else { ConvolveVertically(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } } // Stores a list of rows in a circular buffer. The usage is you write into it // by calling AdvanceRow. It will keep track of which row in the buffer it // should use next, and the total number of rows added. class CircularRowBuffer { public: // The number of pixels in each row is given in |sourceRowPixelWidth|. // The maximum number of rows needed in the buffer is |maxYFilterSize| // (we only need to store enough rows for the biggest filter). // // We use the |firstInputRow| to compute the coordinates of all of the // following rows returned by Advance(). CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize, int firstInputRow) : fRowByteWidth(destRowPixelWidth * 4), fNumRows(maxYFilterSize), fNextRow(0), fNextRowCoordinate(firstInputRow) { fBuffer.resize(fRowByteWidth * maxYFilterSize); fRowAddresses.resize(fNumRows); } // Moves to the next row in the buffer, returning a pointer to the beginning // of it. unsigned char* advanceRow() { unsigned char* row = &fBuffer[fNextRow * fRowByteWidth]; fNextRowCoordinate++; // Set the pointer to the next row to use, wrapping around if necessary. fNextRow++; if (fNextRow == fNumRows) { fNextRow = 0; } return row; } // Returns a pointer to an "unrolled" array of rows. These rows will start // at the y coordinate placed into |*firstRowIndex| and will continue in // order for the maximum number of rows in this circular buffer. // // The |firstRowIndex_| may be negative. This means the circular buffer // starts before the top of the image (it hasn't been filled yet). unsigned char* const* GetRowAddresses(int* firstRowIndex) { // Example for a 4-element circular buffer holding coords 6-9. // Row 0 Coord 8 // Row 1 Coord 9 // Row 2 Coord 6 <- fNextRow = 2, fNextRowCoordinate = 10. // Row 3 Coord 7 // // The "next" row is also the first (lowest) coordinate. This computation // may yield a negative value, but that's OK, the math will work out // since the user of this buffer will compute the offset relative // to the firstRowIndex and the negative rows will never be used. *firstRowIndex = fNextRowCoordinate - fNumRows; int curRow = fNextRow; for (int i = 0; i < fNumRows; i++) { fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth]; // Advance to the next row, wrapping if necessary. curRow++; if (curRow == fNumRows) { curRow = 0; } } return &fRowAddresses[0]; } private: // The buffer storing the rows. They are packed, each one fRowByteWidth. std::vector fBuffer; // Number of bytes per row in the |buffer|. int fRowByteWidth; // The number of rows available in the buffer. int fNumRows; // The next row index we should write into. This wraps around as the // circular buffer is used. int fNextRow; // The y coordinate of the |fNextRow|. This is incremented each time a // new row is appended and does not wrap. int fNextRowCoordinate; // Buffer used by GetRowAddresses(). std::vector fRowAddresses; }; SkConvolutionFilter1D::SkConvolutionFilter1D() : fMaxFilter(0) {} SkConvolutionFilter1D::~SkConvolutionFilter1D() = default; void SkConvolutionFilter1D::AddFilter(int filterOffset, const ConvolutionFixed* filterValues, int filterLength) { // It is common for leading/trailing filter values to be zeros. In such // cases it is beneficial to only store the central factors. // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on // a 1080p image this optimization gives a ~10% speed improvement. int filterSize = filterLength; int firstNonZero = 0; while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) { firstNonZero++; } if (firstNonZero < filterLength) { // Here we have at least one non-zero factor. int lastNonZero = filterLength - 1; while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) { lastNonZero--; } filterOffset += firstNonZero; filterLength = lastNonZero + 1 - firstNonZero; MOZ_ASSERT(filterLength > 0); fFilterValues.insert(fFilterValues.end(), &filterValues[firstNonZero], &filterValues[lastNonZero + 1]); } else { // Here all the factors were zeroes. filterLength = 0; } FilterInstance instance = { // We pushed filterLength elements onto fFilterValues int(fFilterValues.size()) - filterLength, filterOffset, filterLength, filterSize}; fFilters.push_back(instance); fMaxFilter = std::max(fMaxFilter, filterLength); } bool SkConvolutionFilter1D::ComputeFilterValues( const SkBitmapFilter& aBitmapFilter, int32_t aSrcSize, int32_t aDstSize) { // When we're doing a magnification, the scale will be larger than one. This // means the destination pixels are much smaller than the source pixels, and // that the range covered by the filter won't necessarily cover any source // pixel boundaries. Therefore, we use these clamped values (max of 1) for // some computations. float scale = float(aDstSize) / float(aSrcSize); float clampedScale = std::min(1.0f, scale); // This is how many source pixels from the center we need to count // to support the filtering function. float srcSupport = aBitmapFilter.width() / clampedScale; float invScale = 1.0f / scale; mozilla::Vector filterValues; mozilla::Vector fixedFilterValues; // Loop over all pixels in the output range. We will generate one set of // filter values for each one. Those values will tell us how to blend the // source pixels to compute the destination pixel. // This value is computed based on how SkTDArray::resizeStorageToAtLeast works // in order to ensure that it does not overflow or assert. That functions // computes // n+4 + (n+4)/4 // and we want to to fit in a 32 bit signed int. Equating that to 2^31-1 and // solving n gives n = (2^31-6)*4/5 = 1717986913.6 const int32_t maxToPassToReserveAdditional = 1717986913; int32_t filterValueCount = int32_t(ceilf(aDstSize * srcSupport * 2)); if (aDstSize > maxToPassToReserveAdditional || filterValueCount < 0 || filterValueCount > maxToPassToReserveAdditional) { return false; } reserveAdditional(aDstSize, filterValueCount); for (int32_t destI = 0; destI < aDstSize; destI++) { // This is the pixel in the source directly under the pixel in the dest. // Note that we base computations on the "center" of the pixels. To see // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x // downscale should "cover" the pixels around the pixel with *its center* // at coordinates (2.5, 2.5) in the source, not those around (0, 0). // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). float srcPixel = (static_cast(destI) + 0.5f) * invScale; // Compute the (inclusive) range of source pixels the filter covers. float srcBegin = std::max(0.0f, floorf(srcPixel - srcSupport)); float srcEnd = std::min(aSrcSize - 1.0f, ceilf(srcPixel + srcSupport)); // Compute the unnormalized filter value at each location of the source // it covers. // Sum of the filter values for normalizing. // Distance from the center of the filter, this is the filter coordinate // in source space. We also need to consider the center of the pixel // when comparing distance against 'srcPixel'. In the 5x downscale // example used above the distance from the center of the filter to // the pixel with coordinates (2, 2) should be 0, because its center // is at (2.5, 2.5). int32_t filterCount = int32_t(srcEnd - srcBegin) + 1; if (filterCount <= 0 || !filterValues.resize(filterCount) || !fixedFilterValues.resize(filterCount)) { return false; } float destFilterDist = (srcBegin + 0.5f - srcPixel) * clampedScale; float filterSum = 0.0f; for (int32_t index = 0; index < filterCount; index++) { float filterValue = aBitmapFilter.evaluate(destFilterDist); filterValues[index] = filterValue; filterSum += filterValue; destFilterDist += clampedScale; } // The filter must be normalized so that we don't affect the brightness of // the image. Convert to normalized fixed point. ConvolutionFixed fixedSum = 0; float invFilterSum = 1.0f / filterSum; for (int32_t fixedI = 0; fixedI < filterCount; fixedI++) { ConvolutionFixed curFixed = ToFixed(filterValues[fixedI] * invFilterSum); fixedSum += curFixed; fixedFilterValues[fixedI] = curFixed; } // The conversion to fixed point will leave some rounding errors, which // we add back in to avoid affecting the brightness of the image. We // arbitrarily add this to the center of the filter array (this won't always // be the center of the filter function since it could get clipped on the // edges, but it doesn't matter enough to worry about that case). ConvolutionFixed leftovers = ToFixed(1) - fixedSum; fixedFilterValues[filterCount / 2] += leftovers; AddFilter(int32_t(srcBegin), fixedFilterValues.begin(), filterCount); } return maxFilter() > 0 && numValues() == aDstSize; } // Does a two-dimensional convolution on the given source image. // // It is assumed the source pixel offsets referenced in the input filters // reference only valid pixels, so the source image size is not required. Each // row of the source image starts |sourceByteRowStride| after the previous // one (this allows you to have rows with some padding at the end). // // The result will be put into the given output buffer. The destination image // size will be xfilter.numValues() * yfilter.numValues() pixels. It will be // in rows of exactly xfilter.numValues() * 4 bytes. // // |sourceHasAlpha| is a hint that allows us to avoid doing computations on // the alpha channel if the image is opaque. If you don't know, set this to // true and it will work properly, but setting this to false will be a few // percent faster if you know the image is opaque. // // The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order // (this is ARGB when loaded into 32-bit words on a little-endian machine). /** * Returns false if it was unable to perform the convolution/rescale. in which * case the output buffer is assumed to be undefined. */ bool BGRAConvolve2D(const unsigned char* sourceData, int sourceByteRowStride, bool sourceHasAlpha, const SkConvolutionFilter1D& filterX, const SkConvolutionFilter1D& filterY, int outputByteRowStride, unsigned char* output) { int maxYFilterSize = filterY.maxFilter(); // The next row in the input that we will generate a horizontally // convolved row for. If the filter doesn't start at the beginning of the // image (this is the case when we are only resizing a subset), then we // don't want to generate any output rows before that. Compute the starting // row for convolution as the first pixel for the first vertical filter. int filterOffset = 0, filterLength = 0; const SkConvolutionFilter1D::ConvolutionFixed* filterValues = filterY.FilterForValue(0, &filterOffset, &filterLength); int nextXRow = filterOffset; // We loop over each row in the input doing a horizontal convolution. This // will result in a horizontally convolved image. We write the results into // a circular buffer of convolved rows and do vertical convolution as rows // are available. This prevents us from having to store the entire // intermediate image and helps cache coherency. // We will need four extra rows to allow horizontal convolution could be done // simultaneously. We also pad each row in row buffer to be aligned-up to // 32 bytes. // TODO(jiesun): We do not use aligned load from row buffer in vertical // convolution pass yet. Somehow Windows does not like it. int rowBufferWidth = (filterX.numValues() + 31) & ~0x1F; int rowBufferHeight = maxYFilterSize; // check for too-big allocation requests : crbug.com/528628 { int64_t size = int64_t(rowBufferWidth) * int64_t(rowBufferHeight); // need some limit, to avoid over-committing success from malloc, but then // crashing when we try to actually use the memory. // 100meg seems big enough to allow "normal" zoom factors and image sizes // through while avoiding the crash seen by the bug (crbug.com/528628) if (size > 100 * 1024 * 1024) { // printf_stderr("BGRAConvolve2D: tmp allocation [%lld] too // big\n", size); return false; } } CircularRowBuffer rowBuffer(rowBufferWidth, rowBufferHeight, filterOffset); // Loop over every possible output row, processing just enough horizontal // convolutions to run each subsequent vertical convolution. MOZ_ASSERT(outputByteRowStride >= filterX.numValues() * 4); int numOutputRows = filterY.numValues(); // We need to check which is the last line to convolve before we advance 4 // lines in one iteration. int lastFilterOffset, lastFilterLength; filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset, &lastFilterLength); for (int outY = 0; outY < numOutputRows; outY++) { filterValues = filterY.FilterForValue(outY, &filterOffset, &filterLength); // Generate output rows until we have enough to run the current filter. while (nextXRow < filterOffset + filterLength) { convolve_horizontally( &sourceData[(uint64_t)nextXRow * sourceByteRowStride], filterX, rowBuffer.advanceRow(), sourceHasAlpha); nextXRow++; } // Compute where in the output image this row of final data will go. unsigned char* curOutputRow = &output[(uint64_t)outY * outputByteRowStride]; // Get the list of rows that the circular buffer has, in order. int firstRowInCircularBuffer; unsigned char* const* rowsToConvolve = rowBuffer.GetRowAddresses(&firstRowInCircularBuffer); // Now compute the start of the subset of those rows that the filter needs. unsigned char* const* firstRowForFilter = &rowsToConvolve[filterOffset - firstRowInCircularBuffer]; convolve_vertically(filterValues, filterLength, firstRowForFilter, filterX.numValues(), curOutputRow, sourceHasAlpha); } return true; } } // namespace skia