// // Copyright 2002 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libANGLE/Program.h" #include #include #include "common/angle_version_info.h" #include "common/bitset_utils.h" #include "common/debug.h" #include "common/platform.h" #include "common/string_utils.h" #include "common/utilities.h" #include "compiler/translator/blocklayout.h" #include "libANGLE/Context.h" #include "libANGLE/ErrorStrings.h" #include "libANGLE/MemoryProgramCache.h" #include "libANGLE/ProgramLinkedResources.h" #include "libANGLE/ResourceManager.h" #include "libANGLE/Uniform.h" #include "libANGLE/VaryingPacking.h" #include "libANGLE/Version.h" #include "libANGLE/capture/FrameCapture.h" #include "libANGLE/features.h" #include "libANGLE/histogram_macros.h" #include "libANGLE/queryconversions.h" #include "libANGLE/renderer/GLImplFactory.h" #include "libANGLE/renderer/ProgramImpl.h" #include "platform/FrontendFeatures_autogen.h" #include "platform/PlatformMethods.h" namespace gl { namespace { // This simplified cast function doesn't need to worry about advanced concepts like // depth range values, or casting to bool. template DestT UniformStateQueryCast(SrcT value); // From-Float-To-Integer Casts template <> GLint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } template <> GLuint UniformStateQueryCast(GLfloat value) { return clampCast(roundf(value)); } // From-Integer-to-Integer Casts template <> GLint UniformStateQueryCast(GLuint value) { return clampCast(value); } template <> GLuint UniformStateQueryCast(GLint value) { return clampCast(value); } // From-Boolean-to-Anything Casts template <> GLfloat UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1.0f : 0.0f); } template <> GLint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1 : 0); } template <> GLuint UniformStateQueryCast(GLboolean value) { return (ConvertToBool(value) ? 1u : 0u); } // Default to static_cast template DestT UniformStateQueryCast(SrcT value) { return static_cast(value); } template void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components) { for (int comp = 0; comp < components; ++comp) { // We only work with strides of 4 bytes for uniform components. (GLfloat/GLint) // Don't use SrcT stride directly since GLboolean has a stride of 1 byte. size_t offset = comp * 4; const SrcT *typedSrcPointer = reinterpret_cast(&srcPointer[offset]); dataOut[comp] = UniformStateQueryCast(*typedSrcPointer); } } template GLuint GetResourceIndexFromName(const std::vector &list, const std::string &name) { std::string nameAsArrayName = name + "[0]"; for (size_t index = 0; index < list.size(); index++) { const VarT &resource = list[index]; if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName)) { return static_cast(index); } } return GL_INVALID_INDEX; } GLint GetVariableLocation(const std::vector &list, const std::vector &locationList, const std::string &name) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); for (size_t location = 0u; location < locationList.size(); ++location) { const VariableLocation &variableLocation = locationList[location]; if (!variableLocation.used()) { continue; } const sh::ShaderVariable &variable = list[variableLocation.index]; // Array output variables may be bound out of order, so we need to ensure we only pick the // first element if given the base name. if ((variable.name == name) && (variableLocation.arrayIndex == 0)) { return static_cast(location); } if (variable.isArray() && variableLocation.arrayIndex == arrayIndex && angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex)) { return static_cast(location); } } return -1; } GLint GetVariableLocation(const std::vector &list, const std::vector &locationList, const std::string &name) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); for (size_t location = 0u; location < locationList.size(); ++location) { const VariableLocation &variableLocation = locationList[location]; if (!variableLocation.used()) { continue; } const LinkedUniform &variable = list[variableLocation.index]; // Array output variables may be bound out of order, so we need to ensure we only pick the // first element if given the base name. Uniforms don't allow this behavior and some code // seemingly depends on the opposite behavior, so only enable it for output variables. if (angle::BeginsWith(variable.name, name) && (variableLocation.arrayIndex == 0)) { if (name.length() == variable.name.length()) { ASSERT(name == variable.name); // GLES 3.1 November 2016 page 87. // The string exactly matches the name of the active variable. return static_cast(location); } if (name.length() + 3u == variable.name.length() && variable.isArray()) { ASSERT(name + "[0]" == variable.name); // The string identifies the base name of an active array, where the string would // exactly match the name of the variable if the suffix "[0]" were appended to the // string. return static_cast(location); } } if (variable.isArray() && variableLocation.arrayIndex == arrayIndex && nameLengthWithoutArrayIndex + 3u == variable.name.length() && angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex)) { ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name); // The string identifies an active element of the array, where the string ends with the // concatenation of the "[" character, an integer (with no "+" sign, extra leading // zeroes, or whitespace) identifying an array element, and the "]" character, the // integer is less than the number of active elements of the array variable, and where // the string would exactly match the enumerated name of the array if the decimal // integer were replaced with zero. return static_cast(location); } } return -1; } void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *lengthOut) { ASSERT(bufSize > 0); size_t length = std::min(bufSize - 1, string.length()); memcpy(buffer, string.c_str(), length); buffer[length] = '\0'; if (lengthOut) { *lengthOut = static_cast(length); } } GLuint GetInterfaceBlockIndex(const std::vector &list, const std::string &name) { std::vector subscripts; std::string baseName = ParseResourceName(name, &subscripts); unsigned int numBlocks = static_cast(list.size()); for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++) { const auto &block = list[blockIndex]; if (block.name == baseName) { const bool arrayElementZero = (subscripts.empty() && (!block.isArray || block.arrayElement == 0)); const bool arrayElementMatches = (subscripts.size() == 1 && subscripts[0] == block.arrayElement); if (arrayElementMatches || arrayElementZero) { return blockIndex; } } } return GL_INVALID_INDEX; } void GetInterfaceBlockName(const UniformBlockIndex index, const std::vector &list, GLsizei bufSize, GLsizei *length, GLchar *name) { ASSERT(index.value < list.size()); const auto &block = list[index.value]; if (bufSize > 0) { std::string blockName = block.name; if (block.isArray) { blockName += ArrayString(block.arrayElement); } CopyStringToBuffer(name, blockName, bufSize, length); } } void InitUniformBlockLinker(const Context *context, const ProgramState &state, UniformBlockLinker *blockLinker) { for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = state.getAttachedShader(shaderType); if (shader) { blockLinker->addShaderBlocks(shaderType, &shader->getUniformBlocks(context)); } } } void InitShaderStorageBlockLinker(const Context *context, const ProgramState &state, ShaderStorageBlockLinker *blockLinker) { for (ShaderType shaderType : AllShaderTypes()) { Shader *shader = state.getAttachedShader(shaderType); if (shader != nullptr) { blockLinker->addShaderBlocks(shaderType, &shader->getShaderStorageBlocks(context)); } } } } // anonymous namespace const char *GetLinkMismatchErrorString(LinkMismatchError linkError) { switch (linkError) { case LinkMismatchError::TYPE_MISMATCH: return "Type"; case LinkMismatchError::ARRAYNESS_MISMATCH: return "Array-ness"; case LinkMismatchError::ARRAY_SIZE_MISMATCH: return "Array size"; case LinkMismatchError::PRECISION_MISMATCH: return "Precision"; case LinkMismatchError::STRUCT_NAME_MISMATCH: return "Structure name"; case LinkMismatchError::FIELD_NUMBER_MISMATCH: return "Field number"; case LinkMismatchError::FIELD_NAME_MISMATCH: return "Field name"; case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH: return "Interpolation type"; case LinkMismatchError::INVARIANCE_MISMATCH: return "Invariance"; case LinkMismatchError::BINDING_MISMATCH: return "Binding layout qualifier"; case LinkMismatchError::LOCATION_MISMATCH: return "Location layout qualifier"; case LinkMismatchError::OFFSET_MISMATCH: return "Offset layout qualifier"; case LinkMismatchError::INSTANCE_NAME_MISMATCH: return "Instance name qualifier"; case LinkMismatchError::FORMAT_MISMATCH: return "Format qualifier"; case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH: return "Layout qualifier"; case LinkMismatchError::MATRIX_PACKING_MISMATCH: return "Matrix Packing"; case LinkMismatchError::FIELD_LOCATION_MISMATCH: return "Field location"; case LinkMismatchError::FIELD_STRUCT_NAME_MISMATCH: return "Field structure name"; default: UNREACHABLE(); return ""; } } void UpdateInterfaceVariable(std::vector *block, const sh::ShaderVariable &var) { if (!var.isStruct()) { block->emplace_back(var); block->back().resetEffectiveLocation(); } for (const sh::ShaderVariable &field : var.fields) { ASSERT(!var.name.empty() || var.isShaderIOBlock); // Shader I/O block naming is similar to UBOs and SSBOs: // // in Block // { // type field; // produces "field" // }; // // in Block2 // { // type field; // produces "Block2.field" // } block2; // const std::string &baseName = var.isShaderIOBlock ? var.structOrBlockName : var.name; const std::string prefix = var.name.empty() ? "" : baseName + "."; if (!field.isStruct()) { sh::ShaderVariable fieldCopy = field; fieldCopy.updateEffectiveLocation(var); fieldCopy.name = prefix + field.name; block->emplace_back(fieldCopy); } for (const sh::ShaderVariable &nested : field.fields) { sh::ShaderVariable nestedCopy = nested; nestedCopy.updateEffectiveLocation(field); nestedCopy.name = prefix + field.name + "." + nested.name; block->emplace_back(nestedCopy); } } } void WriteShaderVariableBuffer(BinaryOutputStream *stream, const ShaderVariableBuffer &var) { stream->writeInt(var.binding); stream->writeInt(var.dataSize); for (ShaderType shaderType : AllShaderTypes()) { stream->writeBool(var.isActive(shaderType)); } stream->writeInt(var.memberIndexes.size()); for (unsigned int memberCounterIndex : var.memberIndexes) { stream->writeInt(memberCounterIndex); } } void LoadShaderVariableBuffer(BinaryInputStream *stream, ShaderVariableBuffer *var) { var->binding = stream->readInt(); var->dataSize = stream->readInt(); for (ShaderType shaderType : AllShaderTypes()) { var->setActive(shaderType, stream->readBool()); } size_t numMembers = stream->readInt(); for (size_t blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++) { var->memberIndexes.push_back(stream->readInt()); } } void WriteBufferVariable(BinaryOutputStream *stream, const BufferVariable &var) { WriteShaderVar(stream, var); stream->writeInt(var.bufferIndex); WriteBlockMemberInfo(stream, var.blockInfo); stream->writeInt(var.topLevelArraySize); for (ShaderType shaderType : AllShaderTypes()) { stream->writeBool(var.isActive(shaderType)); } } void LoadBufferVariable(BinaryInputStream *stream, BufferVariable *var) { LoadShaderVar(stream, var); var->bufferIndex = stream->readInt(); LoadBlockMemberInfo(stream, &var->blockInfo); var->topLevelArraySize = stream->readInt(); for (ShaderType shaderType : AllShaderTypes()) { var->setActive(shaderType, stream->readBool()); } } void WriteInterfaceBlock(BinaryOutputStream *stream, const InterfaceBlock &block) { stream->writeString(block.name); stream->writeString(block.mappedName); stream->writeBool(block.isArray); stream->writeInt(block.arrayElement); WriteShaderVariableBuffer(stream, block); } void LoadInterfaceBlock(BinaryInputStream *stream, InterfaceBlock *block) { block->name = stream->readString(); block->mappedName = stream->readString(); block->isArray = stream->readBool(); block->arrayElement = stream->readInt(); LoadShaderVariableBuffer(stream, block); } void WriteShInterfaceBlock(BinaryOutputStream *stream, const sh::InterfaceBlock &block) { stream->writeString(block.name); stream->writeString(block.mappedName); stream->writeString(block.instanceName); stream->writeInt(block.arraySize); stream->writeEnum(block.layout); stream->writeBool(block.isRowMajorLayout); stream->writeInt(block.binding); stream->writeBool(block.staticUse); stream->writeBool(block.active); stream->writeEnum(block.blockType); stream->writeInt(block.fields.size()); for (const sh::ShaderVariable &shaderVariable : block.fields) { WriteShaderVar(stream, shaderVariable); } } void LoadShInterfaceBlock(BinaryInputStream *stream, sh::InterfaceBlock *block) { block->name = stream->readString(); block->mappedName = stream->readString(); block->instanceName = stream->readString(); block->arraySize = stream->readInt(); block->layout = stream->readEnum(); block->isRowMajorLayout = stream->readBool(); block->binding = stream->readInt(); block->staticUse = stream->readBool(); block->active = stream->readBool(); block->blockType = stream->readEnum(); block->fields.resize(stream->readInt()); for (sh::ShaderVariable &variable : block->fields) { LoadShaderVar(stream, &variable); } } // Saves the linking context for later use in resolveLink(). struct Program::LinkingState { std::shared_ptr linkedExecutable; ProgramLinkedResources resources; egl::BlobCache::Key programHash; std::unique_ptr linkEvent; bool linkingFromBinary; }; const char *const g_fakepath = "C:\\fakepath"; // InfoLog implementation. InfoLog::InfoLog() : mLazyStream(nullptr) {} InfoLog::~InfoLog() {} size_t InfoLog::getLength() const { if (!mLazyStream) { return 0; } const std::string &logString = mLazyStream->str(); return logString.empty() ? 0 : logString.length() + 1; } void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const { size_t index = 0; if (bufSize > 0) { const std::string logString(str()); if (!logString.empty()) { index = std::min(static_cast(bufSize) - 1, logString.length()); memcpy(infoLog, logString.c_str(), index); } infoLog[index] = '\0'; } if (length) { *length = static_cast(index); } } // append a sanitized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void InfoLog::appendSanitized(const char *message) { ensureInitialized(); std::string msg(message); size_t found; do { found = msg.find(g_fakepath); if (found != std::string::npos) { msg.erase(found, strlen(g_fakepath)); } } while (found != std::string::npos); if (!msg.empty()) { *mLazyStream << message << std::endl; } } void InfoLog::reset() { if (mLazyStream) { mLazyStream.reset(nullptr); } } bool InfoLog::empty() const { if (!mLazyStream) { return true; } return mLazyStream->rdbuf()->in_avail() == 0; } void LogLinkMismatch(InfoLog &infoLog, const std::string &variableName, const char *variableType, LinkMismatchError linkError, const std::string &mismatchedStructOrBlockFieldName, ShaderType shaderType1, ShaderType shaderType2) { std::ostringstream stream; stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '" << variableName; if (!mismatchedStructOrBlockFieldName.empty()) { stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName; } stream << "' differ between " << GetShaderTypeString(shaderType1) << " and " << GetShaderTypeString(shaderType2) << " shaders."; infoLog << stream.str(); } bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock) { // Only 'packed' blocks are allowed to be considered inactive. return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED; } void WriteBlockMemberInfo(BinaryOutputStream *stream, const sh::BlockMemberInfo &var) { stream->writeInt(var.arrayStride); stream->writeBool(var.isRowMajorMatrix); stream->writeInt(var.matrixStride); stream->writeInt(var.offset); stream->writeInt(var.topLevelArrayStride); } void LoadBlockMemberInfo(BinaryInputStream *stream, sh::BlockMemberInfo *var) { var->arrayStride = stream->readInt(); var->isRowMajorMatrix = stream->readBool(); var->matrixStride = stream->readInt(); var->offset = stream->readInt(); var->topLevelArrayStride = stream->readInt(); } void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var) { stream->writeInt(var.type); stream->writeInt(var.precision); stream->writeString(var.name); stream->writeString(var.mappedName); stream->writeIntVector(var.arraySizes); stream->writeBool(var.staticUse); stream->writeBool(var.active); stream->writeInt(var.fields.size()); for (const sh::ShaderVariable &shaderVariable : var.fields) { WriteShaderVar(stream, shaderVariable); } stream->writeString(var.structOrBlockName); stream->writeString(var.mappedStructOrBlockName); stream->writeBool(var.isRowMajorLayout); stream->writeInt(var.location); stream->writeBool(var.hasImplicitLocation); stream->writeInt(var.binding); stream->writeInt(var.imageUnitFormat); stream->writeInt(var.offset); stream->writeBool(var.rasterOrdered); stream->writeBool(var.readonly); stream->writeBool(var.writeonly); stream->writeBool(var.isFragmentInOut); stream->writeInt(var.index); stream->writeBool(var.yuv); stream->writeEnum(var.interpolation); stream->writeBool(var.isInvariant); stream->writeBool(var.isShaderIOBlock); stream->writeBool(var.isPatch); stream->writeBool(var.texelFetchStaticUse); stream->writeInt(var.getFlattenedOffsetInParentArrays()); } void LoadShaderVar(gl::BinaryInputStream *stream, sh::ShaderVariable *var) { var->type = stream->readInt(); var->precision = stream->readInt(); stream->readString(&var->name); stream->readString(&var->mappedName); stream->readIntVector(&var->arraySizes); var->staticUse = stream->readBool(); var->active = stream->readBool(); size_t elementCount = stream->readInt(); var->fields.resize(elementCount); for (sh::ShaderVariable &variable : var->fields) { LoadShaderVar(stream, &variable); } stream->readString(&var->structOrBlockName); stream->readString(&var->mappedStructOrBlockName); var->isRowMajorLayout = stream->readBool(); var->location = stream->readInt(); var->hasImplicitLocation = stream->readBool(); var->binding = stream->readInt(); var->imageUnitFormat = stream->readInt(); var->offset = stream->readInt(); var->rasterOrdered = stream->readBool(); var->readonly = stream->readBool(); var->writeonly = stream->readBool(); var->isFragmentInOut = stream->readBool(); var->index = stream->readInt(); var->yuv = stream->readBool(); var->interpolation = stream->readEnum(); var->isInvariant = stream->readBool(); var->isShaderIOBlock = stream->readBool(); var->isPatch = stream->readBool(); var->texelFetchStaticUse = stream->readBool(); var->setParentArrayIndex(stream->readInt()); } // VariableLocation implementation. VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false) {} VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index) : arrayIndex(arrayIndex), index(index), ignored(false) { ASSERT(arrayIndex != GL_INVALID_INDEX); } // SamplerBindings implementation. SamplerBinding::SamplerBinding(TextureType textureTypeIn, GLenum samplerTypeIn, SamplerFormat formatIn, size_t elementCount) : textureType(textureTypeIn), samplerType(samplerTypeIn), format(formatIn), boundTextureUnits(elementCount, 0) {} SamplerBinding::SamplerBinding(const SamplerBinding &other) = default; SamplerBinding::~SamplerBinding() = default; // ProgramBindings implementation. ProgramBindings::ProgramBindings() {} ProgramBindings::~ProgramBindings() {} void ProgramBindings::bindLocation(GLuint index, const std::string &name) { mBindings[name] = index; } int ProgramBindings::getBindingByName(const std::string &name) const { auto iter = mBindings.find(name); return (iter != mBindings.end()) ? iter->second : -1; } int ProgramBindings::getBinding(const sh::ShaderVariable &variable) const { return getBindingByName(variable.name); } ProgramBindings::const_iterator ProgramBindings::begin() const { return mBindings.begin(); } ProgramBindings::const_iterator ProgramBindings::end() const { return mBindings.end(); } std::map ProgramBindings::getStableIterationMap() const { return std::map(mBindings.begin(), mBindings.end()); } // ProgramAliasedBindings implementation. ProgramAliasedBindings::ProgramAliasedBindings() {} ProgramAliasedBindings::~ProgramAliasedBindings() {} void ProgramAliasedBindings::bindLocation(GLuint index, const std::string &name) { mBindings[name] = ProgramBinding(index); // EXT_blend_func_extended spec: "If it specifies the base name of an array, // it identifies the resources associated with the first element of the array." // // Normalize array bindings so that "name" and "name[0]" map to the same entry. // If this binding is of the form "name[0]", then mark the "name" binding as // aliased but do not update it yet in case "name" is not actually an array. size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); if (arrayIndex == 0) { std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex); auto iter = mBindings.find(baseName); if (iter != mBindings.end()) { iter->second.aliased = true; } } } int ProgramAliasedBindings::getBindingByName(const std::string &name) const { auto iter = mBindings.find(name); return (iter != mBindings.end()) ? iter->second.location : -1; } int ProgramAliasedBindings::getBindingByLocation(GLuint location) const { for (const auto &iter : mBindings) { if (iter.second.location == location) { return iter.second.location; } } return -1; } int ProgramAliasedBindings::getBinding(const sh::ShaderVariable &variable) const { const std::string &name = variable.name; // Check with the normalized array name if applicable. if (variable.isArray()) { size_t nameLengthWithoutArrayIndex; unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex); if (arrayIndex == 0) { std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex); auto iter = mBindings.find(baseName); // If "name" exists and is not aliased, that means it was modified more // recently than its "name[0]" form and should be used instead of that. if (iter != mBindings.end() && !iter->second.aliased) { return iter->second.location; } } else if (arrayIndex == GL_INVALID_INDEX) { auto iter = mBindings.find(variable.name); // If "name" exists and is not aliased, that means it was modified more // recently than its "name[0]" form and should be used instead of that. if (iter != mBindings.end() && !iter->second.aliased) { return iter->second.location; } // The base name was aliased, so use the name with the array notation. return getBindingByName(name + "[0]"); } } return getBindingByName(name); } ProgramAliasedBindings::const_iterator ProgramAliasedBindings::begin() const { return mBindings.begin(); } ProgramAliasedBindings::const_iterator ProgramAliasedBindings::end() const { return mBindings.end(); } std::map ProgramAliasedBindings::getStableIterationMap() const { return std::map(mBindings.begin(), mBindings.end()); } // ImageBinding implementation. ImageBinding::ImageBinding(size_t count, TextureType textureTypeIn) : textureType(textureTypeIn), boundImageUnits(count, 0) {} ImageBinding::ImageBinding(GLuint imageUnit, size_t count, TextureType textureTypeIn) : textureType(textureTypeIn) { for (size_t index = 0; index < count; ++index) { boundImageUnits.push_back(imageUnit + static_cast(index)); } } ImageBinding::ImageBinding(const ImageBinding &other) = default; ImageBinding::~ImageBinding() = default; // ProgramState implementation. ProgramState::ProgramState() : mLabel(), mAttachedShaders{}, mLocationsUsedForXfbExtension(0), mBinaryRetrieveableHint(false), mSeparable(false), mNumViews(-1), mDrawIDLocation(-1), mBaseVertexLocation(-1), mBaseInstanceLocation(-1), mCachedBaseVertex(0), mCachedBaseInstance(0), mExecutable(new ProgramExecutable()) { mComputeShaderLocalSize.fill(1); } ProgramState::~ProgramState() { ASSERT(!hasAttachedShader()); } const std::string &ProgramState::getLabel() { return mLabel; } Shader *ProgramState::getAttachedShader(ShaderType shaderType) const { ASSERT(shaderType != ShaderType::InvalidEnum); return mAttachedShaders[shaderType]; } GLuint ProgramState::getUniformIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mExecutable->mUniforms, name); } GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const { return GetResourceIndexFromName(mBufferVariables, name); } GLuint ProgramState::getUniformIndexFromLocation(UniformLocation location) const { ASSERT(location.value >= 0 && static_cast(location.value) < mUniformLocations.size()); return mUniformLocations[location.value].index; } Optional ProgramState::getSamplerIndex(UniformLocation location) const { GLuint index = getUniformIndexFromLocation(location); if (!isSamplerUniformIndex(index)) { return Optional::Invalid(); } return getSamplerIndexFromUniformIndex(index); } bool ProgramState::isSamplerUniformIndex(GLuint index) const { return mExecutable->mSamplerUniformRange.contains(index); } GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const { ASSERT(isSamplerUniformIndex(uniformIndex)); return uniformIndex - mExecutable->mSamplerUniformRange.low(); } GLuint ProgramState::getUniformIndexFromSamplerIndex(GLuint samplerIndex) const { return mExecutable->getUniformIndexFromSamplerIndex(samplerIndex); } bool ProgramState::isImageUniformIndex(GLuint index) const { return mExecutable->mImageUniformRange.contains(index); } GLuint ProgramState::getImageIndexFromUniformIndex(GLuint uniformIndex) const { ASSERT(isImageUniformIndex(uniformIndex)); return uniformIndex - mExecutable->mImageUniformRange.low(); } GLuint ProgramState::getAttributeLocation(const std::string &name) const { for (const sh::ShaderVariable &attribute : mExecutable->mProgramInputs) { if (attribute.name == name) { return attribute.location; } } return static_cast(-1); } bool ProgramState::hasAttachedShader() const { for (const Shader *shader : mAttachedShaders) { if (shader) { return true; } } return false; } ShaderType ProgramState::getFirstAttachedShaderStageType() const { const ShaderBitSet linkedStages = mExecutable->getLinkedShaderStages(); if (linkedStages.none()) { return ShaderType::InvalidEnum; } return linkedStages.first(); } ShaderType ProgramState::getLastAttachedShaderStageType() const { const ShaderBitSet linkedStages = mExecutable->getLinkedShaderStages(); if (linkedStages.none()) { return ShaderType::InvalidEnum; } return linkedStages.last(); } ShaderType ProgramState::getAttachedTransformFeedbackStage() const { if (mAttachedShaders[ShaderType::Geometry]) { return ShaderType::Geometry; } if (mAttachedShaders[ShaderType::TessEvaluation]) { return ShaderType::TessEvaluation; } return ShaderType::Vertex; } Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, ShaderProgramID handle) : mSerial(factory->generateSerial()), mProgram(factory->createProgram(mState)), mValidated(false), mLinked(false), mDeleteStatus(false), mRefCount(0), mResourceManager(manager), mHandle(handle) { ASSERT(mProgram); unlink(); } Program::~Program() { ASSERT(!mProgram); } void Program::onDestroy(const Context *context) { resolveLink(context); for (ShaderType shaderType : AllShaderTypes()) { if (mState.mAttachedShaders[shaderType]) { mState.mAttachedShaders[shaderType]->release(context); mState.mAttachedShaders[shaderType] = nullptr; } } mProgram->destroy(context); ASSERT(!mState.hasAttachedShader()); SafeDelete(mProgram); delete this; } ShaderProgramID Program::id() const { ASSERT(!mLinkingState); return mHandle; } angle::Result Program::setLabel(const Context *context, const std::string &label) { ASSERT(!mLinkingState); mState.mLabel = label; if (mProgram) { return mProgram->onLabelUpdate(context); } return angle::Result::Continue; } const std::string &Program::getLabel() const { ASSERT(!mLinkingState); return mState.mLabel; } void Program::attachShader(Shader *shader) { ShaderType shaderType = shader->getType(); ASSERT(shaderType != ShaderType::InvalidEnum); mState.mAttachedShaders[shaderType] = shader; mState.mAttachedShaders[shaderType]->addRef(); } void Program::detachShader(const Context *context, Shader *shader) { resolveLink(context); ShaderType shaderType = shader->getType(); ASSERT(shaderType != ShaderType::InvalidEnum); ASSERT(mState.mAttachedShaders[shaderType] == shader); shader->release(context); mState.mAttachedShaders[shaderType] = nullptr; } int Program::getAttachedShadersCount() const { ASSERT(!mLinkingState); int numAttachedShaders = 0; for (const Shader *shader : mState.mAttachedShaders) { if (shader) { ++numAttachedShaders; } } return numAttachedShaders; } Shader *Program::getAttachedShader(ShaderType shaderType) const { ASSERT(!mLinkingState); return mState.getAttachedShader(shaderType); } void Program::bindAttributeLocation(GLuint index, const char *name) { ASSERT(!mLinkingState); mAttributeBindings.bindLocation(index, name); } void Program::bindUniformLocation(UniformLocation location, const char *name) { ASSERT(!mLinkingState); mState.mUniformLocationBindings.bindLocation(location.value, name); } void Program::bindFragmentOutputLocation(GLuint index, const char *name) { mFragmentOutputLocations.bindLocation(index, name); } void Program::bindFragmentOutputIndex(GLuint index, const char *name) { mFragmentOutputIndexes.bindLocation(index, name); } angle::Result Program::link(const Context *context) { angle::Result result = linkImpl(context); // Avoid having two ProgramExecutables if the link failed and the Program had successfully // linked previously. if (mLinkingState && mLinkingState->linkedExecutable) { mState.mExecutable = mLinkingState->linkedExecutable; } return result; } // The attached shaders are checked for linking errors by matching up their variables. // Uniform, input and output variables get collected. // The code gets compiled into binaries. angle::Result Program::linkImpl(const Context *context) { ASSERT(!mLinkingState); // Don't make any local variables pointing to anything within the ProgramExecutable, since // unlink() could make a new ProgramExecutable making any references/pointers invalid. auto *platform = ANGLEPlatformCurrent(); double startTime = platform->currentTime(platform); // Unlink the program, but do not clear the validation-related caching yet, since we can still // use the previously linked program if linking the shaders fails. mLinked = false; mState.mExecutable->resetInfoLog(); // Validate we have properly attached shaders before checking the cache. if (!linkValidateShaders(context, mState.mExecutable->getInfoLog())) { return angle::Result::Continue; } egl::BlobCache::Key programHash = {0}; MemoryProgramCache *cache = context->getMemoryProgramCache(); // TODO: http://anglebug.com/4530: Enable program caching for separable programs if (cache && !isSeparable()) { std::lock_guard cacheLock(context->getProgramCacheMutex()); angle::Result cacheResult = cache->getProgram(context, this, &programHash); ANGLE_TRY(cacheResult); // Check explicitly for Continue, Incomplete means a cache miss if (cacheResult == angle::Result::Continue) { std::scoped_lock lock(mHistogramMutex); // Succeeded in loading the binaries in the front-end, back end may still be loading // asynchronously double delta = platform->currentTime(platform) - startTime; int us = static_cast(delta * 1000000.0); ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us); return angle::Result::Continue; } } // Cache load failed, fall through to normal linking. unlink(); InfoLog &infoLog = mState.mExecutable->getInfoLog(); // Re-link shaders after the unlink call. bool result = linkValidateShaders(context, infoLog); ASSERT(result); std::unique_ptr linkingState(new LinkingState()); ProgramMergedVaryings mergedVaryings; LinkingVariables linkingVariables(context, mState); ProgramLinkedResources &resources = linkingState->resources; resources.init(&mState.mExecutable->mUniformBlocks, &mState.mExecutable->mUniforms, &mState.mExecutable->mShaderStorageBlocks, &mState.mBufferVariables, &mState.mExecutable->mAtomicCounterBuffers); // TODO: Fix incomplete linking. http://anglebug.com/6358 updateLinkedShaderStages(); InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker); InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker); if (mState.mAttachedShaders[ShaderType::Compute]) { GLuint combinedImageUniforms = 0; if (!linkUniforms(context, &resources.unusedUniforms, &combinedImageUniforms, infoLog)) { return angle::Result::Continue; } GLuint combinedShaderStorageBlocks = 0u; if (!LinkValidateProgramInterfaceBlocks(context, mState.mExecutable->getLinkedShaderStages(), resources, infoLog, &combinedShaderStorageBlocks)) { return angle::Result::Continue; } // [OpenGL ES 3.1] Chapter 8.22 Page 203: // A link error will be generated if the sum of the number of active image uniforms used in // all shaders, the number of active shader storage blocks, and the number of active // fragment shader outputs exceeds the implementation-dependent value of // MAX_COMBINED_SHADER_OUTPUT_RESOURCES. if (combinedImageUniforms + combinedShaderStorageBlocks > static_cast(context->getCaps().maxCombinedShaderOutputResources)) { infoLog << "The sum of the number of active image uniforms, active shader storage blocks " "and active fragment shader outputs exceeds " "MAX_COMBINED_SHADER_OUTPUT_RESOURCES (" << context->getCaps().maxCombinedShaderOutputResources << ")"; return angle::Result::Continue; } } else { if (!linkAttributes(context, infoLog)) { return angle::Result::Continue; } if (!linkVaryings(context, infoLog)) { return angle::Result::Continue; } GLuint combinedImageUniforms = 0; if (!linkUniforms(context, &resources.unusedUniforms, &combinedImageUniforms, infoLog)) { return angle::Result::Continue; } GLuint combinedShaderStorageBlocks = 0u; if (!LinkValidateProgramInterfaceBlocks(context, mState.mExecutable->getLinkedShaderStages(), resources, infoLog, &combinedShaderStorageBlocks)) { return angle::Result::Continue; } if (!LinkValidateProgramGlobalNames(infoLog, getExecutable(), linkingVariables)) { return angle::Result::Continue; } gl::Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex]; if (vertexShader) { mState.mNumViews = vertexShader->getNumViews(context); mState.mSpecConstUsageBits |= vertexShader->getSpecConstUsageBits(); } gl::Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment]; if (fragmentShader) { if (!mState.mExecutable->linkValidateOutputVariables( context->getCaps(), context->getExtensions(), context->getClientVersion(), combinedImageUniforms, combinedShaderStorageBlocks, fragmentShader->getActiveOutputVariables(context), fragmentShader->getShaderVersion(context), mFragmentOutputLocations, mFragmentOutputIndexes)) { return angle::Result::Continue; } mState.mExecutable->mHasDiscard = fragmentShader->hasDiscard(); mState.mExecutable->mEnablesPerSampleShading = fragmentShader->enablesPerSampleShading(); mState.mExecutable->mAdvancedBlendEquations = fragmentShader->getAdvancedBlendEquations(); mState.mSpecConstUsageBits |= fragmentShader->getSpecConstUsageBits(); } mergedVaryings = GetMergedVaryingsFromLinkingVariables(linkingVariables); if (!mState.mExecutable->linkMergedVaryings( context, mergedVaryings, mState.mTransformFeedbackVaryingNames, linkingVariables, isSeparable(), &resources.varyingPacking)) { return angle::Result::Continue; } } mState.mExecutable->saveLinkedStateInfo(context, mState); mLinkingState = std::move(linkingState); mLinkingState->linkingFromBinary = false; mLinkingState->programHash = programHash; mLinkingState->linkEvent = mProgram->link(context, resources, infoLog, mergedVaryings); // Must be after mProgram->link() to avoid misleading the linker about output variables. mState.updateProgramInterfaceInputs(context); mState.updateProgramInterfaceOutputs(context); if (mState.mSeparable) { mLinkingState->linkedExecutable = mState.mExecutable; } return angle::Result::Continue; } bool Program::isLinking() const { return (mLinkingState.get() && mLinkingState->linkEvent && mLinkingState->linkEvent->isLinking()); } void Program::resolveLinkImpl(const Context *context) { ASSERT(mLinkingState.get()); angle::Result result = mLinkingState->linkEvent->wait(context); mLinked = result == angle::Result::Continue; std::unique_ptr linkingState = std::move(mLinkingState); if (!mLinked) { mState.mExecutable->reset(false); return; } if (linkingState->linkingFromBinary) { // All internal Program state is already loaded from the binary. return; } initInterfaceBlockBindings(); // According to GLES 3.0/3.1 spec for LinkProgram and UseProgram, // Only successfully linked program can replace the executables. ASSERT(mLinked); // Mark implementation-specific unreferenced uniforms as ignored. std::vector *imageBindings = getExecutable().getImageBindings(); mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mExecutable->mSamplerBindings, imageBindings); // Must be called after markUnusedUniformLocations. postResolveLink(context); // Save to the program cache. std::lock_guard cacheLock(context->getProgramCacheMutex()); MemoryProgramCache *cache = context->getMemoryProgramCache(); // TODO: http://anglebug.com/4530: Enable program caching for separable programs if (cache && !isSeparable() && (mState.mExecutable->mLinkedTransformFeedbackVaryings.empty() || !context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled)) { if (cache->putProgram(linkingState->programHash, context, this) == angle::Result::Stop) { // Don't fail linking if putting the program binary into the cache fails, the program is // still usable. ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW, "Failed to save linked program to memory program cache."); } } } void Program::updateLinkedShaderStages() { mState.mExecutable->resetLinkedShaderStages(); for (const Shader *shader : mState.mAttachedShaders) { if (shader) { mState.mExecutable->setLinkedShaderStages(shader->getType()); } } } void ProgramState::updateActiveSamplers() { mExecutable->mActiveSamplerRefCounts.fill(0); mExecutable->updateActiveSamplers(*this); } void ProgramState::updateProgramInterfaceInputs(const Context *context) { const ShaderType firstAttachedShaderType = getFirstAttachedShaderStageType(); if (firstAttachedShaderType == ShaderType::Vertex) { // Vertex attributes are already what we need, so nothing to do return; } Shader *shader = getAttachedShader(firstAttachedShaderType); ASSERT(shader); // Copy over each input varying, since the Shader could go away if (shader->getType() == ShaderType::Compute) { for (const sh::ShaderVariable &attribute : shader->getAllAttributes(context)) { // Compute Shaders have the following built-in input variables. // // in uvec3 gl_NumWorkGroups; // in uvec3 gl_WorkGroupID; // in uvec3 gl_LocalInvocationID; // in uvec3 gl_GlobalInvocationID; // in uint gl_LocalInvocationIndex; // They are all vecs or uints, so no special handling is required. mExecutable->mProgramInputs.emplace_back(attribute); } } else { for (const sh::ShaderVariable &varying : shader->getInputVaryings(context)) { UpdateInterfaceVariable(&mExecutable->mProgramInputs, varying); } } } void ProgramState::updateProgramInterfaceOutputs(const Context *context) { const ShaderType lastAttachedShaderType = getLastAttachedShaderStageType(); if (lastAttachedShaderType == ShaderType::Fragment) { // Fragment outputs are already what we need, so nothing to do return; } if (lastAttachedShaderType == ShaderType::Compute) { // If the program only contains a Compute Shader, then there are no user-defined outputs. return; } Shader *shader = getAttachedShader(lastAttachedShaderType); ASSERT(shader); // Copy over each output varying, since the Shader could go away for (const sh::ShaderVariable &varying : shader->getOutputVaryings(context)) { UpdateInterfaceVariable(&mExecutable->mOutputVariables, varying); } } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink() { if (mLinkingState && mLinkingState->linkedExecutable) { // The new ProgramExecutable that we'll attempt to link with needs to start from a copy of // the last successfully linked ProgramExecutable, so we don't lose any state information. mState.mExecutable.reset(new ProgramExecutable(*mLinkingState->linkedExecutable)); } mState.mExecutable->reset(true); mState.mUniformLocations.clear(); mState.mBufferVariables.clear(); mState.mComputeShaderLocalSize.fill(1); mState.mNumViews = -1; mState.mDrawIDLocation = -1; mState.mBaseVertexLocation = -1; mState.mBaseInstanceLocation = -1; mState.mCachedBaseVertex = 0; mState.mCachedBaseInstance = 0; mState.mSpecConstUsageBits.reset(); mValidated = false; mLinked = false; } angle::Result Program::loadBinary(const Context *context, GLenum binaryFormat, const void *binary, GLsizei length) { ASSERT(!mLinkingState); unlink(); InfoLog &infoLog = mState.mExecutable->getInfoLog(); if (!angle::GetANGLEHasBinaryLoading()) { return angle::Result::Incomplete; } ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE); if (binaryFormat != GL_PROGRAM_BINARY_ANGLE) { infoLog << "Invalid program binary format."; return angle::Result::Incomplete; } BinaryInputStream stream(binary, length); ANGLE_TRY(deserialize(context, stream, infoLog)); // Currently we require the full shader text to compute the program hash. // We could also store the binary in the internal program cache. for (size_t uniformBlockIndex = 0; uniformBlockIndex < mState.mExecutable->getActiveUniformBlockCount(); ++uniformBlockIndex) { mDirtyBits.set(uniformBlockIndex); } // The rx::LinkEvent returned from ProgramImpl::load is a base class with multiple // implementations. In some implementations, a background thread is used to compile the // shaders. Any calls to the LinkEvent object, therefore, are racy and may interfere with // the operation. // We do not want to call LinkEvent::wait because that will cause the background thread // to finish its task before returning, thus defeating the purpose of background compilation. // We need to defer waiting on background compilation until the very last minute when we // absolutely need the results, such as when the developer binds the program or queries // for the completion status. // If load returns nullptr, we know for sure that the binary is not compatible with the backend. // The loaded binary could have been read from the on-disk shader cache and be corrupted or // serialized with different revision and subsystem id than the currently loaded backend. // Returning 'Incomplete' to the caller results in link happening using the original shader // sources. angle::Result result; std::unique_ptr linkingState; std::unique_ptr linkEvent = mProgram->load(context, &stream, infoLog); if (linkEvent) { linkingState = std::make_unique(); linkingState->linkingFromBinary = true; linkingState->linkEvent = std::move(linkEvent); result = angle::Result::Continue; } else { result = angle::Result::Incomplete; } mLinkingState = std::move(linkingState); return result; } angle::Result Program::saveBinary(Context *context, GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const { ASSERT(!mLinkingState); if (binaryFormat) { *binaryFormat = GL_PROGRAM_BINARY_ANGLE; } angle::MemoryBuffer memoryBuf; ANGLE_TRY(serialize(context, &memoryBuf)); GLsizei streamLength = static_cast(memoryBuf.size()); const uint8_t *streamState = memoryBuf.data(); if (streamLength > bufSize) { if (length) { *length = 0; } // TODO: This should be moved to the validation layer but computing the size of the binary // before saving it causes the save to happen twice. It may be possible to write the binary // to a separate buffer, validate sizes and then copy it. ANGLE_CHECK(context, false, "Insufficient buffer size", GL_INVALID_OPERATION); } if (binary) { char *ptr = reinterpret_cast(binary); memcpy(ptr, streamState, streamLength); ptr += streamLength; ASSERT(ptr - streamLength == binary); } if (length) { *length = streamLength; } return angle::Result::Continue; } GLint Program::getBinaryLength(Context *context) const { ASSERT(!mLinkingState); if (!mLinked) { return 0; } GLint length; angle::Result result = saveBinary(context, nullptr, nullptr, std::numeric_limits::max(), &length); if (result != angle::Result::Continue) { return 0; } return length; } void Program::setBinaryRetrievableHint(bool retrievable) { ASSERT(!mLinkingState); // TODO(jmadill) : replace with dirty bits mProgram->setBinaryRetrievableHint(retrievable); mState.mBinaryRetrieveableHint = retrievable; } bool Program::getBinaryRetrievableHint() const { ASSERT(!mLinkingState); return mState.mBinaryRetrieveableHint; } void Program::setSeparable(bool separable) { ASSERT(!mLinkingState); // TODO(yunchao) : replace with dirty bits if (mState.mSeparable != separable) { mProgram->setSeparable(separable); mState.mSeparable = separable; } } bool Program::isSeparable() const { ASSERT(!mLinkingState); return mState.mSeparable; } void Program::deleteSelf(const Context *context) { ASSERT(mRefCount == 0 && mDeleteStatus); mResourceManager->deleteProgram(context, mHandle); } unsigned int Program::getRefCount() const { return mRefCount; } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, ShaderProgramID *shaders) const { ASSERT(!mLinkingState); int total = 0; for (const Shader *shader : mState.mAttachedShaders) { if (shader && (total < maxCount)) { shaders[total] = shader->getHandle(); ++total; } } if (count) { *count = total; } } GLuint Program::getAttributeLocation(const std::string &name) const { ASSERT(!mLinkingState); return mState.getAttributeLocation(name); } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(!mLinkingState); if (!mLinked) { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *type = GL_NONE; *size = 1; return; } ASSERT(index < mState.mExecutable->getProgramInputs().size()); const sh::ShaderVariable &attrib = mState.mExecutable->getProgramInputs()[index]; if (bufsize > 0) { CopyStringToBuffer(name, attrib.name, bufsize, length); } // Always a single 'type' instance *size = 1; *type = attrib.type; } GLint Program::getActiveAttributeCount() const { ASSERT(!mLinkingState); if (!mLinked) { return 0; } return static_cast(mState.mExecutable->getProgramInputs().size()); } GLint Program::getActiveAttributeMaxLength() const { ASSERT(!mLinkingState); if (!mLinked) { return 0; } size_t maxLength = 0; for (const sh::ShaderVariable &attrib : mState.mExecutable->getProgramInputs()) { maxLength = std::max(attrib.name.length() + 1, maxLength); } return static_cast(maxLength); } const std::vector &Program::getAttributes() const { ASSERT(!mLinkingState); return mState.mExecutable->getProgramInputs(); } const sh::WorkGroupSize &Program::getComputeShaderLocalSize() const { ASSERT(!mLinkingState); return mState.mComputeShaderLocalSize; } PrimitiveMode Program::getGeometryShaderInputPrimitiveType() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->getGeometryShaderInputPrimitiveType(); } PrimitiveMode Program::getGeometryShaderOutputPrimitiveType() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->getGeometryShaderOutputPrimitiveType(); } GLint Program::getGeometryShaderInvocations() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->getGeometryShaderInvocations(); } GLint Program::getGeometryShaderMaxVertices() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->getGeometryShaderMaxVertices(); } GLint Program::getTessControlShaderVertices() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->mTessControlShaderVertices; } GLenum Program::getTessGenMode() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->mTessGenMode; } GLenum Program::getTessGenPointMode() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->mTessGenPointMode; } GLenum Program::getTessGenSpacing() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->mTessGenSpacing; } GLenum Program::getTessGenVertexOrder() const { ASSERT(!mLinkingState && mState.mExecutable); return mState.mExecutable->mTessGenVertexOrder; } const sh::ShaderVariable &Program::getInputResource(size_t index) const { ASSERT(!mLinkingState); ASSERT(index < mState.mExecutable->getProgramInputs().size()); return mState.mExecutable->getProgramInputs()[index]; } GLuint Program::getInputResourceIndex(const GLchar *name) const { ASSERT(!mLinkingState); const std::string nameString = StripLastArrayIndex(name); for (size_t index = 0; index < mState.mExecutable->getProgramInputs().size(); index++) { sh::ShaderVariable resource = getInputResource(index); if (resource.name == nameString) { return static_cast(index); } } return GL_INVALID_INDEX; } GLuint Program::getResourceMaxNameSize(const sh::ShaderVariable &resource, GLint max) const { if (resource.isArray()) { return std::max(max, clampCast((resource.name + "[0]").size())); } else { return std::max(max, clampCast((resource.name).size())); } } GLuint Program::getInputResourceMaxNameSize() const { GLint max = 0; for (const sh::ShaderVariable &resource : mState.mExecutable->getProgramInputs()) { max = getResourceMaxNameSize(resource, max); } return max; } GLuint Program::getOutputResourceMaxNameSize() const { GLint max = 0; for (const sh::ShaderVariable &resource : mState.mExecutable->getOutputVariables()) { max = getResourceMaxNameSize(resource, max); } return max; } GLuint Program::getResourceLocation(const GLchar *name, const sh::ShaderVariable &variable) const { if (variable.isBuiltIn()) { return GL_INVALID_INDEX; } GLint location = variable.location; if (variable.isArray()) { size_t nameLengthWithoutArrayIndexOut; size_t arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndexOut); // The 'name' string may not contain the array notation "[0]" if (arrayIndex != GL_INVALID_INDEX) { location += arrayIndex; } } return location; } GLuint Program::getInputResourceLocation(const GLchar *name) const { const GLuint index = getInputResourceIndex(name); if (index == GL_INVALID_INDEX) { return index; } const sh::ShaderVariable &variable = getInputResource(index); return getResourceLocation(name, variable); } GLuint Program::getOutputResourceLocation(const GLchar *name) const { const GLuint index = getOutputResourceIndex(name); if (index == GL_INVALID_INDEX) { return index; } const sh::ShaderVariable &variable = getOutputResource(index); return getResourceLocation(name, variable); } GLuint Program::getOutputResourceIndex(const GLchar *name) const { ASSERT(!mLinkingState); const std::string nameString = StripLastArrayIndex(name); for (size_t index = 0; index < mState.mExecutable->getOutputVariables().size(); index++) { sh::ShaderVariable resource = getOutputResource(index); if (resource.name == nameString) { return static_cast(index); } } return GL_INVALID_INDEX; } size_t Program::getOutputResourceCount() const { ASSERT(!mLinkingState); return (mLinked ? mState.mExecutable->getOutputVariables().size() : 0); } void Program::getResourceName(const std::string name, GLsizei bufSize, GLsizei *length, GLchar *dest) const { if (length) { *length = 0; } if (!mLinked) { if (bufSize > 0) { dest[0] = '\0'; } return; } if (bufSize > 0) { CopyStringToBuffer(dest, name, bufSize, length); } } void Program::getInputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(!mLinkingState); getResourceName(getInputResourceName(index), bufSize, length, name); } void Program::getOutputResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(!mLinkingState); getResourceName(getOutputResourceName(index), bufSize, length, name); } void Program::getUniformResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(!mLinkingState); ASSERT(index < mState.mExecutable->getUniforms().size()); getResourceName(mState.mExecutable->getUniforms()[index].name, bufSize, length, name); } void Program::getBufferVariableResourceName(GLuint index, GLsizei bufSize, GLsizei *length, GLchar *name) const { ASSERT(!mLinkingState); ASSERT(index < mState.mBufferVariables.size()); getResourceName(mState.mBufferVariables[index].name, bufSize, length, name); } const std::string Program::getResourceName(const sh::ShaderVariable &resource) const { std::string resourceName = resource.name; if (resource.isArray()) { resourceName += "[0]"; } return resourceName; } const std::string Program::getInputResourceName(GLuint index) const { ASSERT(!mLinkingState); const sh::ShaderVariable &resource = getInputResource(index); return getResourceName(resource); } const std::string Program::getOutputResourceName(GLuint index) const { ASSERT(!mLinkingState); const sh::ShaderVariable &resource = getOutputResource(index); return getResourceName(resource); } const sh::ShaderVariable &Program::getOutputResource(size_t index) const { ASSERT(!mLinkingState); ASSERT(index < mState.mExecutable->getOutputVariables().size()); return mState.mExecutable->getOutputVariables()[index]; } const ProgramBindings &Program::getAttributeBindings() const { ASSERT(!mLinkingState); return mAttributeBindings; } const ProgramAliasedBindings &Program::getUniformLocationBindings() const { ASSERT(!mLinkingState); return mState.mUniformLocationBindings; } const gl::ProgramAliasedBindings &Program::getFragmentOutputLocations() const { ASSERT(!mLinkingState); return mFragmentOutputLocations; } const gl::ProgramAliasedBindings &Program::getFragmentOutputIndexes() const { ASSERT(!mLinkingState); return mFragmentOutputIndexes; } const std::vector &Program::getTransformFeedbackStrides() const { ASSERT(!mLinkingState); return mState.mExecutable->getTransformFeedbackStrides(); } GLint Program::getFragDataLocation(const std::string &name) const { ASSERT(!mLinkingState); GLint primaryLocation = GetVariableLocation(mState.mExecutable->getOutputVariables(), mState.mExecutable->getOutputLocations(), name); if (primaryLocation != -1) { return primaryLocation; } return GetVariableLocation(mState.mExecutable->getOutputVariables(), mState.mExecutable->getSecondaryOutputLocations(), name); } GLint Program::getFragDataIndex(const std::string &name) const { ASSERT(!mLinkingState); if (GetVariableLocation(mState.mExecutable->getOutputVariables(), mState.mExecutable->getOutputLocations(), name) != -1) { return 0; } if (GetVariableLocation(mState.mExecutable->getOutputVariables(), mState.mExecutable->getSecondaryOutputLocations(), name) != -1) { return 1; } return -1; } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const { ASSERT(!mLinkingState); if (mLinked) { // index must be smaller than getActiveUniformCount() ASSERT(index < mState.mExecutable->getUniforms().size()); const LinkedUniform &uniform = mState.mExecutable->getUniforms()[index]; if (bufsize > 0) { std::string string = uniform.name; CopyStringToBuffer(name, string, bufsize, length); } *size = clampCast(uniform.getBasicTypeElementCount()); *type = uniform.type; } else { if (bufsize > 0) { name[0] = '\0'; } if (length) { *length = 0; } *size = 0; *type = GL_NONE; } } GLint Program::getActiveUniformCount() const { ASSERT(!mLinkingState); if (mLinked) { return static_cast(mState.mExecutable->getUniforms().size()); } else { return 0; } } size_t Program::getActiveBufferVariableCount() const { ASSERT(!mLinkingState); return mLinked ? mState.mBufferVariables.size() : 0; } GLint Program::getActiveUniformMaxLength() const { ASSERT(!mLinkingState); size_t maxLength = 0; if (mLinked) { for (const LinkedUniform &uniform : mState.mExecutable->getUniforms()) { if (!uniform.name.empty()) { size_t length = uniform.name.length() + 1u; if (uniform.isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } } return static_cast(maxLength); } bool Program::isValidUniformLocation(UniformLocation location) const { ASSERT(!mLinkingState); ASSERT(angle::IsValueInRangeForNumericType(mState.mUniformLocations.size())); return (location.value >= 0 && static_cast(location.value) < mState.mUniformLocations.size() && mState.mUniformLocations[static_cast(location.value)].used()); } const LinkedUniform &Program::getUniformByLocation(UniformLocation location) const { ASSERT(!mLinkingState); ASSERT(location.value >= 0 && static_cast(location.value) < mState.mUniformLocations.size()); return mState.mExecutable->getUniforms()[mState.getUniformIndexFromLocation(location)]; } const VariableLocation &Program::getUniformLocation(UniformLocation location) const { ASSERT(!mLinkingState); ASSERT(location.value >= 0 && static_cast(location.value) < mState.mUniformLocations.size()); return mState.mUniformLocations[location.value]; } const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const { ASSERT(!mLinkingState); ASSERT(index < static_cast(mState.mBufferVariables.size())); return mState.mBufferVariables[index]; } UniformLocation Program::getUniformLocation(const std::string &name) const { ASSERT(!mLinkingState); return {GetVariableLocation(mState.mExecutable->getUniforms(), mState.mUniformLocations, name)}; } GLuint Program::getUniformIndex(const std::string &name) const { ASSERT(!mLinkingState); return mState.getUniformIndexFromName(name); } bool Program::shouldIgnoreUniform(UniformLocation location) const { if (location.value == -1) { return true; } if (mState.mUniformLocations[static_cast(location.value)].ignored) { return true; } return false; } template void Program::setUniformGeneric(UniformLocation location, GLsizei count, const UniformT *v) { ASSERT(!mLinkingState); if (shouldIgnoreUniform(location)) { return; } const VariableLocation &locationInfo = mState.mUniformLocations[location.value]; GLsizei clampedCount = clampUniformCount(locationInfo, count, UniformSize, v); (mProgram->*SetUniformFunc)(location.value, clampedCount, v); onStateChange(angle::SubjectMessage::ProgramUniformUpdated); } void Program::setUniform1fv(UniformLocation location, GLsizei count, const GLfloat *v) { setUniformGeneric(location, count, v); } void Program::setUniform2fv(UniformLocation location, GLsizei count, const GLfloat *v) { setUniformGeneric(location, count, v); } void Program::setUniform3fv(UniformLocation location, GLsizei count, const GLfloat *v) { setUniformGeneric(location, count, v); } void Program::setUniform4fv(UniformLocation location, GLsizei count, const GLfloat *v) { setUniformGeneric(location, count, v); } void Program::setUniform1iv(Context *context, UniformLocation location, GLsizei count, const GLint *v) { ASSERT(!mLinkingState); if (shouldIgnoreUniform(location)) { return; } const VariableLocation &locationInfo = mState.mUniformLocations[location.value]; GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v); mProgram->setUniform1iv(location.value, clampedCount, v); if (mState.isSamplerUniformIndex(locationInfo.index)) { updateSamplerUniform(context, locationInfo, clampedCount, v); } else { onStateChange(angle::SubjectMessage::ProgramUniformUpdated); } } void Program::setUniform2iv(UniformLocation location, GLsizei count, const GLint *v) { setUniformGeneric(location, count, v); } void Program::setUniform3iv(UniformLocation location, GLsizei count, const GLint *v) { setUniformGeneric(location, count, v); } void Program::setUniform4iv(UniformLocation location, GLsizei count, const GLint *v) { setUniformGeneric(location, count, v); } void Program::setUniform1uiv(UniformLocation location, GLsizei count, const GLuint *v) { setUniformGeneric(location, count, v); } void Program::setUniform2uiv(UniformLocation location, GLsizei count, const GLuint *v) { setUniformGeneric(location, count, v); } void Program::setUniform3uiv(UniformLocation location, GLsizei count, const GLuint *v) { setUniformGeneric(location, count, v); } void Program::setUniform4uiv(UniformLocation location, GLsizei count, const GLuint *v) { setUniformGeneric(location, count, v); } template < typename UniformT, GLint MatrixC, GLint MatrixR, void (rx::ProgramImpl::*SetUniformMatrixFunc)(GLint, GLsizei, GLboolean, const UniformT *)> void Program::setUniformMatrixGeneric(UniformLocation location, GLsizei count, GLboolean transpose, const UniformT *v) { ASSERT(!mLinkingState); if (shouldIgnoreUniform(location)) { return; } GLsizei clampedCount = clampMatrixUniformCount(location, count, transpose, v); (mProgram->*SetUniformMatrixFunc)(location.value, clampedCount, transpose, v); onStateChange(angle::SubjectMessage::ProgramUniformUpdated); } void Program::setUniformMatrix2fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix3fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix4fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix2x3fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix2x4fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix3x2fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix3x4fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix4x2fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } void Program::setUniformMatrix4x3fv(UniformLocation location, GLsizei count, GLboolean transpose, const GLfloat *v) { setUniformMatrixGeneric(location, count, transpose, v); } GLuint Program::getSamplerUniformBinding(const VariableLocation &uniformLocation) const { ASSERT(!mLinkingState); GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(uniformLocation.index); const std::vector &boundTextureUnits = mState.mExecutable->mSamplerBindings[samplerIndex].boundTextureUnits; return (uniformLocation.arrayIndex < boundTextureUnits.size()) ? boundTextureUnits[uniformLocation.arrayIndex] : 0; } GLuint Program::getImageUniformBinding(const VariableLocation &uniformLocation) const { ASSERT(!mLinkingState); GLuint imageIndex = mState.getImageIndexFromUniformIndex(uniformLocation.index); const std::vector &imageBindings = getExecutable().getImageBindings(); const std::vector &boundImageUnits = imageBindings[imageIndex].boundImageUnits; return boundImageUnits[uniformLocation.arrayIndex]; } void Program::getUniformfv(const Context *context, UniformLocation location, GLfloat *v) const { ASSERT(!mLinkingState); const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = static_cast(getSamplerUniformBinding(uniformLocation)); return; } else if (uniform.isImage()) { *v = static_cast(getImageUniformBinding(uniformLocation)); return; } const GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_FLOAT) { mProgram->getUniformfv(context, location.value, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::getUniformiv(const Context *context, UniformLocation location, GLint *v) const { ASSERT(!mLinkingState); const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = static_cast(getSamplerUniformBinding(uniformLocation)); return; } else if (uniform.isImage()) { *v = static_cast(getImageUniformBinding(uniformLocation)); return; } const GLenum nativeType = gl::VariableComponentType(uniform.type); if (nativeType == GL_INT || nativeType == GL_BOOL) { mProgram->getUniformiv(context, location.value, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::getUniformuiv(const Context *context, UniformLocation location, GLuint *v) const { ASSERT(!mLinkingState); const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value]; const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index]; if (uniform.isSampler()) { *v = getSamplerUniformBinding(uniformLocation); return; } else if (uniform.isImage()) { *v = getImageUniformBinding(uniformLocation); return; } const GLenum nativeType = VariableComponentType(uniform.type); if (nativeType == GL_UNSIGNED_INT) { mProgram->getUniformuiv(context, location.value, v); } else { getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type)); } } void Program::flagForDeletion() { ASSERT(!mLinkingState); mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { ASSERT(!mLinkingState); return mDeleteStatus; } void Program::validate(const Caps &caps) { ASSERT(!mLinkingState); mState.mExecutable->resetInfoLog(); InfoLog &infoLog = mState.mExecutable->getInfoLog(); if (mLinked) { mValidated = ConvertToBool(mProgram->validate(caps, &infoLog)); } else { infoLog << "Program has not been successfully linked."; } } bool Program::isValidated() const { ASSERT(!mLinkingState); return mValidated; } void Program::getActiveUniformBlockName(const Context *context, const UniformBlockIndex blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { ASSERT(!mLinkingState); GetInterfaceBlockName(blockIndex, mState.mExecutable->getUniformBlocks(), bufSize, length, blockName); } void Program::getActiveShaderStorageBlockName(const GLuint blockIndex, GLsizei bufSize, GLsizei *length, GLchar *blockName) const { ASSERT(!mLinkingState); GetInterfaceBlockName({blockIndex}, mState.mExecutable->getShaderStorageBlocks(), bufSize, length, blockName); } template GLint Program::getActiveInterfaceBlockMaxNameLength(const std::vector &resources) const { int maxLength = 0; if (mLinked) { for (const T &resource : resources) { if (!resource.name.empty()) { int length = static_cast(resource.nameWithArrayIndex().length()); maxLength = std::max(length + 1, maxLength); } } } return maxLength; } GLint Program::getActiveUniformBlockMaxNameLength() const { ASSERT(!mLinkingState); return getActiveInterfaceBlockMaxNameLength(mState.mExecutable->getUniformBlocks()); } GLint Program::getActiveShaderStorageBlockMaxNameLength() const { ASSERT(!mLinkingState); return getActiveInterfaceBlockMaxNameLength(mState.mExecutable->getShaderStorageBlocks()); } GLuint Program::getUniformBlockIndex(const std::string &name) const { ASSERT(!mLinkingState); return GetInterfaceBlockIndex(mState.mExecutable->getUniformBlocks(), name); } GLuint Program::getShaderStorageBlockIndex(const std::string &name) const { ASSERT(!mLinkingState); return GetInterfaceBlockIndex(mState.mExecutable->getShaderStorageBlocks(), name); } const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const { ASSERT(!mLinkingState); ASSERT(index < static_cast(mState.mExecutable->getActiveUniformBlockCount())); return mState.mExecutable->getUniformBlocks()[index]; } const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const { ASSERT(!mLinkingState); ASSERT(index < static_cast(mState.mExecutable->getActiveShaderStorageBlockCount())); return mState.mExecutable->getShaderStorageBlocks()[index]; } void Program::bindUniformBlock(UniformBlockIndex uniformBlockIndex, GLuint uniformBlockBinding) { ASSERT(!mLinkingState); mState.mExecutable->mUniformBlocks[uniformBlockIndex.value].binding = uniformBlockBinding; mState.mExecutable->mActiveUniformBlockBindings.set(uniformBlockIndex.value, uniformBlockBinding != 0); mDirtyBits.set(DIRTY_BIT_UNIFORM_BLOCK_BINDING_0 + uniformBlockIndex.value); } GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const { ASSERT(!mLinkingState); return mState.getUniformBlockBinding(uniformBlockIndex); } GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const { ASSERT(!mLinkingState); return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex); } void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode) { ASSERT(!mLinkingState); mState.mTransformFeedbackVaryingNames.resize(count); for (GLsizei i = 0; i < count; i++) { mState.mTransformFeedbackVaryingNames[i] = varyings[i]; } mState.mExecutable->mTransformFeedbackBufferMode = bufferMode; } void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const { ASSERT(!mLinkingState); if (mLinked) { ASSERT(index < mState.mExecutable->mLinkedTransformFeedbackVaryings.size()); const auto &var = mState.mExecutable->mLinkedTransformFeedbackVaryings[index]; std::string varName = var.nameWithArrayIndex(); GLsizei lastNameIdx = std::min(bufSize - 1, static_cast(varName.length())); if (length) { *length = lastNameIdx; } if (size) { *size = var.size(); } if (type) { *type = var.type; } if (name) { memcpy(name, varName.c_str(), lastNameIdx); name[lastNameIdx] = '\0'; } } } GLsizei Program::getTransformFeedbackVaryingCount() const { ASSERT(!mLinkingState); if (mLinked) { return static_cast(mState.mExecutable->mLinkedTransformFeedbackVaryings.size()); } else { return 0; } } GLsizei Program::getTransformFeedbackVaryingMaxLength() const { ASSERT(!mLinkingState); if (mLinked) { GLsizei maxSize = 0; for (const auto &var : mState.mExecutable->mLinkedTransformFeedbackVaryings) { maxSize = std::max(maxSize, static_cast(var.nameWithArrayIndex().length() + 1)); } return maxSize; } else { return 0; } } GLenum Program::getTransformFeedbackBufferMode() const { ASSERT(!mLinkingState); return mState.mExecutable->getTransformFeedbackBufferMode(); } bool Program::linkValidateShaders(const Context *context, InfoLog &infoLog) { const ShaderMap &shaders = mState.mAttachedShaders; bool isComputeShaderAttached = shaders[ShaderType::Compute] != nullptr; bool isGraphicsShaderAttached = shaders[ShaderType::Vertex] || shaders[ShaderType::TessControl] || shaders[ShaderType::TessEvaluation] || shaders[ShaderType::Geometry] || shaders[ShaderType::Fragment]; // Check whether we both have a compute and non-compute shaders attached. // If there are of both types attached, then linking should fail. // OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram if (isComputeShaderAttached && isGraphicsShaderAttached) { infoLog << "Both compute and graphics shaders are attached to the same program."; return false; } Optional version; for (ShaderType shaderType : kAllGraphicsShaderTypes) { Shader *shader = shaders[shaderType]; ASSERT(!shader || shader->getType() == shaderType); if (!shader) { continue; } if (!shader->isCompiled(context)) { infoLog << ShaderTypeToString(shaderType) << " shader is not compiled."; return false; } if (!version.valid()) { version = shader->getShaderVersion(context); } else if (version != shader->getShaderVersion(context)) { infoLog << ShaderTypeToString(shaderType) << " shader version does not match other shader versions."; return false; } } if (isComputeShaderAttached) { ASSERT(shaders[ShaderType::Compute]->getType() == ShaderType::Compute); mState.mComputeShaderLocalSize = shaders[ShaderType::Compute]->getWorkGroupSize(context); // GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs // If the work group size is not specified, a link time error should occur. if (!mState.mComputeShaderLocalSize.isDeclared()) { infoLog << "Work group size is not specified."; return false; } } else { if (!isGraphicsShaderAttached) { infoLog << "No compiled shaders."; return false; } bool hasVertex = shaders[ShaderType::Vertex] != nullptr; bool hasFragment = shaders[ShaderType::Fragment] != nullptr; if (!isSeparable() && (!hasVertex || !hasFragment)) { infoLog << "The program must contain objects to form both a vertex and fragment shader."; return false; } bool hasTessControl = shaders[ShaderType::TessControl] != nullptr; bool hasTessEvaluation = shaders[ShaderType::TessEvaluation] != nullptr; if (!isSeparable() && (hasTessControl != hasTessEvaluation)) { infoLog << "Tessellation control and evaluation shaders must be specified together."; return false; } Shader *geometryShader = shaders[ShaderType::Geometry]; if (shaders[ShaderType::Geometry]) { // [GL_EXT_geometry_shader] Chapter 7 // Linking can fail for a variety of reasons as specified in the OpenGL ES Shading // Language Specification, as well as any of the following reasons: // * One or more of the shader objects attached to are not compiled // successfully. // * The shaders do not use the same shader language version. // * contains objects to form a geometry shader, and // - is not separable and contains no objects to form a vertex shader; or // - the input primitive type, output primitive type, or maximum output vertex count // is not specified in the compiled geometry shader object. ASSERT(geometryShader->getType() == ShaderType::Geometry); Optional inputPrimitive = geometryShader->getGeometryShaderInputPrimitiveType(context); if (!inputPrimitive.valid()) { infoLog << "Input primitive type is not specified in the geometry shader."; return false; } Optional outputPrimitive = geometryShader->getGeometryShaderOutputPrimitiveType(context); if (!outputPrimitive.valid()) { infoLog << "Output primitive type is not specified in the geometry shader."; return false; } Optional maxVertices = geometryShader->getGeometryShaderMaxVertices(context); if (!maxVertices.valid()) { infoLog << "'max_vertices' is not specified in the geometry shader."; return false; } mState.mExecutable->mGeometryShaderInputPrimitiveType = inputPrimitive.value(); mState.mExecutable->mGeometryShaderOutputPrimitiveType = outputPrimitive.value(); mState.mExecutable->mGeometryShaderMaxVertices = maxVertices.value(); mState.mExecutable->mGeometryShaderInvocations = geometryShader->getGeometryShaderInvocations(context); } Shader *tessControlShader = shaders[ShaderType::TessControl]; if (tessControlShader) { int tcsShaderVertices = tessControlShader->getTessControlShaderVertices(context); if (tcsShaderVertices == 0) { // In tessellation control shader, output vertices should be specified at least // once. // > GLSL ES Version 3.20.6 spec: // > 4.4.2. Output Layout Qualifiers // > Tessellation Control Outputs // > ... // > There must be at least one layout qualifier specifying an output patch vertex // > count in any program containing a tessellation control shader. infoLog << "In Tessellation Control Shader, at least one layout qualifier " "specifying an output patch vertex count must exist."; return false; } mState.mExecutable->mTessControlShaderVertices = tcsShaderVertices; } Shader *tessEvaluationShader = shaders[ShaderType::TessEvaluation]; if (tessEvaluationShader) { GLenum tesPrimitiveMode = tessEvaluationShader->getTessGenMode(context); if (tesPrimitiveMode == 0) { // In tessellation evaluation shader, a primitive mode should be specified at least // once. // > GLSL ES Version 3.20.6 spec: // > 4.4.1. Input Layout Qualifiers // > Tessellation Evaluation Inputs // > ... // > The tessellation evaluation shader object in a program must declare a primitive // > mode in its input layout. Declaring vertex spacing, ordering, or point mode // > identifiers is optional. infoLog << "The Tessellation Evaluation Shader object in a program must declare a " "primitive mode in its input layout."; return false; } mState.mExecutable->mTessGenMode = tesPrimitiveMode; mState.mExecutable->mTessGenSpacing = tessEvaluationShader->getTessGenSpacing(context); mState.mExecutable->mTessGenVertexOrder = tessEvaluationShader->getTessGenVertexOrder(context); mState.mExecutable->mTessGenPointMode = tessEvaluationShader->getTessGenPointMode(context); } } return true; } GLuint Program::getTransformFeedbackVaryingResourceIndex(const GLchar *name) const { ASSERT(!mLinkingState); for (GLuint tfIndex = 0; tfIndex < mState.mExecutable->mLinkedTransformFeedbackVaryings.size(); ++tfIndex) { const auto &tf = mState.mExecutable->mLinkedTransformFeedbackVaryings[tfIndex]; if (tf.nameWithArrayIndex() == name) { return tfIndex; } } return GL_INVALID_INDEX; } const TransformFeedbackVarying &Program::getTransformFeedbackVaryingResource(GLuint index) const { ASSERT(!mLinkingState); ASSERT(index < mState.mExecutable->mLinkedTransformFeedbackVaryings.size()); return mState.mExecutable->mLinkedTransformFeedbackVaryings[index]; } bool Program::hasDrawIDUniform() const { ASSERT(!mLinkingState); return mState.mDrawIDLocation >= 0; } void Program::setDrawIDUniform(GLint drawid) { ASSERT(!mLinkingState); ASSERT(mState.mDrawIDLocation >= 0); mProgram->setUniform1iv(mState.mDrawIDLocation, 1, &drawid); } bool Program::hasBaseVertexUniform() const { ASSERT(!mLinkingState); return mState.mBaseVertexLocation >= 0; } void Program::setBaseVertexUniform(GLint baseVertex) { ASSERT(!mLinkingState); ASSERT(mState.mBaseVertexLocation >= 0); if (baseVertex == mState.mCachedBaseVertex) { return; } mState.mCachedBaseVertex = baseVertex; mProgram->setUniform1iv(mState.mBaseVertexLocation, 1, &baseVertex); } bool Program::hasBaseInstanceUniform() const { ASSERT(!mLinkingState); return mState.mBaseInstanceLocation >= 0; } void Program::setBaseInstanceUniform(GLuint baseInstance) { ASSERT(!mLinkingState); ASSERT(mState.mBaseInstanceLocation >= 0); if (baseInstance == mState.mCachedBaseInstance) { return; } mState.mCachedBaseInstance = baseInstance; GLint baseInstanceInt = baseInstance; mProgram->setUniform1iv(mState.mBaseInstanceLocation, 1, &baseInstanceInt); } bool Program::linkVaryings(const Context *context, InfoLog &infoLog) const { ShaderType previousShaderType = ShaderType::InvalidEnum; for (ShaderType shaderType : kAllGraphicsShaderTypes) { Shader *currentShader = mState.mAttachedShaders[shaderType]; if (!currentShader) { continue; } if (previousShaderType != ShaderType::InvalidEnum) { Shader *previousShader = mState.mAttachedShaders[previousShaderType]; const std::vector &outputVaryings = previousShader->getOutputVaryings(context); if (!LinkValidateShaderInterfaceMatching( outputVaryings, currentShader->getInputVaryings(context), previousShaderType, currentShader->getType(), previousShader->getShaderVersion(context), currentShader->getShaderVersion(context), isSeparable(), infoLog)) { return false; } } previousShaderType = currentShader->getType(); } // TODO: http://anglebug.com/3571 and http://anglebug.com/3572 // Need to move logic of validating builtin varyings inside the for-loop above. // This is because the built-in symbols `gl_ClipDistance` and `gl_CullDistance` // can be redeclared in Geometry or Tessellation shaders as well. Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex]; Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment]; if (vertexShader && fragmentShader && !LinkValidateBuiltInVaryings(vertexShader->getOutputVaryings(context), fragmentShader->getInputVaryings(context), vertexShader->getType(), fragmentShader->getType(), vertexShader->getShaderVersion(context), fragmentShader->getShaderVersion(context), infoLog)) { return false; } return true; } bool Program::linkUniforms(const Context *context, std::vector *unusedUniformsOutOrNull, GLuint *combinedImageUniformsOut, InfoLog &infoLog) { // Initialize executable shader map. ShaderMap> shaderUniforms; for (Shader *shader : mState.mAttachedShaders) { if (shader) { shaderUniforms[shader->getType()] = shader->getUniforms(context); } } if (!mState.mExecutable->linkUniforms(context, shaderUniforms, infoLog, mState.mUniformLocationBindings, combinedImageUniformsOut, unusedUniformsOutOrNull, &mState.mUniformLocations)) { return false; } if (context->getClientVersion() >= Version(3, 1)) { GLint locationSize = static_cast(mState.getUniformLocations().size()); if (locationSize > context->getCaps().maxUniformLocations) { infoLog << "Exceeded maximum uniform location size"; return false; } } return true; } // Assigns locations to all attributes (except built-ins) from the bindings and program locations. bool Program::linkAttributes(const Context *context, InfoLog &infoLog) { const Caps &caps = context->getCaps(); const Limitations &limitations = context->getLimitations(); bool webglCompatibility = context->isWebGL(); int shaderVersion = -1; unsigned int usedLocations = 0; Shader *vertexShader = mState.getAttachedShader(gl::ShaderType::Vertex); if (!vertexShader) { // No vertex shader, so no attributes, so nothing to do return true; } shaderVersion = vertexShader->getShaderVersion(context); if (shaderVersion >= 300) { // In GLSL ES 3.00.6, aliasing checks should be done with all declared attributes - // see GLSL ES 3.00.6 section 12.46. Inactive attributes will be pruned after // aliasing checks. mState.mExecutable->mProgramInputs = vertexShader->getAllAttributes(context); } else { // In GLSL ES 1.00.17 we only do aliasing checks for active attributes. mState.mExecutable->mProgramInputs = vertexShader->getActiveAttributes(context); } GLuint maxAttribs = static_cast(caps.maxVertexAttributes); std::vector usedAttribMap(maxAttribs, nullptr); // Assign locations to attributes that have a binding location and check for attribute aliasing. for (sh::ShaderVariable &attribute : mState.mExecutable->mProgramInputs) { // GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or // structures, so we don't need to worry about adjusting their names or generating entries // for each member/element (unlike uniforms for example). ASSERT(!attribute.isArray() && !attribute.isStruct()); int bindingLocation = mAttributeBindings.getBinding(attribute); if (attribute.location == -1 && bindingLocation != -1) { attribute.location = bindingLocation; } if (attribute.location != -1) { // Location is set by glBindAttribLocation or by location layout qualifier const int regs = VariableRegisterCount(attribute.type); if (static_cast(regs + attribute.location) > maxAttribs) { infoLog << "Attribute (" << attribute.name << ") at location " << attribute.location << " is too big to fit"; return false; } for (int reg = 0; reg < regs; reg++) { const int regLocation = attribute.location + reg; sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation]; // In GLSL ES 3.00.6 and in WebGL, attribute aliasing produces a link error. // In non-WebGL GLSL ES 1.00.17, attribute aliasing is allowed with some // restrictions - see GLSL ES 1.00.17 section 2.10.4, but ANGLE currently has a bug. // In D3D 9 and 11, aliasing is not supported, so check a limitation. if (linkedAttribute) { if (shaderVersion >= 300 || webglCompatibility || limitations.noVertexAttributeAliasing) { infoLog << "Attribute '" << attribute.name << "' aliases attribute '" << linkedAttribute->name << "' at location " << regLocation; return false; } } else { usedAttribMap[regLocation] = &attribute; } usedLocations |= 1 << regLocation; } } } // Assign locations to attributes that don't have a binding location. for (sh::ShaderVariable &attribute : mState.mExecutable->mProgramInputs) { // Not set by glBindAttribLocation or by location layout qualifier if (attribute.location == -1) { int regs = VariableRegisterCount(attribute.type); int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs); if (availableIndex == -1 || static_cast(availableIndex + regs) > maxAttribs) { infoLog << "Too many attributes (" << attribute.name << ")"; return false; } attribute.location = availableIndex; } } ASSERT(mState.mExecutable->mAttributesTypeMask.none()); ASSERT(mState.mExecutable->mAttributesMask.none()); // Prune inactive attributes. This step is only needed on shaderVersion >= 300 since on earlier // shader versions we're only processing active attributes to begin with. if (shaderVersion >= 300) { for (auto attributeIter = mState.mExecutable->getProgramInputs().begin(); attributeIter != mState.mExecutable->getProgramInputs().end();) { if (attributeIter->active) { ++attributeIter; } else { attributeIter = mState.mExecutable->mProgramInputs.erase(attributeIter); } } } for (const sh::ShaderVariable &attribute : mState.mExecutable->getProgramInputs()) { ASSERT(attribute.active); ASSERT(attribute.location != -1); unsigned int regs = static_cast(VariableRegisterCount(attribute.type)); unsigned int location = static_cast(attribute.location); for (unsigned int r = 0; r < regs; r++) { // Built-in active program inputs don't have a bound attribute. if (!attribute.isBuiltIn()) { mState.mExecutable->mActiveAttribLocationsMask.set(location); mState.mExecutable->mMaxActiveAttribLocation = std::max(mState.mExecutable->mMaxActiveAttribLocation, location + 1); ComponentType componentType = GLenumToComponentType(VariableComponentType(attribute.type)); SetComponentTypeMask(componentType, location, &mState.mExecutable->mAttributesTypeMask); mState.mExecutable->mAttributesMask.set(location); location++; } } } return true; } void Program::setUniformValuesFromBindingQualifiers() { for (unsigned int samplerIndex : mState.mExecutable->getSamplerUniformRange()) { const auto &samplerUniform = mState.mExecutable->getUniforms()[samplerIndex]; if (samplerUniform.binding != -1) { UniformLocation location = getUniformLocation(samplerUniform.name); ASSERT(location.value != -1); std::vector boundTextureUnits; for (unsigned int elementIndex = 0; elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex) { boundTextureUnits.push_back(samplerUniform.binding + elementIndex); } // Here we pass nullptr to avoid a large chain of calls that need a non-const Context. // We know it's safe not to notify the Context because this is only called after link. setUniform1iv(nullptr, location, static_cast(boundTextureUnits.size()), boundTextureUnits.data()); } } } void Program::initInterfaceBlockBindings() { // Set initial bindings from shader. for (unsigned int blockIndex = 0; blockIndex < mState.mExecutable->getActiveUniformBlockCount(); blockIndex++) { InterfaceBlock &uniformBlock = mState.mExecutable->mUniformBlocks[blockIndex]; bindUniformBlock({blockIndex}, uniformBlock.binding); } } void Program::updateSamplerUniform(Context *context, const VariableLocation &locationInfo, GLsizei clampedCount, const GLint *v) { ASSERT(mState.isSamplerUniformIndex(locationInfo.index)); GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index); SamplerBinding &samplerBinding = mState.mExecutable->mSamplerBindings[samplerIndex]; std::vector &boundTextureUnits = samplerBinding.boundTextureUnits; if (locationInfo.arrayIndex >= boundTextureUnits.size()) { return; } GLsizei safeUniformCount = std::min( clampedCount, static_cast(boundTextureUnits.size() - locationInfo.arrayIndex)); // Update the sampler uniforms. for (GLsizei arrayIndex = 0; arrayIndex < safeUniformCount; ++arrayIndex) { GLint oldTextureUnit = boundTextureUnits[arrayIndex + locationInfo.arrayIndex]; GLint newTextureUnit = v[arrayIndex]; if (oldTextureUnit == newTextureUnit) { continue; } // Update sampler's bound textureUnit boundTextureUnits[arrayIndex + locationInfo.arrayIndex] = newTextureUnit; // Update the reference counts. uint32_t &oldRefCount = mState.mExecutable->mActiveSamplerRefCounts[oldTextureUnit]; uint32_t &newRefCount = mState.mExecutable->mActiveSamplerRefCounts[newTextureUnit]; ASSERT(oldRefCount > 0); ASSERT(newRefCount < std::numeric_limits::max()); oldRefCount--; newRefCount++; // Check for binding type change. TextureType newSamplerType = mState.mExecutable->mActiveSamplerTypes[newTextureUnit]; TextureType oldSamplerType = mState.mExecutable->mActiveSamplerTypes[oldTextureUnit]; SamplerFormat newSamplerFormat = mState.mExecutable->mActiveSamplerFormats[newTextureUnit]; SamplerFormat oldSamplerFormat = mState.mExecutable->mActiveSamplerFormats[oldTextureUnit]; bool newSamplerYUV = mState.mExecutable->mActiveSamplerYUV.test(newTextureUnit); if (newRefCount == 1) { mState.mExecutable->setActive(newTextureUnit, samplerBinding, mState.mExecutable->getUniforms()[locationInfo.index]); } else { if (newSamplerType != samplerBinding.textureType || newSamplerYUV != IsSamplerYUVType(samplerBinding.samplerType)) { mState.mExecutable->hasSamplerTypeConflict(newTextureUnit); } if (newSamplerFormat != samplerBinding.format) { mState.mExecutable->hasSamplerFormatConflict(newTextureUnit); } } // Unset previously active sampler. if (oldRefCount == 0) { mState.mExecutable->setInactive(oldTextureUnit); } else { if (oldSamplerType == TextureType::InvalidEnum || oldSamplerFormat == SamplerFormat::InvalidEnum) { // Previous conflict. Check if this new change fixed the conflict. mState.setSamplerUniformTextureTypeAndFormat(oldTextureUnit); } } // Update the observing PPO's executable, if any. // Do this before any of the Context work, since that uses the current ProgramExecutable, // which will be the PPO's if this Program is bound to it, rather than this Program's. if (isSeparable()) { onStateChange(angle::SubjectMessage::ProgramTextureOrImageBindingChanged); } // Notify context. if (context) { context->onSamplerUniformChange(newTextureUnit); context->onSamplerUniformChange(oldTextureUnit); } } // Invalidate the validation cache. getExecutable().resetCachedValidateSamplersResult(); // Inform any PPOs this Program may be bound to. onStateChange(angle::SubjectMessage::SamplerUniformsUpdated); } void ProgramState::setSamplerUniformTextureTypeAndFormat(size_t textureUnitIndex) { mExecutable->setSamplerUniformTextureTypeAndFormat(textureUnitIndex, mExecutable->mSamplerBindings); } template GLsizei Program::clampUniformCount(const VariableLocation &locationInfo, GLsizei count, int vectorSize, const T *v) { if (count == 1) return 1; const LinkedUniform &linkedUniform = mState.mExecutable->getUniforms()[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; GLsizei maxElementCount = static_cast(remainingElements * linkedUniform.getElementComponents()); if (count * vectorSize > maxElementCount) { return maxElementCount / vectorSize; } return count; } template GLsizei Program::clampMatrixUniformCount(UniformLocation location, GLsizei count, GLboolean transpose, const T *v) { const VariableLocation &locationInfo = mState.mUniformLocations[location.value]; if (!transpose) { return clampUniformCount(locationInfo, count, cols * rows, v); } const LinkedUniform &linkedUniform = mState.mExecutable->getUniforms()[locationInfo.index]; // OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array // element index used, as reported by GetActiveUniform, will be ignored by the GL." unsigned int remainingElements = linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex; return std::min(count, static_cast(remainingElements)); } // Driver differences mean that doing the uniform value cast ourselves gives consistent results. // EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT. template void Program::getUniformInternal(const Context *context, DestT *dataOut, UniformLocation location, GLenum nativeType, int components) const { switch (nativeType) { case GL_BOOL: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location.value, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } case GL_INT: { GLint tempValue[16] = {0}; mProgram->getUniformiv(context, location.value, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_UNSIGNED_INT: { GLuint tempValue[16] = {0}; mProgram->getUniformuiv(context, location.value, tempValue); UniformStateQueryCastLoop(dataOut, reinterpret_cast(tempValue), components); break; } case GL_FLOAT: { GLfloat tempValue[16] = {0}; mProgram->getUniformfv(context, location.value, tempValue); UniformStateQueryCastLoop( dataOut, reinterpret_cast(tempValue), components); break; } default: UNREACHABLE(); break; } } angle::Result Program::syncState(const Context *context) { if (mDirtyBits.any()) { ASSERT(!mLinkingState); ANGLE_TRY(mProgram->syncState(context, mDirtyBits)); mDirtyBits.reset(); } return angle::Result::Continue; } angle::Result Program::serialize(const Context *context, angle::MemoryBuffer *binaryOut) const { BinaryOutputStream stream; stream.writeBytes(reinterpret_cast(angle::GetANGLECommitHash()), angle::GetANGLECommitHashSize()); // nullptr context is supported when computing binary length. if (context) { stream.writeInt(context->getClientVersion().major); stream.writeInt(context->getClientVersion().minor); } else { stream.writeInt(2); stream.writeInt(0); } // Must be before mExecutable->save(), since it uses the value. stream.writeBool(mState.mSeparable); mState.mExecutable->save(mState.mSeparable, &stream); const auto &computeLocalSize = mState.getComputeShaderLocalSize(); stream.writeInt(computeLocalSize[0]); stream.writeInt(computeLocalSize[1]); stream.writeInt(computeLocalSize[2]); stream.writeInt(mState.mNumViews); stream.writeInt(mState.mSpecConstUsageBits.bits()); stream.writeInt(mState.getUniformLocations().size()); for (const auto &variable : mState.getUniformLocations()) { stream.writeInt(variable.arrayIndex); stream.writeIntOrNegOne(variable.index); stream.writeBool(variable.ignored); } stream.writeInt(mState.getBufferVariables().size()); for (const BufferVariable &bufferVariable : mState.getBufferVariables()) { WriteBufferVariable(&stream, bufferVariable); } // Warn the app layer if saving a binary with unsupported transform feedback. if (!mState.getLinkedTransformFeedbackVaryings().empty() && context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled) { ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW, "Saving program binary with transform feedback, which is not supported " "on this driver."); } if (context->getShareGroup()->getFrameCaptureShared()->enabled()) { // Serialize the source for each stage for re-use during capture for (ShaderType shaderType : mState.mExecutable->getLinkedShaderStages()) { gl::Shader *shader = getAttachedShader(shaderType); if (shader) { stream.writeString(shader->getSourceString()); } else { // If we don't have an attached shader, which would occur if this program was // created via glProgramBinary, pull from our cached copy const angle::ProgramSources &cachedLinkedSources = context->getShareGroup()->getFrameCaptureShared()->getProgramSources(id()); const std::string &cachedSourceString = cachedLinkedSources[shaderType]; ASSERT(!cachedSourceString.empty()); stream.writeString(cachedSourceString.c_str()); } } } mProgram->save(context, &stream); ASSERT(binaryOut); if (!binaryOut->resize(stream.length())) { std::stringstream sstream; sstream << "Failed to allocate enough memory to serialize a program. (" << stream.length() << " bytes )"; ANGLE_PERF_WARNING(context->getState().getDebug(), GL_DEBUG_SEVERITY_LOW, sstream.str().c_str()); return angle::Result::Incomplete; } memcpy(binaryOut->data(), stream.data(), stream.length()); return angle::Result::Continue; } angle::Result Program::deserialize(const Context *context, BinaryInputStream &stream, InfoLog &infoLog) { std::vector commitString(angle::GetANGLECommitHashSize(), 0); stream.readBytes(commitString.data(), commitString.size()); if (memcmp(commitString.data(), angle::GetANGLECommitHash(), commitString.size()) != 0) { infoLog << "Invalid program binary version."; return angle::Result::Stop; } int majorVersion = stream.readInt(); int minorVersion = stream.readInt(); if (majorVersion != context->getClientMajorVersion() || minorVersion != context->getClientMinorVersion()) { infoLog << "Cannot load program binaries across different ES context versions."; return angle::Result::Stop; } // Must be before mExecutable->load(), since it uses the value. mState.mSeparable = stream.readBool(); mState.mExecutable->load(mState.mSeparable, &stream); mState.mComputeShaderLocalSize[0] = stream.readInt(); mState.mComputeShaderLocalSize[1] = stream.readInt(); mState.mComputeShaderLocalSize[2] = stream.readInt(); mState.mNumViews = stream.readInt(); static_assert(sizeof(mState.mSpecConstUsageBits.bits()) == sizeof(uint32_t)); mState.mSpecConstUsageBits = rx::SpecConstUsageBits(stream.readInt()); const size_t uniformIndexCount = stream.readInt(); ASSERT(mState.mUniformLocations.empty()); for (size_t uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; ++uniformIndexIndex) { VariableLocation variable; stream.readInt(&variable.arrayIndex); stream.readInt(&variable.index); stream.readBool(&variable.ignored); mState.mUniformLocations.push_back(variable); } size_t bufferVariableCount = stream.readInt(); ASSERT(mState.mBufferVariables.empty()); for (size_t bufferVarIndex = 0; bufferVarIndex < bufferVariableCount; ++bufferVarIndex) { BufferVariable bufferVariable; LoadBufferVariable(&stream, &bufferVariable); mState.mBufferVariables.push_back(bufferVariable); } static_assert(static_cast(ShaderType::EnumCount) <= sizeof(unsigned long) * 8, "Too many shader types"); // Reject programs that use transform feedback varyings if the hardware cannot support them. if (mState.mExecutable->getLinkedTransformFeedbackVaryings().size() > 0 && context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled) { infoLog << "Current driver does not support transform feedback in binary programs."; return angle::Result::Stop; } if (!mState.mAttachedShaders[ShaderType::Compute]) { mState.mExecutable->updateTransformFeedbackStrides(); } postResolveLink(context); mState.mExecutable->updateCanDrawWith(); if (context->getShareGroup()->getFrameCaptureShared()->enabled()) { // Extract the source for each stage from the program binary angle::ProgramSources sources; for (ShaderType shaderType : mState.mExecutable->getLinkedShaderStages()) { std::string shaderSource = stream.readString(); ASSERT(shaderSource.length() > 0); sources[shaderType] = std::move(shaderSource); } // Store it for use during mid-execution capture context->getShareGroup()->getFrameCaptureShared()->setProgramSources(id(), std::move(sources)); } return angle::Result::Continue; } void Program::postResolveLink(const gl::Context *context) { mState.updateActiveSamplers(); mState.mExecutable->mActiveImageShaderBits.fill({}); mState.mExecutable->updateActiveImages(getExecutable()); setUniformValuesFromBindingQualifiers(); if (context->getExtensions().multiDrawANGLE) { mState.mDrawIDLocation = getUniformLocation("gl_DrawID").value; } if (context->getExtensions().baseVertexBaseInstanceShaderBuiltinANGLE) { mState.mBaseVertexLocation = getUniformLocation("gl_BaseVertex").value; mState.mBaseInstanceLocation = getUniformLocation("gl_BaseInstance").value; } } } // namespace gl