/* GRAPHITE2 LICENSING Copyright 2010, SIL International All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should also have received a copy of the GNU Lesser General Public License along with this library in the file named "LICENSE". If not, write to the Free Software Foundation, 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA or visit their web page on the internet at http://www.fsf.org/licenses/lgpl.html. Alternatively, the contents of this file may be used under the terms of the Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public License, as published by the Free Software Foundation, either version 2 of the License or (at your option) any later version. */ // This class represents loaded graphite stack machine code. It performs // basic sanity checks, on the incoming code to prevent more obvious problems // from crashing graphite. // Author: Tim Eves #include #include #include #include #include "graphite2/Segment.h" #include "inc/Code.h" #include "inc/Face.h" #include "inc/GlyphFace.h" #include "inc/GlyphCache.h" #include "inc/Machine.h" #include "inc/Rule.h" #include "inc/Silf.h" #include #ifdef NDEBUG #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif using namespace graphite2; using namespace vm; namespace { inline bool is_return(const instr i) { const opcode_t * opmap = Machine::getOpcodeTable(); const instr pop_ret = *opmap[POP_RET].impl, ret_zero = *opmap[RET_ZERO].impl, ret_true = *opmap[RET_TRUE].impl; return i == pop_ret || i == ret_zero || i == ret_true; } struct context { context(uint8 ref=0) : codeRef(ref) {flags.changed=false; flags.referenced=false;} struct { uint8 changed:1, referenced:1; } flags; uint8 codeRef; }; } // end namespace class Machine::Code::decoder { public: struct limits; static const int NUMCONTEXTS = 256; decoder(limits & lims, Code &code, enum passtype pt) throw(); bool load(const byte * bc_begin, const byte * bc_end); void apply_analysis(instr * const code, instr * code_end); byte max_ref() { return _max_ref; } int out_index() const { return _out_index; } private: void set_ref(int index) throw(); void set_noref(int index) throw(); void set_changed(int index) throw(); opcode fetch_opcode(const byte * bc); void analyse_opcode(const opcode, const int8 * const dp) throw(); bool emit_opcode(opcode opc, const byte * & bc); bool validate_opcode(const byte opc, const byte * const bc); bool valid_upto(const uint16 limit, const uint16 x) const throw(); bool test_context() const throw(); bool test_ref(int8 index) const throw(); bool test_attr(attrCode attr) const throw(); void failure(const status_t s) const throw() { _code.failure(s); } Code & _code; int _out_index; uint16 _out_length; instr * _instr; byte * _data; limits & _max; enum passtype _passtype; int _stack_depth; bool _in_ctxt_item; int16 _slotref; context _contexts[NUMCONTEXTS]; byte _max_ref; }; struct Machine::Code::decoder::limits { const byte * bytecode; const uint8 pre_context; const uint16 rule_length, classes, glyf_attrs, features; const byte attrid[gr_slatMax]; }; inline Machine::Code::decoder::decoder(limits & lims, Code &code, enum passtype pt) throw() : _code(code), _out_index(code._constraint ? 0 : lims.pre_context), _out_length(code._constraint ? 1 : lims.rule_length), _instr(code._code), _data(code._data), _max(lims), _passtype(pt), _stack_depth(0), _in_ctxt_item(false), _slotref(0), _max_ref(0) { } Machine::Code::Code(bool is_constraint, const byte * bytecode_begin, const byte * const bytecode_end, uint8 pre_context, uint16 rule_length, const Silf & silf, const Face & face, enum passtype pt, byte * * const _out) : _code(0), _data(0), _data_size(0), _instr_count(0), _max_ref(0), _status(loaded), _constraint(is_constraint), _modify(false), _delete(false), _own(_out==0) { #ifdef GRAPHITE2_TELEMETRY telemetry::category _code_cat(face.tele.code); #endif assert(bytecode_begin != 0); if (bytecode_begin == bytecode_end) { // ::new (this) Code(); return; } assert(bytecode_end > bytecode_begin); const opcode_t * op_to_fn = Machine::getOpcodeTable(); // Allocate code and data target buffers, these sizes are a worst case // estimate. Once we know their real sizes the we'll shrink them. if (_out) _code = reinterpret_cast(*_out); else _code = static_cast(malloc(estimateCodeDataOut(bytecode_end-bytecode_begin, 1, is_constraint ? 0 : rule_length))); _data = reinterpret_cast(_code + (bytecode_end - bytecode_begin)); if (!_code || !_data) { failure(alloc_failed); return; } decoder::limits lims = { bytecode_end, pre_context, rule_length, silf.numClasses(), face.glyphs().numAttrs(), face.numFeatures(), {1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,255, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0, silf.numUser()} }; decoder dec(lims, *this, pt); if(!dec.load(bytecode_begin, bytecode_end)) return; // Is this an empty program? if (_instr_count == 0) { release_buffers(); ::new (this) Code(); return; } // When we reach the end check we've terminated it correctly if (!is_return(_code[_instr_count-1])) { failure(missing_return); return; } assert((_constraint && immutable()) || !_constraint); dec.apply_analysis(_code, _code + _instr_count); _max_ref = dec.max_ref(); // Now we know exactly how much code and data the program really needs // realloc the buffers to exactly the right size so we don't waste any // memory. assert((bytecode_end - bytecode_begin) >= ptrdiff_t(_instr_count)); assert((bytecode_end - bytecode_begin) >= ptrdiff_t(_data_size)); memmove(_code + (_instr_count+1), _data, _data_size*sizeof(byte)); size_t const total_sz = ((_instr_count+1) + (_data_size + sizeof(instr)-1)/sizeof(instr))*sizeof(instr); if (_out) *_out += total_sz; else { instr * const old_code = _code; _code = static_cast(realloc(_code, total_sz)); if (!_code) free(old_code); } _data = reinterpret_cast(_code + (_instr_count+1)); if (!_code) { failure(alloc_failed); return; } // Make this RET_ZERO, we should never reach this but just in case ... _code[_instr_count] = op_to_fn[RET_ZERO].impl[_constraint]; #ifdef GRAPHITE2_TELEMETRY telemetry::count_bytes(_data_size + (_instr_count+1)*sizeof(instr)); #endif } Machine::Code::~Code() throw () { if (_own) release_buffers(); } bool Machine::Code::decoder::load(const byte * bc, const byte * bc_end) { _max.bytecode = bc_end; while (bc < bc_end) { const opcode opc = fetch_opcode(bc++); if (opc == vm::MAX_OPCODE) return false; analyse_opcode(opc, reinterpret_cast(bc)); if (!emit_opcode(opc, bc)) return false; } return bool(_code); } // Validation check and fixups. // opcode Machine::Code::decoder::fetch_opcode(const byte * bc) { const byte opc = *bc++; // Do some basic sanity checks based on what we know about the opcode if (!validate_opcode(opc, bc)) return MAX_OPCODE; // And check its arguments as far as possible switch (opcode(opc)) { case NOP : break; case PUSH_BYTE : case PUSH_BYTEU : case PUSH_SHORT : case PUSH_SHORTU : case PUSH_LONG : ++_stack_depth; break; case ADD : case SUB : case MUL : case DIV : case MIN_ : case MAX_ : case AND : case OR : case EQUAL : case NOT_EQ : case LESS : case GTR : case LESS_EQ : case GTR_EQ : case BITOR : case BITAND : if (--_stack_depth <= 0) failure(underfull_stack); break; case NEG : case TRUNC8 : case TRUNC16 : case NOT : case BITNOT : case BITSET : if (_stack_depth <= 0) failure(underfull_stack); break; case COND : _stack_depth -= 2; if (_stack_depth <= 0) failure(underfull_stack); break; case NEXT_N : // runtime checked break; case NEXT : case COPY_NEXT : ++_out_index; if (_out_index < -1 || _out_index > _out_length || _slotref > _max.rule_length) failure(out_of_range_data); break; case PUT_GLYPH_8BIT_OBS : valid_upto(_max.classes, bc[0]); test_context(); break; case PUT_SUBS_8BIT_OBS : test_ref(int8(bc[0])); valid_upto(_max.classes, bc[1]); valid_upto(_max.classes, bc[2]); test_context(); break; case PUT_COPY : test_ref(int8(bc[0])); test_context(); break; case INSERT : if (_passtype >= PASS_TYPE_POSITIONING) failure(invalid_opcode); ++_out_length; if (_out_index < 0) ++_out_index; if (_out_index < -1 || _out_index >= _out_length) failure(out_of_range_data); break; case DELETE : if (_passtype >= PASS_TYPE_POSITIONING) failure(invalid_opcode); if (_out_index < _max.pre_context) failure(out_of_range_data); --_out_index; --_out_length; if (_out_index < -1 || _out_index > _out_length) failure(out_of_range_data); break; case ASSOC : if (bc[0] == 0) failure(out_of_range_data); for (uint8 num = bc[0]; num; --num) test_ref(int8(bc[num])); test_context(); break; case CNTXT_ITEM : valid_upto(_max.rule_length, _max.pre_context + int8(bc[0])); if (bc + 2 + bc[1] >= _max.bytecode) failure(jump_past_end); if (_in_ctxt_item) failure(nested_context_item); break; case ATTR_SET : case ATTR_ADD : case ATTR_SUB : case ATTR_SET_SLOT : if (--_stack_depth < 0) failure(underfull_stack); valid_upto(gr_slatMax, bc[0]); if (attrCode(bc[0]) == gr_slatUserDefn) // use IATTR for user attributes failure(out_of_range_data); test_attr(attrCode(bc[0])); test_context(); break; case IATTR_SET_SLOT : if (--_stack_depth < 0) failure(underfull_stack); if (valid_upto(gr_slatMax, bc[0])) valid_upto(_max.attrid[bc[0]], bc[1]); test_attr(attrCode(bc[0])); test_context(); break; case PUSH_SLOT_ATTR : ++_stack_depth; valid_upto(gr_slatMax, bc[0]); test_ref(int8(bc[1])); if (attrCode(bc[0]) == gr_slatUserDefn) // use IATTR for user attributes failure(out_of_range_data); test_attr(attrCode(bc[0])); break; case PUSH_GLYPH_ATTR_OBS : case PUSH_ATT_TO_GATTR_OBS : ++_stack_depth; valid_upto(_max.glyf_attrs, bc[0]); test_ref(int8(bc[1])); break; case PUSH_ATT_TO_GLYPH_METRIC : case PUSH_GLYPH_METRIC : ++_stack_depth; valid_upto(kgmetDescent, bc[0]); test_ref(int8(bc[1])); // level: dp[2] no check necessary break; case PUSH_FEAT : ++_stack_depth; valid_upto(_max.features, bc[0]); test_ref(int8(bc[1])); break; case PUSH_ISLOT_ATTR : ++_stack_depth; if (valid_upto(gr_slatMax, bc[0])) { test_ref(int8(bc[1])); valid_upto(_max.attrid[bc[0]], bc[2]); } test_attr(attrCode(bc[0])); break; case PUSH_IGLYPH_ATTR :// not implemented ++_stack_depth; break; case POP_RET : if (--_stack_depth < 0) failure(underfull_stack); GR_FALLTHROUGH; // no break case RET_ZERO : case RET_TRUE : break; case IATTR_SET : case IATTR_ADD : case IATTR_SUB : if (--_stack_depth < 0) failure(underfull_stack); if (valid_upto(gr_slatMax, bc[0])) valid_upto(_max.attrid[bc[0]], bc[1]); test_attr(attrCode(bc[0])); test_context(); break; case PUSH_PROC_STATE : // dummy: dp[0] no check necessary case PUSH_VERSION : ++_stack_depth; break; case PUT_SUBS : test_ref(int8(bc[0])); valid_upto(_max.classes, uint16(bc[1]<< 8) | bc[2]); valid_upto(_max.classes, uint16(bc[3]<< 8) | bc[4]); test_context(); break; case PUT_SUBS2 : // not implemented case PUT_SUBS3 : // not implemented break; case PUT_GLYPH : valid_upto(_max.classes, uint16(bc[0]<< 8) | bc[1]); test_context(); break; case PUSH_GLYPH_ATTR : case PUSH_ATT_TO_GLYPH_ATTR : ++_stack_depth; valid_upto(_max.glyf_attrs, uint16(bc[0]<< 8) | bc[1]); test_ref(int8(bc[2])); break; case SET_FEAT : valid_upto(_max.features, bc[0]); test_ref(int8(bc[1])); break; default: failure(invalid_opcode); break; } return bool(_code) ? opcode(opc) : MAX_OPCODE; } void Machine::Code::decoder::analyse_opcode(const opcode opc, const int8 * arg) throw() { switch (opc) { case DELETE : _code._delete = true; break; case ASSOC : set_changed(0); // for (uint8 num = arg[0]; num; --num) // _analysis.set_noref(num); break; case PUT_GLYPH_8BIT_OBS : case PUT_GLYPH : _code._modify = true; set_changed(0); break; case ATTR_SET : case ATTR_ADD : case ATTR_SUB : case ATTR_SET_SLOT : case IATTR_SET_SLOT : case IATTR_SET : case IATTR_ADD : case IATTR_SUB : set_noref(0); break; case NEXT : case COPY_NEXT : ++_slotref; _contexts[_slotref] = context(uint8(_code._instr_count+1)); // if (_analysis.slotref > _analysis.max_ref) _analysis.max_ref = _analysis.slotref; break; case INSERT : if (_slotref >= 0) --_slotref; _code._modify = true; break; case PUT_SUBS_8BIT_OBS : // slotref on 1st parameter case PUT_SUBS : _code._modify = true; set_changed(0); GR_FALLTHROUGH; // no break case PUT_COPY : if (arg[0] != 0) { set_changed(0); _code._modify = true; } set_ref(arg[0]); break; case PUSH_GLYPH_ATTR_OBS : case PUSH_SLOT_ATTR : case PUSH_GLYPH_METRIC : case PUSH_ATT_TO_GATTR_OBS : case PUSH_ATT_TO_GLYPH_METRIC : case PUSH_ISLOT_ATTR : case PUSH_FEAT : case SET_FEAT : set_ref(arg[1]); break; case PUSH_ATT_TO_GLYPH_ATTR : case PUSH_GLYPH_ATTR : set_ref(arg[2]); break; default: break; } } bool Machine::Code::decoder::emit_opcode(opcode opc, const byte * & bc) { const opcode_t * op_to_fn = Machine::getOpcodeTable(); const opcode_t & op = op_to_fn[opc]; if (op.impl[_code._constraint] == 0) { failure(unimplemented_opcode_used); return false; } const size_t param_sz = op.param_sz == VARARGS ? bc[0] + 1 : op.param_sz; // Add this instruction *_instr++ = op.impl[_code._constraint]; ++_code._instr_count; // Grab the parameters if (param_sz) { memcpy(_data, bc, param_sz * sizeof(byte)); bc += param_sz; _data += param_sz; _code._data_size += param_sz; } // recursively decode a context item so we can split the skip into // instruction and data portions. if (opc == CNTXT_ITEM) { assert(_out_index == 0); _in_ctxt_item = true; _out_index = _max.pre_context + int8(_data[-2]); _slotref = int8(_data[-2]); _out_length = _max.rule_length; const size_t ctxt_start = _code._instr_count; byte & instr_skip = _data[-1]; byte & data_skip = *_data++; ++_code._data_size; const byte *curr_end = _max.bytecode; if (load(bc, bc + instr_skip)) { bc += instr_skip; data_skip = instr_skip - byte(_code._instr_count - ctxt_start); instr_skip = byte(_code._instr_count - ctxt_start); _max.bytecode = curr_end; _out_length = 1; _out_index = 0; _slotref = 0; _in_ctxt_item = false; } else { _out_index = 0; _slotref = 0; return false; } } return bool(_code); } void Machine::Code::decoder::apply_analysis(instr * const code, instr * code_end) { // insert TEMP_COPY commands for slots that need them (that change and are referenced later) int tempcount = 0; if (_code._constraint) return; const instr temp_copy = Machine::getOpcodeTable()[TEMP_COPY].impl[0]; for (const context * c = _contexts, * const ce = c + _slotref; c < ce; ++c) { if (!c->flags.referenced || !c->flags.changed) continue; instr * const tip = code + c->codeRef + tempcount; memmove(tip+1, tip, (code_end - tip) * sizeof(instr)); *tip = temp_copy; ++code_end; ++tempcount; _code._delete = true; } _code._instr_count = code_end - code; } inline bool Machine::Code::decoder::validate_opcode(const byte opc, const byte * const bc) { if (opc >= MAX_OPCODE) { failure(invalid_opcode); return false; } const opcode_t & op = Machine::getOpcodeTable()[opc]; if (op.impl[_code._constraint] == 0) { failure(unimplemented_opcode_used); return false; } if (op.param_sz == VARARGS && bc >= _max.bytecode) { failure(arguments_exhausted); return false; } const size_t param_sz = op.param_sz == VARARGS ? bc[0] + 1 : op.param_sz; if (bc - 1 + param_sz >= _max.bytecode) { failure(arguments_exhausted); return false; } return true; } bool Machine::Code::decoder::valid_upto(const uint16 limit, const uint16 x) const throw() { const bool t = (limit != 0) && (x < limit); if (!t) failure(out_of_range_data); return t; } inline bool Machine::Code::decoder::test_ref(int8 index) const throw() { if (_code._constraint && !_in_ctxt_item) { if (index > 0 || -index > _max.pre_context) { failure(out_of_range_data); return false; } } else { if (_max.rule_length == 0 || (_slotref + _max.pre_context + index >= _max.rule_length) || (_slotref + _max.pre_context + index < 0)) { failure(out_of_range_data); return false; } } return true; } bool Machine::Code::decoder::test_context() const throw() { if (_out_index >= _out_length || _out_index < 0 || _slotref >= NUMCONTEXTS - 1) { failure(out_of_range_data); return false; } return true; } bool Machine::Code::decoder::test_attr(attrCode) const throw() { #if 0 // This code is coming but causes backward compatibility problems. if (_passtype < PASS_TYPE_POSITIONING) { if (attr != gr_slatBreak && attr != gr_slatDir && attr != gr_slatUserDefn && attr != gr_slatCompRef) { failure(out_of_range_data); return false; } } #endif return true; } inline void Machine::Code::failure(const status_t s) throw() { release_buffers(); _status = s; } inline void Machine::Code::decoder::set_ref(int index) throw() { if (index + _slotref < 0 || index + _slotref >= NUMCONTEXTS) return; _contexts[index + _slotref].flags.referenced = true; if (index + _slotref > _max_ref) _max_ref = index + _slotref; } inline void Machine::Code::decoder::set_noref(int index) throw() { if (index + _slotref < 0 || index + _slotref >= NUMCONTEXTS) return; if (index + _slotref > _max_ref) _max_ref = index + _slotref; } inline void Machine::Code::decoder::set_changed(int index) throw() { if (index + _slotref < 0 || index + _slotref >= NUMCONTEXTS) return; _contexts[index + _slotref].flags.changed= true; if (index + _slotref > _max_ref) _max_ref = index + _slotref; } void Machine::Code::release_buffers() throw() { if (_own) free(_code); _code = 0; _data = 0; _own = false; } int32 Machine::Code::run(Machine & m, slotref * & map) const { // assert(_own); assert(*this); // Check we are actually runnable if (m.slotMap().size() <= size_t(_max_ref + m.slotMap().context()) || m.slotMap()[_max_ref + m.slotMap().context()] == 0) { m._status = Machine::slot_offset_out_bounds; return 1; // return m.run(_code, _data, map); } return m.run(_code, _data, map); }