/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "BSPTree.h" #include "mozilla/gfx/Polygon.h" namespace mozilla { class nsDisplayTransform; namespace layers { template void BSPTree::BuildDrawOrder(BSPTreeNode* aNode, nsTArray>& aLayers) const { const gfx::Point4D& normal = aNode->First().GetNormal(); BSPTreeNode* front = aNode->front; BSPTreeNode* back = aNode->back; // Since the goal is to return the draw order from back to front, we reverse // the traversal order if the current polygon is facing towards the camera. const bool reverseOrder = normal.z > 0.0f; if (reverseOrder) { std::swap(front, back); } if (front) { BuildDrawOrder(front, aLayers); } for (BSPPolygon& layer : aNode->layers) { MOZ_ASSERT(layer.geometry); if (layer.geometry->GetPoints().Length() >= 3) { aLayers.AppendElement(std::move(layer)); } } if (back) { BuildDrawOrder(back, aLayers); } } template void BSPTree::BuildTree(BSPTreeNode* aRoot, PolygonList& aLayers) { MOZ_ASSERT(!aLayers.empty()); aRoot->layers.push_back(std::move(aLayers.front())); aLayers.pop_front(); if (aLayers.empty()) { return; } const gfx::Polygon& plane = aRoot->First(); MOZ_ASSERT(!plane.IsEmpty()); const gfx::Point4D& planeNormal = plane.GetNormal(); const gfx::Point4D& planePoint = plane.GetPoints()[0]; PolygonList backLayers, frontLayers; for (BSPPolygon& layerPolygon : aLayers) { const nsTArray& geometry = layerPolygon.geometry->GetPoints(); // Calculate the plane-point distances for the polygon classification. size_t pos = 0, neg = 0; nsTArray distances = CalculatePointPlaneDistances( geometry, planeNormal, planePoint, pos, neg); // Back polygon if (pos == 0 && neg > 0) { backLayers.push_back(std::move(layerPolygon)); } // Front polygon else if (pos > 0 && neg == 0) { frontLayers.push_back(std::move(layerPolygon)); } // Coplanar polygon else if (pos == 0 && neg == 0) { aRoot->layers.push_back(std::move(layerPolygon)); } // Polygon intersects with the splitting plane. else if (pos > 0 && neg > 0) { nsTArray backPoints, frontPoints; // Clip the polygon against the plane. We reuse the previously calculated // distances to find the plane-edge intersections. ClipPointsWithPlane(geometry, planeNormal, distances, backPoints, frontPoints); const gfx::Point4D& normal = layerPolygon.geometry->GetNormal(); T* data = layerPolygon.data; if (backPoints.Length() >= 3) { backLayers.emplace_back(data, std::move(backPoints), normal); } if (frontPoints.Length() >= 3) { frontLayers.emplace_back(data, std::move(frontPoints), normal); } } } if (!backLayers.empty()) { aRoot->back = new (mPool) BSPTreeNode(mListPointers); BuildTree(aRoot->back, backLayers); } if (!frontLayers.empty()) { aRoot->front = new (mPool) BSPTreeNode(mListPointers); BuildTree(aRoot->front, frontLayers); } } template void BSPTree::BuildTree( BSPTreeNode* aRoot, PolygonList& aLayers); template void BSPTree::BuildDrawOrder( BSPTreeNode* aNode, nsTArray>& aLayers) const; template void BSPTree::BuildTree( BSPTreeNode* aRoot, PolygonList& aLayers); template void BSPTree::BuildDrawOrder( BSPTreeNode* aNode, nsTArray>& aLayers) const; } // namespace layers } // namespace mozilla