// qcms // Copyright (C) 2009 Mozilla Corporation // Copyright (C) 1998-2007 Marti Maria // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. use crate::{ iccread::LAB_SIGNATURE, iccread::RGB_SIGNATURE, iccread::XYZ_SIGNATURE, iccread::{lutType, lutmABType, Profile, CMYK_SIGNATURE}, matrix::Matrix, s15Fixed16Number_to_float, transform_util::clamp_float, transform_util::{ build_colorant_matrix, build_input_gamma_table, build_output_lut, lut_interp_linear, lut_interp_linear_float, }, }; trait ModularTransform { fn transform(&self, src: &[f32], dst: &mut [f32]); } #[inline] fn lerp(a: f32, b: f32, t: f32) -> f32 { a * (1.0 - t) + b * t } fn build_lut_matrix(lut: &lutType) -> Matrix { let mut result: Matrix = Matrix { m: [[0.; 3]; 3] }; result.m[0][0] = s15Fixed16Number_to_float(lut.e00); result.m[0][1] = s15Fixed16Number_to_float(lut.e01); result.m[0][2] = s15Fixed16Number_to_float(lut.e02); result.m[1][0] = s15Fixed16Number_to_float(lut.e10); result.m[1][1] = s15Fixed16Number_to_float(lut.e11); result.m[1][2] = s15Fixed16Number_to_float(lut.e12); result.m[2][0] = s15Fixed16Number_to_float(lut.e20); result.m[2][1] = s15Fixed16Number_to_float(lut.e21); result.m[2][2] = s15Fixed16Number_to_float(lut.e22); result } fn build_mAB_matrix(lut: &lutmABType) -> Matrix { let mut result: Matrix = Matrix { m: [[0.; 3]; 3] }; result.m[0][0] = s15Fixed16Number_to_float(lut.e00); result.m[0][1] = s15Fixed16Number_to_float(lut.e01); result.m[0][2] = s15Fixed16Number_to_float(lut.e02); result.m[1][0] = s15Fixed16Number_to_float(lut.e10); result.m[1][1] = s15Fixed16Number_to_float(lut.e11); result.m[1][2] = s15Fixed16Number_to_float(lut.e12); result.m[2][0] = s15Fixed16Number_to_float(lut.e20); result.m[2][1] = s15Fixed16Number_to_float(lut.e21); result.m[2][2] = s15Fixed16Number_to_float(lut.e22); result } //Based on lcms cmsLab2XYZ fn f(t: f32) -> f32 { if t <= 24. / 116. * (24. / 116.) * (24. / 116.) { (841. / 108. * t) + 16. / 116. } else { t.powf(1. / 3.) } } fn f_1(t: f32) -> f32 { if t <= 24.0 / 116.0 { (108.0 / 841.0) * (t - 16.0 / 116.0) } else { t * t * t } } #[allow(clippy::upper_case_acronyms)] struct LABtoXYZ; impl ModularTransform for LABtoXYZ { fn transform(&self, src: &[f32], dest: &mut [f32]) { // lcms: D50 XYZ values let WhitePointX: f32 = 0.9642; let WhitePointY: f32 = 1.0; let WhitePointZ: f32 = 0.8249; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let device_L: f32 = src[0] * 100.0; let device_a: f32 = src[1] * 255.0 - 128.0; let device_b: f32 = src[2] * 255.0 - 128.0; let y: f32 = (device_L + 16.0) / 116.0; let X = f_1(y + 0.002 * device_a) * WhitePointX; let Y = f_1(y) * WhitePointY; let Z = f_1(y - 0.005 * device_b) * WhitePointZ; dest[0] = (X as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; dest[1] = (Y as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; dest[2] = (Z as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; } } } #[allow(clippy::upper_case_acronyms)] struct XYZtoLAB; impl ModularTransform for XYZtoLAB { //Based on lcms cmsXYZ2Lab fn transform(&self, src: &[f32], dest: &mut [f32]) { // lcms: D50 XYZ values let WhitePointX: f32 = 0.9642; let WhitePointY: f32 = 1.0; let WhitePointZ: f32 = 0.8249; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let device_x: f32 = (src[0] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointX as f64) as f32; let device_y: f32 = (src[1] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointY as f64) as f32; let device_z: f32 = (src[2] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointZ as f64) as f32; let fx = f(device_x); let fy = f(device_y); let fz = f(device_z); let L: f32 = 116.0 * fy - 16.0; let a: f32 = 500.0 * (fx - fy); let b: f32 = 200.0 * (fy - fz); dest[0] = L / 100.0; dest[1] = (a + 128.0) / 255.0; dest[2] = (b + 128.0) / 255.0; } } } #[derive(Default)] struct ClutOnly { clut: Option>, grid_size: u16, } impl ModularTransform for ClutOnly { fn transform(&self, src: &[f32], dest: &mut [f32]) { let xy_len: i32 = 1; let x_len: i32 = self.grid_size as i32; let len: i32 = x_len * x_len; let r_table = &self.clut.as_ref().unwrap()[0..]; let g_table = &self.clut.as_ref().unwrap()[1..]; let b_table = &self.clut.as_ref().unwrap()[2..]; let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize]; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { debug_assert!(self.grid_size as i32 >= 1); let linear_r: f32 = src[0]; let linear_g: f32 = src[1]; let linear_b: f32 = src[2]; let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32; let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32; let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32; let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32; let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32; let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32; let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32; let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32; let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32; let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d); let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d); let r_y1: f32 = lerp(r_x1, r_x2, y_d); let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d); let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d); let r_y2: f32 = lerp(r_x3, r_x4, y_d); let clut_r: f32 = lerp(r_y1, r_y2, z_d); let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d); let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d); let g_y1: f32 = lerp(g_x1, g_x2, y_d); let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d); let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d); let g_y2: f32 = lerp(g_x3, g_x4, y_d); let clut_g: f32 = lerp(g_y1, g_y2, z_d); let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d); let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d); let b_y1: f32 = lerp(b_x1, b_x2, y_d); let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d); let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d); let b_y2: f32 = lerp(b_x3, b_x4, y_d); let clut_b: f32 = lerp(b_y1, b_y2, z_d); dest[0] = clamp_float(clut_r); dest[1] = clamp_float(clut_g); dest[2] = clamp_float(clut_b); } } } #[derive(Default)] struct Clut3x3 { input_clut_table: [Option>; 3], clut: Option>, grid_size: u16, output_clut_table: [Option>; 3], } impl ModularTransform for Clut3x3 { fn transform(&self, src: &[f32], dest: &mut [f32]) { let xy_len: i32 = 1; let x_len: i32 = self.grid_size as i32; let len: i32 = x_len * x_len; let r_table = &self.clut.as_ref().unwrap()[0..]; let g_table = &self.clut.as_ref().unwrap()[1..]; let b_table = &self.clut.as_ref().unwrap()[2..]; let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize]; let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap(); let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap(); let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap(); for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { debug_assert!(self.grid_size as i32 >= 1); let device_r: f32 = src[0]; let device_g: f32 = src[1]; let device_b: f32 = src[2]; let linear_r: f32 = lut_interp_linear_float(device_r, &input_clut_table_r); let linear_g: f32 = lut_interp_linear_float(device_g, &input_clut_table_g); let linear_b: f32 = lut_interp_linear_float(device_b, &input_clut_table_b); let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32; let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32; let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32; let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32; let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32; let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32; let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32; let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32; let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32; let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d); let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d); let r_y1: f32 = lerp(r_x1, r_x2, y_d); let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d); let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d); let r_y2: f32 = lerp(r_x3, r_x4, y_d); let clut_r: f32 = lerp(r_y1, r_y2, z_d); let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d); let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d); let g_y1: f32 = lerp(g_x1, g_x2, y_d); let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d); let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d); let g_y2: f32 = lerp(g_x3, g_x4, y_d); let clut_g: f32 = lerp(g_y1, g_y2, z_d); let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d); let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d); let b_y1: f32 = lerp(b_x1, b_x2, y_d); let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d); let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d); let b_y2: f32 = lerp(b_x3, b_x4, y_d); let clut_b: f32 = lerp(b_y1, b_y2, z_d); let pcs_r: f32 = lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap()); let pcs_g: f32 = lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap()); let pcs_b: f32 = lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap()); dest[0] = clamp_float(pcs_r); dest[1] = clamp_float(pcs_g); dest[2] = clamp_float(pcs_b); } } } #[derive(Default)] struct Clut4x3 { input_clut_table: [Option>; 4], clut: Option>, grid_size: u16, output_clut_table: [Option>; 3], } impl ModularTransform for Clut4x3 { fn transform(&self, src: &[f32], dest: &mut [f32]) { let z_stride: i32 = self.grid_size as i32; let y_stride: i32 = z_stride * z_stride; let x_stride: i32 = z_stride * z_stride * z_stride; let r_tbl = &self.clut.as_ref().unwrap()[0..]; let g_tbl = &self.clut.as_ref().unwrap()[1..]; let b_tbl = &self.clut.as_ref().unwrap()[2..]; let CLU = |table: &[f32], x, y, z, w| { table[((x * x_stride + y * y_stride + z * z_stride + w) * 3) as usize] }; let input_clut_table_0 = self.input_clut_table[0].as_ref().unwrap(); let input_clut_table_1 = self.input_clut_table[1].as_ref().unwrap(); let input_clut_table_2 = self.input_clut_table[2].as_ref().unwrap(); let input_clut_table_3 = self.input_clut_table[3].as_ref().unwrap(); for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(4)) { debug_assert!(self.grid_size as i32 >= 1); let linear_x: f32 = lut_interp_linear_float(src[0], &input_clut_table_0); let linear_y: f32 = lut_interp_linear_float(src[1], &input_clut_table_1); let linear_z: f32 = lut_interp_linear_float(src[2], &input_clut_table_2); let linear_w: f32 = lut_interp_linear_float(src[3], &input_clut_table_3); let x: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).floor() as i32; let y: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).floor() as i32; let z: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).floor() as i32; let w: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).floor() as i32; let x_n: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).ceil() as i32; let y_n: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).ceil() as i32; let z_n: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).ceil() as i32; let w_n: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).ceil() as i32; let x_d: f32 = linear_x * (self.grid_size as i32 - 1) as f32 - x as f32; let y_d: f32 = linear_y * (self.grid_size as i32 - 1) as f32 - y as f32; let z_d: f32 = linear_z * (self.grid_size as i32 - 1) as f32 - z as f32; let w_d: f32 = linear_w * (self.grid_size as i32 - 1) as f32 - w as f32; let quadlinear = |tbl| { let CLU = |x, y, z, w| CLU(tbl, x, y, z, w); let r_x1 = lerp(CLU(x, y, z, w), CLU(x_n, y, z, w), x_d); let r_x2 = lerp(CLU(x, y_n, z, w), CLU(x_n, y_n, z, w), x_d); let r_y1 = lerp(r_x1, r_x2, y_d); let r_x3 = lerp(CLU(x, y, z_n, w), CLU(x_n, y, z_n, w), x_d); let r_x4 = lerp(CLU(x, y_n, z_n, w), CLU(x_n, y_n, z_n, w), x_d); let r_y2 = lerp(r_x3, r_x4, y_d); let r_z1 = lerp(r_y1, r_y2, z_d); let r_x1 = lerp(CLU(x, y, z, w_n), CLU(x_n, y, z, w_n), x_d); let r_x2 = lerp(CLU(x, y_n, z, w_n), CLU(x_n, y_n, z, w_n), x_d); let r_y1 = lerp(r_x1, r_x2, y_d); let r_x3 = lerp(CLU(x, y, z_n, w_n), CLU(x_n, y, z_n, w_n), x_d); let r_x4 = lerp(CLU(x, y_n, z_n, w_n), CLU(x_n, y_n, z_n, w_n), x_d); let r_y2 = lerp(r_x3, r_x4, y_d); let r_z2 = lerp(r_y1, r_y2, z_d); lerp(r_z1, r_z2, w_d) }; // TODO: instead of reading each component separately we should read all three components at once. let clut_r = quadlinear(r_tbl); let clut_g = quadlinear(g_tbl); let clut_b = quadlinear(b_tbl); let pcs_r = lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap()); let pcs_g = lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap()); let pcs_b = lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap()); dest[0] = clamp_float(pcs_r); dest[1] = clamp_float(pcs_g); dest[2] = clamp_float(pcs_b); } } } /* NOT USED static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) { size_t i; int xy_len = 1; int x_len = transform->grid_size; int len = x_len * x_len; float* r_table = transform->r_clut; float* g_table = transform->g_clut; float* b_table = transform->b_clut; float c0_r, c1_r, c2_r, c3_r; float c0_g, c1_g, c2_g, c3_g; float c0_b, c1_b, c2_b, c3_b; float clut_r, clut_g, clut_b; float pcs_r, pcs_g, pcs_b; for (i = 0; i < length; i++) { float device_r = *src++; float device_g = *src++; float device_b = *src++; float linear_r = lut_interp_linear_float(device_r, transform->input_clut_table_r, transform->input_clut_table_length); float linear_g = lut_interp_linear_float(device_g, transform->input_clut_table_g, transform->input_clut_table_length); float linear_b = lut_interp_linear_float(device_b, transform->input_clut_table_b, transform->input_clut_table_length); int x = floorf(linear_r * (transform->grid_size-1)); int y = floorf(linear_g * (transform->grid_size-1)); int z = floorf(linear_b * (transform->grid_size-1)); int x_n = ceilf(linear_r * (transform->grid_size-1)); int y_n = ceilf(linear_g * (transform->grid_size-1)); int z_n = ceilf(linear_b * (transform->grid_size-1)); float rx = linear_r * (transform->grid_size-1) - x; float ry = linear_g * (transform->grid_size-1) - y; float rz = linear_b * (transform->grid_size-1) - z; c0_r = CLU(r_table, x, y, z); c0_g = CLU(g_table, x, y, z); c0_b = CLU(b_table, x, y, z); if( rx >= ry ) { if (ry >= rz) { //rx >= ry && ry >= rz c1_r = CLU(r_table, x_n, y, z) - c0_r; c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y, z) - c0_g; c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y, z) - c0_b; c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } else { if (rx >= rz) { //rx >= rz && rz >= ry c1_r = CLU(r_table, x_n, y, z) - c0_r; c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); c1_g = CLU(g_table, x_n, y, z) - c0_g; c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); c1_b = CLU(b_table, x_n, y, z) - c0_b; c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); } else { //rz > rx && rx >= ry c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); c3_r = CLU(r_table, x, y, z_n) - c0_r; c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); c3_g = CLU(g_table, x, y, z_n) - c0_g; c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); c3_b = CLU(b_table, x, y, z_n) - c0_b; } } } else { if (rx >= rz) { //ry > rx && rx >= rz c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); c2_r = CLU(r_table, x_n, y_n, z) - c0_r; c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); c2_g = CLU(g_table, x_n, y_n, z) - c0_g; c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); c2_b = CLU(b_table, x_n, y_n, z) - c0_b; c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } else { if (ry >= rz) { //ry >= rz && rz > rx c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); c2_r = CLU(r_table, x, y_n, z) - c0_r; c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); c2_g = CLU(g_table, x, y_n, z) - c0_g; c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); c2_b = CLU(b_table, x, y_n, z) - c0_b; c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); } else { //rz > ry && ry > rx c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); c2_r = CLU(r_table, x, y_n, z) - c0_r; c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); c2_g = CLU(g_table, x, y_n, z) - c0_g; c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); c2_b = CLU(b_table, x, y_n, z) - c0_b; c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); } } } clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; pcs_r = lut_interp_linear_float(clut_r, transform->output_clut_table_r, transform->output_clut_table_length); pcs_g = lut_interp_linear_float(clut_g, transform->output_clut_table_g, transform->output_clut_table_length); pcs_b = lut_interp_linear_float(clut_b, transform->output_clut_table_b, transform->output_clut_table_length); *dest++ = clamp_float(pcs_r); *dest++ = clamp_float(pcs_g); *dest++ = clamp_float(pcs_b); } } */ #[derive(Default)] struct GammaTable { input_clut_table: [Option>; 3], } impl ModularTransform for GammaTable { fn transform(&self, src: &[f32], dest: &mut [f32]) { let mut out_r: f32; let mut out_g: f32; let mut out_b: f32; let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap(); let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap(); let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap(); for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let in_r: f32 = src[0]; let in_g: f32 = src[1]; let in_b: f32 = src[2]; out_r = lut_interp_linear_float(in_r, input_clut_table_r); out_g = lut_interp_linear_float(in_g, input_clut_table_g); out_b = lut_interp_linear_float(in_b, input_clut_table_b); dest[0] = clamp_float(out_r); dest[1] = clamp_float(out_g); dest[2] = clamp_float(out_b); } } } #[derive(Default)] struct GammaLut { output_gamma_lut_r: Option>, output_gamma_lut_g: Option>, output_gamma_lut_b: Option>, } impl ModularTransform for GammaLut { fn transform(&self, src: &[f32], dest: &mut [f32]) { let mut out_r: f32; let mut out_g: f32; let mut out_b: f32; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let in_r: f32 = src[0]; let in_g: f32 = src[1]; let in_b: f32 = src[2]; out_r = lut_interp_linear(in_r as f64, &self.output_gamma_lut_r.as_ref().unwrap()); out_g = lut_interp_linear(in_g as f64, &self.output_gamma_lut_g.as_ref().unwrap()); out_b = lut_interp_linear(in_b as f64, &self.output_gamma_lut_b.as_ref().unwrap()); dest[0] = clamp_float(out_r); dest[1] = clamp_float(out_g); dest[2] = clamp_float(out_b); } } } #[derive(Default)] struct MatrixTranslate { matrix: Matrix, tx: f32, ty: f32, tz: f32, } impl ModularTransform for MatrixTranslate { fn transform(&self, src: &[f32], dest: &mut [f32]) { let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] }; /* store the results in column major mode * this makes doing the multiplication with sse easier */ mat.m[0][0] = self.matrix.m[0][0]; mat.m[1][0] = self.matrix.m[0][1]; mat.m[2][0] = self.matrix.m[0][2]; mat.m[0][1] = self.matrix.m[1][0]; mat.m[1][1] = self.matrix.m[1][1]; mat.m[2][1] = self.matrix.m[1][2]; mat.m[0][2] = self.matrix.m[2][0]; mat.m[1][2] = self.matrix.m[2][1]; mat.m[2][2] = self.matrix.m[2][2]; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let in_r: f32 = src[0]; let in_g: f32 = src[1]; let in_b: f32 = src[2]; let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b + self.tx; let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b + self.ty; let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b + self.tz; dest[0] = clamp_float(out_r); dest[1] = clamp_float(out_g); dest[2] = clamp_float(out_b); } } } #[derive(Default)] struct MatrixTransform { matrix: Matrix, } impl ModularTransform for MatrixTransform { fn transform(&self, src: &[f32], dest: &mut [f32]) { let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] }; /* store the results in column major mode * this makes doing the multiplication with sse easier */ mat.m[0][0] = self.matrix.m[0][0]; mat.m[1][0] = self.matrix.m[0][1]; mat.m[2][0] = self.matrix.m[0][2]; mat.m[0][1] = self.matrix.m[1][0]; mat.m[1][1] = self.matrix.m[1][1]; mat.m[2][1] = self.matrix.m[1][2]; mat.m[0][2] = self.matrix.m[2][0]; mat.m[1][2] = self.matrix.m[2][1]; mat.m[2][2] = self.matrix.m[2][2]; for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { let in_r: f32 = src[0]; let in_g: f32 = src[1]; let in_b: f32 = src[2]; let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b; let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b; let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b; dest[0] = clamp_float(out_r); dest[1] = clamp_float(out_g); dest[2] = clamp_float(out_b); } } } fn modular_transform_create_mAB(lut: &lutmABType) -> Option>> { let mut transforms: Vec> = Vec::new(); if lut.a_curves[0].is_some() { let clut_length: usize; // If the A curve is present this also implies the // presence of a CLUT. lut.clut_table.as_ref()?; // Prepare A curve. let mut transform = Box::new(GammaTable::default()); transform.input_clut_table[0] = build_input_gamma_table(lut.a_curves[0].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[1] = build_input_gamma_table(lut.a_curves[1].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[2] = build_input_gamma_table(lut.a_curves[2].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); if lut.num_grid_points[0] as i32 != lut.num_grid_points[1] as i32 || lut.num_grid_points[1] as i32 != lut.num_grid_points[2] as i32 { //XXX: We don't currently support clut that are not squared! return None; } transforms.push(transform); // Prepare CLUT let mut transform = Box::new(ClutOnly::default()); clut_length = (lut.num_grid_points[0] as usize).pow(3) * 3; assert_eq!(clut_length, lut.clut_table.as_ref().unwrap().len()); transform.clut = lut.clut_table.clone(); transform.grid_size = lut.num_grid_points[0] as u16; transforms.push(transform); } if lut.m_curves[0].is_some() { // M curve imples the presence of a Matrix // Prepare M curve let mut transform = Box::new(GammaTable::default()); transform.input_clut_table[0] = build_input_gamma_table(lut.m_curves[0].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[1] = build_input_gamma_table(lut.m_curves[1].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[2] = build_input_gamma_table(lut.m_curves[2].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transforms.push(transform); // Prepare Matrix let mut transform = Box::new(MatrixTranslate::default()); transform.matrix = build_mAB_matrix(lut); transform.tx = s15Fixed16Number_to_float(lut.e03); transform.ty = s15Fixed16Number_to_float(lut.e13); transform.tz = s15Fixed16Number_to_float(lut.e23); transforms.push(transform); } if lut.b_curves[0].is_some() { // Prepare B curve let mut transform = Box::new(GammaTable::default()); transform.input_clut_table[0] = build_input_gamma_table(lut.b_curves[0].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[1] = build_input_gamma_table(lut.b_curves[1].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[2] = build_input_gamma_table(lut.b_curves[2].as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transforms.push(transform); } else { // B curve is mandatory return None; } if lut.reversed { // mBA are identical to mAB except that the transformation order // is reversed transforms.reverse(); } Some(transforms) } fn modular_transform_create_lut(lut: &lutType) -> Option>> { let mut transforms: Vec> = Vec::new(); let clut_length: usize; let mut transform = Box::new(MatrixTransform::default()); transform.matrix = build_lut_matrix(lut); if true { transforms.push(transform); // Prepare input curves let mut transform = Box::new(Clut3x3::default()); transform.input_clut_table[0] = Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec()); transform.input_clut_table[1] = Some( lut.input_table [lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2] .to_vec(), ); transform.input_clut_table[2] = Some( lut.input_table[lut.num_input_table_entries as usize * 2 ..lut.num_input_table_entries as usize * 3] .to_vec(), ); // Prepare table clut_length = (lut.num_clut_grid_points as usize).pow(3) * 3; assert_eq!(clut_length, lut.clut_table.len()); transform.clut = Some(lut.clut_table.clone()); transform.grid_size = lut.num_clut_grid_points as u16; // Prepare output curves transform.output_clut_table[0] = Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec()); transform.output_clut_table[1] = Some( lut.output_table [lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2] .to_vec(), ); transform.output_clut_table[2] = Some( lut.output_table[lut.num_output_table_entries as usize * 2 ..lut.num_output_table_entries as usize * 3] .to_vec(), ); transforms.push(transform); return Some(transforms); } None } fn modular_transform_create_lut4x3(lut: &lutType) -> Vec> { let mut transforms: Vec> = Vec::new(); let clut_length: usize; // the matrix of lutType is only used when the input color space is XYZ. // Prepare input curves let mut transform = Box::new(Clut4x3::default()); transform.input_clut_table[0] = Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec()); transform.input_clut_table[1] = Some( lut.input_table [lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2] .to_vec(), ); transform.input_clut_table[2] = Some( lut.input_table [lut.num_input_table_entries as usize * 2..lut.num_input_table_entries as usize * 3] .to_vec(), ); transform.input_clut_table[3] = Some( lut.input_table [lut.num_input_table_entries as usize * 3..lut.num_input_table_entries as usize * 4] .to_vec(), ); // Prepare table clut_length = (lut.num_clut_grid_points as usize).pow(lut.num_input_channels as u32) * lut.num_output_channels as usize; assert_eq!(clut_length, lut.clut_table.len()); transform.clut = Some(lut.clut_table.clone()); transform.grid_size = lut.num_clut_grid_points as u16; // Prepare output curves transform.output_clut_table[0] = Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec()); transform.output_clut_table[1] = Some( lut.output_table [lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2] .to_vec(), ); transform.output_clut_table[2] = Some( lut.output_table [lut.num_output_table_entries as usize * 2..lut.num_output_table_entries as usize * 3] .to_vec(), ); transforms.push(transform); transforms } fn modular_transform_create_input(input: &Profile) -> Option>> { let mut transforms = Vec::new(); if let Some(A2B0) = &input.A2B0 { let lut_transform; if A2B0.num_input_channels == 4 { lut_transform = Some(modular_transform_create_lut4x3(&A2B0)); } else { lut_transform = modular_transform_create_lut(&A2B0); } if let Some(lut_transform) = lut_transform { transforms.extend(lut_transform); } else { return None; } } else if input.mAB.is_some() && (*input.mAB.as_deref().unwrap()).num_in_channels == 3 && (*input.mAB.as_deref().unwrap()).num_out_channels == 3 { let mAB_transform = modular_transform_create_mAB(input.mAB.as_deref().unwrap()); if let Some(mAB_transform) = mAB_transform { transforms.extend(mAB_transform); } else { return None; } } else { let mut transform = Box::new(GammaTable::default()); transform.input_clut_table[0] = build_input_gamma_table(input.redTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[1] = build_input_gamma_table(input.greenTRC.as_deref()) .map(|x| (x as Box<[f32]>).into_vec()); transform.input_clut_table[2] = build_input_gamma_table(input.blueTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec()); if transform.input_clut_table[0].is_none() || transform.input_clut_table[1].is_none() || transform.input_clut_table[2].is_none() { return None; } else { transforms.push(transform); let mut transform = Box::new(MatrixTransform::default()); transform.matrix.m[0][0] = 1. / 1.999_969_5; transform.matrix.m[0][1] = 0.0; transform.matrix.m[0][2] = 0.0; transform.matrix.m[1][0] = 0.0; transform.matrix.m[1][1] = 1. / 1.999_969_5; transform.matrix.m[1][2] = 0.0; transform.matrix.m[2][0] = 0.0; transform.matrix.m[2][1] = 0.0; transform.matrix.m[2][2] = 1. / 1.999_969_5; transforms.push(transform); let mut transform = Box::new(MatrixTransform::default()); transform.matrix = build_colorant_matrix(input); transforms.push(transform); } } Some(transforms) } fn modular_transform_create_output(out: &Profile) -> Option>> { let mut transforms = Vec::new(); if let Some(B2A0) = &out.B2A0 { if B2A0.num_input_channels != 3 || B2A0.num_output_channels != 3 { return None; } let lut_transform = modular_transform_create_lut(B2A0); if let Some(lut_transform) = lut_transform { transforms.extend(lut_transform); } else { return None; } } else if out.mBA.is_some() && (*out.mBA.as_deref().unwrap()).num_in_channels == 3 && (*out.mBA.as_deref().unwrap()).num_out_channels == 3 { let lut_transform = modular_transform_create_mAB(out.mBA.as_deref().unwrap()); if let Some(lut_transform) = lut_transform { transforms.extend(lut_transform) } else { return None; } } else if let (Some(redTRC), Some(greenTRC), Some(blueTRC)) = (&out.redTRC, &out.greenTRC, &out.blueTRC) { let mut transform = Box::new(MatrixTransform::default()); transform.matrix = build_colorant_matrix(out).invert()?; transforms.push(transform); let mut transform = Box::new(MatrixTransform::default()); transform.matrix.m[0][0] = 1.999_969_5; transform.matrix.m[0][1] = 0.0; transform.matrix.m[0][2] = 0.0; transform.matrix.m[1][0] = 0.0; transform.matrix.m[1][1] = 1.999_969_5; transform.matrix.m[1][2] = 0.0; transform.matrix.m[2][0] = 0.0; transform.matrix.m[2][1] = 0.0; transform.matrix.m[2][2] = 1.999_969_5; transforms.push(transform); let mut transform = Box::new(GammaLut::default()); transform.output_gamma_lut_r = Some(build_output_lut(redTRC)?); transform.output_gamma_lut_g = Some(build_output_lut(greenTRC)?); transform.output_gamma_lut_b = Some(build_output_lut(blueTRC)?); transforms.push(transform); } else { debug_assert!(false, "Unsupported output profile workflow."); return None; } Some(transforms) } /* Not Completed // Simplify the transformation chain to an equivalent transformation chain static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform) { struct qcms_modular_transform *first_transform = NULL; struct qcms_modular_transform *curr_trans = transform; struct qcms_modular_transform *prev_trans = NULL; while (curr_trans) { struct qcms_modular_transform *next_trans = curr_trans->next_transform; if (curr_trans->transform_module_fn == qcms_transform_module_matrix) { if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) { curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix); goto remove_next; } } if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) { bool isLinear = true; uint16_t i; for (i = 0; isLinear && i < 256; i++) { isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i; isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i; isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i; } goto remove_current; } next_transform: if (!next_trans) break; prev_trans = curr_trans; curr_trans = next_trans; continue; remove_current: if (curr_trans == transform) { //Update head transform = next_trans; } else { prev_trans->next_transform = next_trans; } curr_trans->next_transform = NULL; qcms_modular_transform_release(curr_trans); //return transform; return qcms_modular_transform_reduce(transform); remove_next: curr_trans->next_transform = next_trans->next_transform; next_trans->next_transform = NULL; qcms_modular_transform_release(next_trans); continue; } return transform; } */ fn modular_transform_create( input: &Profile, output: &Profile, ) -> Option>> { let mut transforms = Vec::new(); if input.color_space == RGB_SIGNATURE || input.color_space == CMYK_SIGNATURE { let rgb_to_pcs = modular_transform_create_input(input); if let Some(rgb_to_pcs) = rgb_to_pcs { transforms.extend(rgb_to_pcs); } else { return None; } } else { debug_assert!(false, "input color space not supported"); return None; } if input.pcs == LAB_SIGNATURE && output.pcs == XYZ_SIGNATURE { transforms.push(Box::new(LABtoXYZ {})); } // This does not improve accuracy in practice, something is wrong here. //if (in->chromaticAdaption.invalid == false) { // struct qcms_modular_transform* chromaticAdaption; // chromaticAdaption = qcms_modular_transform_alloc(); // if (!chromaticAdaption) // goto fail; // append_transform(chromaticAdaption, &next_transform); // chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption); // chromaticAdaption->transform_module_fn = qcms_transform_module_matrix; //} if input.pcs == XYZ_SIGNATURE && output.pcs == LAB_SIGNATURE { transforms.push(Box::new(XYZtoLAB {})); } if output.color_space == RGB_SIGNATURE { let pcs_to_rgb = modular_transform_create_output(output); if let Some(pcs_to_rgb) = pcs_to_rgb { transforms.extend(pcs_to_rgb); } else { return None; } } else if output.color_space == CMYK_SIGNATURE { let pcs_to_cmyk = modular_transform_create_output(output)?; transforms.extend(pcs_to_cmyk); } else { debug_assert!(false, "output color space not supported"); } // Not Completed //return qcms_modular_transform_reduce(first_transform); Some(transforms) } fn modular_transform_data( transforms: Vec>, mut src: Vec, mut dest: Vec, _len: usize, ) -> Vec { for transform in transforms { // Keep swaping src/dest when performing a transform to use less memory. transform.transform(&src, &mut dest); std::mem::swap(&mut src, &mut dest); } // The results end up in the src buffer because of the switching src } pub fn chain_transform( input: &Profile, output: &Profile, src: Vec, dest: Vec, lutSize: usize, ) -> Option> { let transform_list = modular_transform_create(input, output); if let Some(transform_list) = transform_list { let lut = modular_transform_data(transform_list, src, dest, lutSize / 3); return Some(lut); } None }