/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ArrayUtils.h" #include "gfxCoreTextShaper.h" #include "gfxMacFont.h" #include "gfxFontUtils.h" #include "gfxTextRun.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/ScaledFontMac.h" #include "mozilla/UniquePtrExtensions.h" #include #include using namespace mozilla; using namespace mozilla::gfx; // standard font descriptors that we construct the first time they're needed CTFontDescriptorRef gfxCoreTextShaper::sFeaturesDescriptor[kMaxFontInstances]; // Helper to create a CFDictionary with the right attributes for shaping our // text, including imposing the given directionality. CFDictionaryRef gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft) { // Because we always shape unidirectional runs, and may have applied // directional overrides, we want to force a direction rather than // allowing CoreText to do its own unicode-based bidi processing. SInt16 dirOverride = kCTWritingDirectionOverride | (aRightToLeft ? kCTWritingDirectionRightToLeft : kCTWritingDirectionLeftToRight); CFNumberRef dirNumber = ::CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt16Type, &dirOverride); CFArrayRef dirArray = ::CFArrayCreate( kCFAllocatorDefault, (const void**)&dirNumber, 1, &kCFTypeArrayCallBacks); ::CFRelease(dirNumber); CFTypeRef attrs[] = {kCTFontAttributeName, kCTWritingDirectionAttributeName}; CFTypeRef values[] = {mCTFont[0], dirArray}; CFDictionaryRef attrDict = ::CFDictionaryCreate( kCFAllocatorDefault, attrs, values, ArrayLength(attrs), &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); ::CFRelease(dirArray); return attrDict; } gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont* aFont) : gfxFontShaper(aFont), mAttributesDictLTR(nullptr), mAttributesDictRTL(nullptr) { for (size_t i = 0; i < kMaxFontInstances; i++) { mCTFont[i] = nullptr; } // Create our default CTFontRef mCTFont[0] = CreateCTFontWithFeatures( aFont->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures)); } gfxCoreTextShaper::~gfxCoreTextShaper() { if (mAttributesDictLTR) { ::CFRelease(mAttributesDictLTR); } if (mAttributesDictRTL) { ::CFRelease(mAttributesDictRTL); } for (size_t i = 0; i < kMaxFontInstances; i++) { if (mCTFont[i]) { ::CFRelease(mCTFont[i]); } } } static bool IsBuggyIndicScript(intl::Script aScript) { return aScript == intl::Script::BENGALI || aScript == intl::Script::KANNADA || aScript == intl::Script::ORIYA || aScript == intl::Script::KHMER; } bool gfxCoreTextShaper::ShapeText(DrawTarget* aDrawTarget, const char16_t* aText, uint32_t aOffset, uint32_t aLength, Script aScript, nsAtom* aLanguage, bool aVertical, RoundingFlags aRounding, gfxShapedText* aShapedText) { // Create a CFAttributedString with text and style info, so we can use // CoreText to lay it out. bool isRightToLeft = aShapedText->IsRightToLeft(); const UniChar* text = reinterpret_cast(aText); CFStringRef stringObj = ::CFStringCreateWithCharactersNoCopy( kCFAllocatorDefault, text, aLength, kCFAllocatorNull); // Figure out whether we should try to set the AAT small-caps feature: // examine OpenType tags for the requested style, and see if 'smcp' is // among them. const gfxFontStyle* style = mFont->GetStyle(); gfxFontEntry* entry = mFont->GetFontEntry(); auto handleFeatureTag = [](const uint32_t& aTag, uint32_t& aValue, void* aUserArg) -> void { if (aTag == HB_TAG('s', 'm', 'c', 'p') && aValue) { *static_cast(aUserArg) = true; } }; bool addSmallCaps = false; MergeFontFeatures(style, entry->mFeatureSettings, false, entry->FamilyName(), false, handleFeatureTag, &addSmallCaps); // Get an attributes dictionary suitable for shaping text in the // current direction, creating it if necessary. CFDictionaryRef attrObj = isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR; if (!attrObj) { attrObj = CreateAttrDict(isRightToLeft); (isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj; } FeatureFlags featureFlags = kDefaultFeatures; if (IsBuggyIndicScript(aScript)) { // To work around buggy Indic AAT fonts shipped with OS X, // we re-enable the Line Initial Smart Swashes feature that is needed // for "split vowels" to work in at least Bengali and Kannada fonts. // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN, // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515. // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166. featureFlags |= kIndicFeatures; } if (aShapedText->DisableLigatures()) { // For letterspacing (or maybe other situations) we need to make // a copy of the CTFont with the ligature feature disabled. featureFlags |= kDisableLigatures; } if (addSmallCaps) { featureFlags |= kAddSmallCaps; } // For the disabled-ligature, buggy-indic-font or small-caps case, replace // the default CTFont in the attribute dictionary with a tweaked version. CFMutableDictionaryRef mutableAttr = nullptr; if (featureFlags != 0) { if (!mCTFont[featureFlags]) { mCTFont[featureFlags] = CreateCTFontWithFeatures( mFont->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags)); } mutableAttr = ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2, attrObj); ::CFDictionaryReplaceValue(mutableAttr, kCTFontAttributeName, mCTFont[featureFlags]); attrObj = mutableAttr; } // Now we can create an attributed string CFAttributedStringRef attrStringObj = ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj); ::CFRelease(stringObj); // Create the CoreText line from our string, then we're done with it CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj); ::CFRelease(attrStringObj); // and finally retrieve the glyph data and store into the gfxTextRun CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line); uint32_t numRuns = ::CFArrayGetCount(glyphRuns); // Iterate through the glyph runs. bool success = true; for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) { CTRunRef aCTRun = (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex); CFRange range = ::CTRunGetStringRange(aCTRun); CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun); if (runAttr != attrObj) { // If Core Text manufactured a new dictionary, this may indicate // unexpected font substitution. In that case, we fail (and fall // back to harfbuzz shaping)... const void* font1 = ::CFDictionaryGetValue(attrObj, kCTFontAttributeName); const void* font2 = ::CFDictionaryGetValue(runAttr, kCTFontAttributeName); if (font1 != font2) { // ...except that if the fallback was only for a variation // selector or join control that is otherwise unsupported, // we just ignore it. if (range.length == 1) { char16_t ch = aText[range.location]; if (gfxFontUtils::IsJoinControl(ch) || gfxFontUtils::IsVarSelector(ch)) { continue; } } NS_WARNING("unexpected font fallback in Core Text"); success = false; break; } } if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun) != NS_OK) { success = false; break; } } if (mutableAttr) { ::CFRelease(mutableAttr); } ::CFRelease(line); return success; } #define SMALL_GLYPH_RUN \ 128 // preallocated size of our auto arrays for per-glyph data; // some testing indicates that 90%+ of glyph runs will fit // without requiring a separate allocation nsresult gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText* aShapedText, uint32_t aOffset, uint32_t aLength, CTRunRef aCTRun) { typedef gfxShapedText::CompressedGlyph CompressedGlyph; int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1; int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun); if (numGlyphs == 0) { return NS_OK; } int32_t wordLength = aLength; // character offsets get really confusing here, as we have to keep track of // (a) the text in the actual textRun we're constructing // (c) the string that was handed to CoreText, which contains the text of // the font run // (d) the CTRun currently being processed, which may be a sub-run of the // CoreText line // get the source string range within the CTLine's text CFRange stringRange = ::CTRunGetStringRange(aCTRun); // skip the run if it is entirely outside the actual range of the font run if (stringRange.location + stringRange.length <= 0 || stringRange.location >= wordLength) { return NS_OK; } // retrieve the laid-out glyph data from the CTRun UniquePtr glyphsArray; UniquePtr positionsArray; UniquePtr glyphToCharArray; const CGGlyph* glyphs = nullptr; const CGPoint* positions = nullptr; const CFIndex* glyphToChar = nullptr; // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds, // and so allocating a new array and copying data with CTRunGetGlyphs // will be extremely rare. // If this were not the case, we could use an AutoTArray<> to // try and avoid the heap allocation for small runs. // It's possible that some future change to CoreText will mean that // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<> // may become an attractive option. glyphs = ::CTRunGetGlyphsPtr(aCTRun); if (!glyphs) { glyphsArray = MakeUniqueFallible(numGlyphs); if (!glyphsArray) { return NS_ERROR_OUT_OF_MEMORY; } ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get()); glyphs = glyphsArray.get(); } positions = ::CTRunGetPositionsPtr(aCTRun); if (!positions) { positionsArray = MakeUniqueFallible(numGlyphs); if (!positionsArray) { return NS_ERROR_OUT_OF_MEMORY; } ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get()); positions = positionsArray.get(); } // Remember that the glyphToChar indices relate to the CoreText line, // not to the beginning of the textRun, the font run, // or the stringRange of the glyph run glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun); if (!glyphToChar) { glyphToCharArray = MakeUniqueFallible(numGlyphs); if (!glyphToCharArray) { return NS_ERROR_OUT_OF_MEMORY; } ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), glyphToCharArray.get()); glyphToChar = glyphToCharArray.get(); } double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0), nullptr, nullptr, nullptr); AutoTArray detailedGlyphs; CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset; // CoreText gives us the glyphindex-to-charindex mapping, which relates each // glyph to a source text character; we also need the charindex-to-glyphindex // mapping to find the glyph for a given char. Note that some chars may not // map to any glyph (ligature continuations), and some may map to several // glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for // chars that have no associated glyph, and we record the last glyph index for // cases where the char maps to several glyphs, so that our clumping will // include all the glyph fragments for the character. // The charToGlyph array is indexed by char position within the stringRange of // the glyph run. static const int32_t NO_GLYPH = -1; AutoTArray charToGlyphArray; if (!charToGlyphArray.SetLength(stringRange.length, fallible)) { return NS_ERROR_OUT_OF_MEMORY; } int32_t* charToGlyph = charToGlyphArray.Elements(); for (int32_t offset = 0; offset < stringRange.length; ++offset) { charToGlyph[offset] = NO_GLYPH; } for (int32_t i = 0; i < numGlyphs; ++i) { int32_t loc = glyphToChar[i] - stringRange.location; if (loc >= 0 && loc < stringRange.length) { charToGlyph[loc] = i; } } // Find character and glyph clumps that correspond, allowing for ligatures, // indic reordering, split glyphs, etc. // // The idea is that we'll find a character sequence starting at the first char // of stringRange, and extend it until it includes the character associated // with the first glyph; we also extend it as long as there are "holes" in the // range of glyphs. So we will eventually have a contiguous sequence of // characters, starting at the beginning of the range, that map to a // contiguous sequence of glyphs, starting at the beginning of the glyph // array. That's a clump; then we update the starting positions and repeat. // // NB: In the case of RTL layouts, we iterate over the stringRange in reverse. // // This may find characters that fall outside the range 0:wordLength, // so we won't necessarily use everything we find here. bool isRightToLeft = aShapedText->IsRightToLeft(); int32_t glyphStart = 0; // looking for a clump that starts at this glyph index int32_t charStart = isRightToLeft ? stringRange.length - 1 : 0; // and this char index (in the stringRange of the glyph run) while (glyphStart < numGlyphs) { // keep finding groups until all glyphs are accounted for bool inOrder = true; int32_t charEnd = glyphToChar[glyphStart] - stringRange.location; NS_WARNING_ASSERTION(charEnd >= 0 && charEnd < stringRange.length, "glyph-to-char mapping points outside string range"); // clamp charEnd to the valid range of the string charEnd = std::max(charEnd, 0); charEnd = std::min(charEnd, int32_t(stringRange.length)); int32_t glyphEnd = glyphStart; int32_t charLimit = isRightToLeft ? -1 : stringRange.length; do { // This is normally executed once for each iteration of the outer loop, // but in unusual cases where the character/glyph association is complex, // the initial character range might correspond to a non-contiguous // glyph range with "holes" in it. If so, we will repeat this loop to // extend the character range until we have a contiguous glyph sequence. NS_ASSERTION((direction > 0 && charEnd < charLimit) || (direction < 0 && charEnd > charLimit), "no characters left in range?"); charEnd += direction; while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) { charEnd += direction; } // find the maximum glyph index covered by the clump so far if (isRightToLeft) { for (int32_t i = charStart; i > charEnd; --i) { if (charToGlyph[i] != NO_GLYPH) { // update extent of glyph range glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); } } } else { for (int32_t i = charStart; i < charEnd; ++i) { if (charToGlyph[i] != NO_GLYPH) { // update extent of glyph range glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); } } } if (glyphEnd == glyphStart + 1) { // for the common case of a single-glyph clump, we can skip the // following checks break; } if (glyphEnd == glyphStart) { // no glyphs, try to extend the clump continue; } // check whether all glyphs in the range are associated with the // characters in our clump; if not, we have a discontinuous range, and // should extend it unless we've reached the end of the text bool allGlyphsAreWithinCluster = true; int32_t prevGlyphCharIndex = charStart; for (int32_t i = glyphStart; i < glyphEnd; ++i) { int32_t glyphCharIndex = glyphToChar[i] - stringRange.location; if (isRightToLeft) { if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) { allGlyphsAreWithinCluster = false; break; } if (glyphCharIndex > prevGlyphCharIndex) { inOrder = false; } prevGlyphCharIndex = glyphCharIndex; } else { if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) { allGlyphsAreWithinCluster = false; break; } if (glyphCharIndex < prevGlyphCharIndex) { inOrder = false; } prevGlyphCharIndex = glyphCharIndex; } } if (allGlyphsAreWithinCluster) { break; } } while (charEnd != charLimit); NS_WARNING_ASSERTION(glyphStart < glyphEnd, "character/glyph clump contains no glyphs!"); if (glyphStart == glyphEnd) { ++glyphStart; // make progress - avoid potential infinite loop charStart = charEnd; continue; } NS_WARNING_ASSERTION(charStart != charEnd, "character/glyph clump contains no characters!"); if (charStart == charEnd) { glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s), // as there's nowhere to attach them continue; } // Now charStart..charEnd is a ligature clump, corresponding to // glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach // the glyphs to (1st of ligature), and endCharIndex to the limit (position // beyond the last char), adjusting for the offset of the stringRange // relative to the textRun. int32_t baseCharIndex, endCharIndex; if (isRightToLeft) { while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) { charEnd--; } baseCharIndex = charEnd + stringRange.location + 1; endCharIndex = charStart + stringRange.location + 1; } else { while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) { charEnd++; } baseCharIndex = charStart + stringRange.location; endCharIndex = charEnd + stringRange.location; } // Then we check if the clump falls outside our actual string range; if so, // just go to the next. if (endCharIndex <= 0 || baseCharIndex >= wordLength) { glyphStart = glyphEnd; charStart = charEnd; continue; } // Ensure we won't try to go beyond the valid length of the word's text baseCharIndex = std::max(baseCharIndex, 0); endCharIndex = std::min(endCharIndex, wordLength); // Now we're ready to set the glyph info in the textRun; measure the glyph // width of the first (perhaps only) glyph, to see if it is "Simple" int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit(); double toNextGlyph; if (glyphStart < numGlyphs - 1) { toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x; } else { toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; } int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit); // Check if it's a simple one-to-one mapping int32_t glyphsInClump = glyphEnd - glyphStart; if (glyphsInClump == 1 && gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) && gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) && charGlyphs[baseCharIndex].IsClusterStart() && positions[glyphStart].y == 0.0) { charGlyphs[baseCharIndex].SetSimpleGlyph(advance, glyphs[glyphStart]); } else { // collect all glyphs in a list to be assigned to the first char; // there must be at least one in the clump, and we already measured its // advance, hence the placement of the loop-exit test and the measurement // of the next glyph while (true) { gfxTextRun::DetailedGlyph* details = detailedGlyphs.AppendElement(); details->mGlyphID = glyphs[glyphStart]; details->mOffset.y = -positions[glyphStart].y * appUnitsPerDevUnit; details->mAdvance = advance; if (++glyphStart >= glyphEnd) { break; } if (glyphStart < numGlyphs - 1) { toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x; } else { toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; } advance = int32_t(toNextGlyph * appUnitsPerDevUnit); } aShapedText->SetDetailedGlyphs(aOffset + baseCharIndex, detailedGlyphs.Length(), detailedGlyphs.Elements()); detailedGlyphs.Clear(); } // the rest of the chars in the group are ligature continuations, no // associated glyphs while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) { CompressedGlyph& shapedTextGlyph = charGlyphs[baseCharIndex]; NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(), "overwriting a simple glyph"); shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(), false); } glyphStart = glyphEnd; charStart = charEnd; } return NS_OK; } #undef SMALL_GLYPH_RUN // Construct the font attribute descriptor that we'll apply by default when // creating a CTFontRef. This will turn off line-edge swashes by default, // because we don't know the actual line breaks when doing glyph shaping. // We also cache feature descriptors for shaping with disabled ligatures, and // for buggy Indic AAT font workarounds, created on an as-needed basis. #define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions CTFontDescriptorRef gfxCoreTextShaper::CreateFontFeaturesDescriptor( const std::pair* aFeatures, size_t aCount) { MOZ_ASSERT(aCount <= MAX_FEATURES); CFDictionaryRef featureSettings[MAX_FEATURES]; for (size_t i = 0; i < aCount; i++) { CFNumberRef type = ::CFNumberCreate( kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].first); CFNumberRef selector = ::CFNumberCreate( kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].second); CFTypeRef keys[] = {kCTFontFeatureTypeIdentifierKey, kCTFontFeatureSelectorIdentifierKey}; CFTypeRef values[] = {type, selector}; featureSettings[i] = ::CFDictionaryCreate( kCFAllocatorDefault, (const void**)keys, (const void**)values, ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); ::CFRelease(selector); ::CFRelease(type); } CFArrayRef featuresArray = ::CFArrayCreate(kCFAllocatorDefault, (const void**)featureSettings, aCount, // not ArrayLength(featureSettings), as we // may not have used all the allocated slots &kCFTypeArrayCallBacks); for (size_t i = 0; i < aCount; i++) { ::CFRelease(featureSettings[i]); } const CFTypeRef attrKeys[] = {kCTFontFeatureSettingsAttribute}; const CFTypeRef attrValues[] = {featuresArray}; CFDictionaryRef attributesDict = ::CFDictionaryCreate( kCFAllocatorDefault, (const void**)attrKeys, (const void**)attrValues, ArrayLength(attrKeys), &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); ::CFRelease(featuresArray); CTFontDescriptorRef descriptor = ::CTFontDescriptorCreateWithAttributes(attributesDict); ::CFRelease(attributesDict); return descriptor; } CTFontDescriptorRef gfxCoreTextShaper::GetFeaturesDescriptor( FeatureFlags aFeatureFlags) { MOZ_ASSERT(aFeatureFlags < kMaxFontInstances); if (!sFeaturesDescriptor[aFeatureFlags]) { typedef std::pair FeatT; AutoTArray features; features.AppendElement( FeatT(kSmartSwashType, kLineFinalSwashesOffSelector)); if ((aFeatureFlags & kIndicFeatures) == 0) { features.AppendElement( FeatT(kSmartSwashType, kLineInitialSwashesOffSelector)); } if (aFeatureFlags & kAddSmallCaps) { features.AppendElement(FeatT(kLetterCaseType, kSmallCapsSelector)); features.AppendElement( FeatT(kLowerCaseType, kLowerCaseSmallCapsSelector)); } if (aFeatureFlags & kDisableLigatures) { features.AppendElement( FeatT(kLigaturesType, kCommonLigaturesOffSelector)); } MOZ_ASSERT(features.Length() <= MAX_FEATURES); sFeaturesDescriptor[aFeatureFlags] = CreateFontFeaturesDescriptor(features.Elements(), features.Length()); } return sFeaturesDescriptor[aFeatureFlags]; } CTFontRef gfxCoreTextShaper::CreateCTFontWithFeatures( CGFloat aSize, CTFontDescriptorRef aDescriptor) { const gfxFontEntry* fe = mFont->GetFontEntry(); bool isInstalledFont = !fe->IsUserFont() || fe->IsLocalUserFont(); CGFontRef cgFont = static_cast(mFont)->GetCGFontRef(); return CreateCTFontFromCGFontWithVariations(cgFont, aSize, isInstalledFont, aDescriptor); } void gfxCoreTextShaper::Shutdown() // [static] { for (size_t i = 0; i < kMaxFontInstances; i++) { if (sFeaturesDescriptor[i] != nullptr) { ::CFRelease(sFeaturesDescriptor[i]); sFeaturesDescriptor[i] = nullptr; } } }