/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use api::units::*; use euclid::Size2D; use std::f32::consts::FRAC_PI_2; /// Number of steps to integrate arc length over. const STEP_COUNT: usize = 20; /// Represents an ellipse centred at a local space origin. #[derive(Debug, Clone)] pub struct Ellipse { pub radius: Size2D, pub total_arc_length: f32, } impl Ellipse { pub fn new(radius: Size2D) -> Ellipse { // Approximate the total length of the first quadrant of this ellipse. let total_arc_length = get_simpson_length(FRAC_PI_2, radius.width, radius.height); Ellipse { radius, total_arc_length, } } /// Binary search to estimate the angle of an ellipse /// for a given arc length. This only searches over the /// first quadrant of an ellipse. pub fn find_angle_for_arc_length(&self, arc_length: f32) -> f32 { // Clamp arc length to [0, pi]. let arc_length = arc_length.max(0.0).min(self.total_arc_length); let epsilon = 0.01; let mut low = 0.0; let mut high = FRAC_PI_2; let mut theta = 0.0; let mut new_low = 0.0; let mut new_high = FRAC_PI_2; while low <= high { theta = 0.5 * (low + high); let length = get_simpson_length(theta, self.radius.width, self.radius.height); if (length - arc_length).abs() < epsilon { break; } else if length < arc_length { new_low = theta; } else { new_high = theta; } // If we have stopped moving down the arc, the answer that we have is as good as // it is going to get. We break to avoid going into an infinite loop. if new_low == low && new_high == high { break; } high = new_high; low = new_low; } theta } /// Get a point and tangent on this ellipse from a given angle. /// This only works for the first quadrant of the ellipse. pub fn get_point_and_tangent(&self, theta: f32) -> (LayoutPoint, LayoutPoint) { let (sin_theta, cos_theta) = theta.sin_cos(); let point = LayoutPoint::new( self.radius.width * cos_theta, self.radius.height * sin_theta, ); let tangent = LayoutPoint::new( -self.radius.width * sin_theta, self.radius.height * cos_theta, ); (point, tangent) } pub fn contains(&self, point: LayoutPoint) -> bool { self.signed_distance(point.to_vector()) <= 0.0 } /// Find the signed distance from this ellipse given a point. /// Taken from http://www.iquilezles.org/www/articles/ellipsedist/ellipsedist.htm fn signed_distance(&self, point: LayoutVector2D) -> f32 { // This algorithm fails for circles, so we handle them here. if self.radius.width == self.radius.height { return point.length() - self.radius.width; } let mut p = LayoutVector2D::new(point.x.abs(), point.y.abs()); let mut ab = self.radius.to_vector(); if p.x > p.y { p = p.yx(); ab = ab.yx(); } let l = ab.y * ab.y - ab.x * ab.x; let m = ab.x * p.x / l; let n = ab.y * p.y / l; let m2 = m * m; let n2 = n * n; let c = (m2 + n2 - 1.0) / 3.0; let c3 = c * c * c; let q = c3 + m2 * n2 * 2.0; let d = c3 + m2 * n2; let g = m + m * n2; let co = if d < 0.0 { let p = (q / c3).acos() / 3.0; let s = p.cos(); let t = p.sin() * (3.0_f32).sqrt(); let rx = (-c * (s + t + 2.0) + m2).sqrt(); let ry = (-c * (s - t + 2.0) + m2).sqrt(); (ry + l.signum() * rx + g.abs() / (rx * ry) - m) / 2.0 } else { let h = 2.0 * m * n * d.sqrt(); let s = (q + h).signum() * (q + h).abs().powf(1.0 / 3.0); let u = (q - h).signum() * (q - h).abs().powf(1.0 / 3.0); let rx = -s - u - c * 4.0 + 2.0 * m2; let ry = (s - u) * (3.0_f32).sqrt(); let rm = (rx * rx + ry * ry).sqrt(); let p = ry / (rm - rx).sqrt(); (p + 2.0 * g / rm - m) / 2.0 }; let si = (1.0 - co * co).sqrt(); let r = LayoutVector2D::new(ab.x * co, ab.y * si); (r - p).length() * (p.y - r.y).signum() } } /// Use Simpsons rule to approximate the arc length of /// part of an ellipse. Note that this only works over /// the range of [0, pi/2]. // TODO(gw): This is a simplistic way to estimate the // arc length of an ellipse segment. We can probably use // a faster / more accurate method! fn get_simpson_length(theta: f32, rx: f32, ry: f32) -> f32 { let df = theta / STEP_COUNT as f32; let mut sum = 0.0; for i in 0 .. (STEP_COUNT + 1) { let (sin_theta, cos_theta) = (i as f32 * df).sin_cos(); let a = rx * sin_theta; let b = ry * cos_theta; let y = (a * a + b * b).sqrt(); let q = if i == 0 || i == STEP_COUNT { 1.0 } else if i % 2 == 0 { 2.0 } else { 4.0 }; sum += q * y; } (df / 3.0) * sum } #[cfg(test)] pub mod test { use super::*; #[test] fn find_angle_for_arc_length_for_long_eclipse() { // Ensure that finding the angle on giant ellipses produces and answer and // doesn't send us into an infinite loop. let ellipse = Ellipse::new(LayoutSize::new(57500.0, 25.0)); let _ = ellipse.find_angle_for_arc_length(55674.53); assert!(true); let ellipse = Ellipse::new(LayoutSize::new(25.0, 57500.0)); let _ = ellipse.find_angle_for_arc_length(55674.53); assert!(true); } }