// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * * Copyright (C) 2004-2014, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: ucase.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2004aug30 * created by: Markus W. Scherer * * Low-level Unicode character/string case mapping code. * Much code moved here (and modified) from uchar.c. */ #include "unicode/utypes.h" #include "unicode/unistr.h" #include "unicode/uset.h" #include "unicode/utf16.h" #include "cmemory.h" #include "uassert.h" #include "ucase.h" #include "umutex.h" #include "utrie2.h" /* ucase_props_data.h is machine-generated by genprops/casepropsbuilder.cpp */ #define INCLUDED_FROM_UCASE_CPP #include "ucase_props_data.h" /* set of property starts for UnicodeSet ------------------------------------ */ static UBool U_CALLCONV _enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { /* add the start code point to the USet */ const USetAdder *sa=(const USetAdder *)context; sa->add(sa->set, start); return true; } U_CFUNC void U_EXPORT2 ucase_addPropertyStarts(const USetAdder *sa, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return; } /* add the start code point of each same-value range of the trie */ utrie2_enum(&ucase_props_singleton.trie, nullptr, _enumPropertyStartsRange, sa); /* add code points with hardcoded properties, plus the ones following them */ /* (none right now, see comment below) */ /* * Omit code points with hardcoded specialcasing properties * because we do not build property UnicodeSets for them right now. */ } /* data access primitives --------------------------------------------------- */ U_CAPI const struct UCaseProps * U_EXPORT2 ucase_getSingleton(int32_t *pExceptionsLength, int32_t *pUnfoldLength) { *pExceptionsLength = UPRV_LENGTHOF(ucase_props_exceptions); *pUnfoldLength = UPRV_LENGTHOF(ucase_props_unfold); return &ucase_props_singleton; } U_CFUNC const UTrie2 * U_EXPORT2 ucase_getTrie() { return &ucase_props_singleton.trie; } #define GET_EXCEPTIONS(csp, props) ((csp)->exceptions+((props)>>UCASE_EXC_SHIFT)) /* number of bits in an 8-bit integer value */ static const uint8_t flagsOffset[256]={ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; #define HAS_SLOT(flags, idx) ((flags)&(1<<(idx))) #define SLOT_OFFSET(flags, idx) flagsOffset[(flags)&((1<<(idx))-1)] /* * Get the value of an optional-value slot where HAS_SLOT(excWord, idx). * * @param excWord (in) initial exceptions word * @param idx (in) desired slot index * @param pExc16 (in/out) const uint16_t * after excWord=*pExc16++; * moved to the last uint16_t of the value, use +1 for beginning of next slot * @param value (out) int32_t or uint32_t output if hasSlot, otherwise not modified */ #define GET_SLOT_VALUE(excWord, idx, pExc16, value) UPRV_BLOCK_MACRO_BEGIN { \ if(((excWord)&UCASE_EXC_DOUBLE_SLOTS)==0) { \ (pExc16)+=SLOT_OFFSET(excWord, idx); \ (value)=*pExc16; \ } else { \ (pExc16)+=2*SLOT_OFFSET(excWord, idx); \ (value)=*pExc16++; \ (value)=((value)<<16)|*pExc16; \ } \ } UPRV_BLOCK_MACRO_END /* simple case mappings ----------------------------------------------------- */ U_CAPI UChar32 U_EXPORT2 ucase_tolower(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_IS_UPPER_OR_TITLE(props)) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_IS_UPPER_OR_TITLE(props)) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe, c); } } return c; } U_CAPI UChar32 U_EXPORT2 ucase_toupper(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_GET_TYPE(props)==UCASE_LOWER) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_UPPER, pe, c); } } return c; } U_CAPI UChar32 U_EXPORT2 ucase_totitle(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_GET_TYPE(props)==UCASE_LOWER) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } int32_t idx; if(HAS_SLOT(excWord, UCASE_EXC_TITLE)) { idx=UCASE_EXC_TITLE; } else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { idx=UCASE_EXC_UPPER; } else { return c; } GET_SLOT_VALUE(excWord, idx, pe, c); } return c; } static const char16_t iDot[2] = { 0x69, 0x307 }; static const char16_t jDot[2] = { 0x6a, 0x307 }; static const char16_t iOgonekDot[3] = { 0x12f, 0x307 }; static const char16_t iDotGrave[3] = { 0x69, 0x307, 0x300 }; static const char16_t iDotAcute[3] = { 0x69, 0x307, 0x301 }; static const char16_t iDotTilde[3] = { 0x69, 0x307, 0x303 }; U_CFUNC void U_EXPORT2 ucase_addCaseClosure(UChar32 c, const USetAdder *sa) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)!=UCASE_NONE) { /* add the one simple case mapping, no matter what type it is */ int32_t delta=UCASE_GET_DELTA(props); if(delta!=0) { sa->add(sa->set, c+delta); } } } else { /* * c has exceptions, so there may be multiple simple and/or * full case mappings. Add them all. */ const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; const uint16_t *pe0=pe; // Hardcode the case closure of i and its relatives and ignore the // data file data for these characters. // The Turkic dotless i and dotted I with their case mapping conditions // and case folding option make the related characters behave specially. // This code matches their closure behavior to their case folding behavior. if (excWord&UCASE_EXC_CONDITIONAL_FOLD) { // These characters have Turkic case foldings. Hardcode their closure. if (c == 0x49) { // Regular i and I are in one equivalence class. sa->add(sa->set, 0x69); return; } else if (c == 0x130) { // Dotted I is in a class with <0069 0307> // (for canonical equivalence with <0049 0307>). sa->addString(sa->set, iDot, 2); return; } } else if (c == 0x69) { sa->add(sa->set, 0x49); return; } else if (c == 0x131) { // Dotless i is in a class by itself. return; } /* add all simple case mappings */ for(int32_t idx=UCASE_EXC_LOWER; idx<=UCASE_EXC_TITLE; ++idx) { if(HAS_SLOT(excWord, idx)) { pe=pe0; UChar32 mapping; GET_SLOT_VALUE(excWord, idx, pe, mapping); sa->add(sa->set, mapping); } } if(HAS_SLOT(excWord, UCASE_EXC_DELTA)) { pe=pe0; int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); sa->add(sa->set, (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta); } /* get the closure string pointer & length */ const char16_t *closure; int32_t closureLength; if(HAS_SLOT(excWord, UCASE_EXC_CLOSURE)) { pe=pe0; GET_SLOT_VALUE(excWord, UCASE_EXC_CLOSURE, pe, closureLength); closureLength&=UCASE_CLOSURE_MAX_LENGTH; /* higher bits are reserved */ closure=(const char16_t *)pe+1; /* behind this slot, unless there are full case mappings */ } else { closureLength=0; closure=nullptr; } /* add the full case folding */ if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { pe=pe0; int32_t fullLength; GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, fullLength); /* start of full case mapping strings */ ++pe; fullLength&=0xffff; /* bits 16 and higher are reserved */ /* skip the lowercase result string */ pe+=fullLength&UCASE_FULL_LOWER; fullLength>>=4; /* add the full case folding string */ int32_t length=fullLength&0xf; if(length!=0) { sa->addString(sa->set, (const char16_t *)pe, length); pe+=length; } /* skip the uppercase and titlecase strings */ fullLength>>=4; pe+=fullLength&0xf; fullLength>>=4; pe+=fullLength; closure=(const char16_t *)pe; /* behind full case mappings */ } /* add each code point in the closure string */ for(int32_t idx=0; idx<closureLength;) { UChar32 mapping; U16_NEXT_UNSAFE(closure, idx, mapping); sa->add(sa->set, mapping); } } } namespace { /** * Add the simple case closure mapping, * except if there is not actually an scf relationship between the two characters. * TODO: Unicode should probably add the corresponding scf mappings. * See https://crbug.com/v8/13377 and Unicode-internal PAG issue #23. * If & when those scf mappings are added, we should be able to remove all of these exceptions. */ void addOneSimpleCaseClosure(UChar32 c, UChar32 t, const USetAdder *sa) { switch (c) { case 0x0390: if (t == 0x1FD3) { return; } break; case 0x03B0: if (t == 0x1FE3) { return; } break; case 0x1FD3: if (t == 0x0390) { return; } break; case 0x1FE3: if (t == 0x03B0) { return; } break; case 0xFB05: if (t == 0xFB06) { return; } break; case 0xFB06: if (t == 0xFB05) { return; } break; default: break; } sa->add(sa->set, t); } } // namespace U_CFUNC void U_EXPORT2 ucase_addSimpleCaseClosure(UChar32 c, const USetAdder *sa) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)!=UCASE_NONE) { /* add the one simple case mapping, no matter what type it is */ int32_t delta=UCASE_GET_DELTA(props); if(delta!=0) { sa->add(sa->set, c+delta); } } } else { // c has exceptions. Add the mappings relevant for scf=Simple_Case_Folding. const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; const uint16_t *pe0=pe; // Hardcode the case closure of i and its relatives and ignore the // data file data for these characters, like in ucase_addCaseClosure(). if (excWord&UCASE_EXC_CONDITIONAL_FOLD) { // These characters have Turkic case foldings. Hardcode their closure. if (c == 0x49) { // Regular i and I are in one equivalence class. sa->add(sa->set, 0x69); return; } else if (c == 0x130) { // For scf=Simple_Case_Folding, dotted I is in a class by itself. return; } } else if (c == 0x69) { sa->add(sa->set, 0x49); return; } else if (c == 0x131) { // Dotless i is in a class by itself. return; } // Add all simple case mappings. for(int32_t idx=UCASE_EXC_LOWER; idx<=UCASE_EXC_TITLE; ++idx) { if(HAS_SLOT(excWord, idx)) { pe=pe0; UChar32 mapping; GET_SLOT_VALUE(excWord, idx, pe, mapping); addOneSimpleCaseClosure(c, mapping, sa); } } if(HAS_SLOT(excWord, UCASE_EXC_DELTA)) { pe=pe0; int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); UChar32 mapping = (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; addOneSimpleCaseClosure(c, mapping, sa); } /* get the closure string pointer & length */ const char16_t *closure; int32_t closureLength; if(HAS_SLOT(excWord, UCASE_EXC_CLOSURE)) { pe=pe0; GET_SLOT_VALUE(excWord, UCASE_EXC_CLOSURE, pe, closureLength); closureLength&=UCASE_CLOSURE_MAX_LENGTH; /* higher bits are reserved */ closure=(const char16_t *)pe+1; /* behind this slot, unless there are full case mappings */ } else { closureLength=0; closure=nullptr; } // Skip the full case mappings. if(closureLength > 0 && HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { pe=pe0; int32_t fullLength; GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, fullLength); /* start of full case mapping strings */ ++pe; fullLength&=0xffff; /* bits 16 and higher are reserved */ // Skip all 4 full case mappings. pe+=fullLength&UCASE_FULL_LOWER; fullLength>>=4; pe+=fullLength&0xf; fullLength>>=4; pe+=fullLength&0xf; fullLength>>=4; pe+=fullLength; closure=(const char16_t *)pe; /* behind full case mappings */ } // Add each code point in the closure string whose scf maps back to c. for(int32_t idx=0; idx<closureLength;) { UChar32 mapping; U16_NEXT_UNSAFE(closure, idx, mapping); addOneSimpleCaseClosure(c, mapping, sa); } } } /* * compare s, which has a length, with t, which has a maximum length or is NUL-terminated * must be length>0 and max>0 and length<=max */ static inline int32_t strcmpMax(const char16_t *s, int32_t length, const char16_t *t, int32_t max) { int32_t c1, c2; max-=length; /* we require length<=max, so no need to decrement max in the loop */ do { c1=*s++; c2=*t++; if(c2==0) { return 1; /* reached the end of t but not of s */ } c1-=c2; if(c1!=0) { return c1; /* return difference result */ } } while(--length>0); /* ends with length==0 */ if(max==0 || *t==0) { return 0; /* equal to length of both strings */ } else { return -max; /* return length difference */ } } U_CFUNC UBool U_EXPORT2 ucase_addStringCaseClosure(const char16_t *s, int32_t length, const USetAdder *sa) { int32_t i, start, limit, result, unfoldRows, unfoldRowWidth, unfoldStringWidth; if(ucase_props_singleton.unfold==nullptr || s==nullptr) { return false; /* no reverse case folding data, or no string */ } if(length<=1) { /* the string is too short to find any match */ /* * more precise would be: * if(!u_strHasMoreChar32Than(s, length, 1)) * but this does not make much practical difference because * a single supplementary code point would just not be found */ return false; } const uint16_t *unfold=ucase_props_singleton.unfold; unfoldRows=unfold[UCASE_UNFOLD_ROWS]; unfoldRowWidth=unfold[UCASE_UNFOLD_ROW_WIDTH]; unfoldStringWidth=unfold[UCASE_UNFOLD_STRING_WIDTH]; unfold+=unfoldRowWidth; if(length>unfoldStringWidth) { /* the string is too long to find any match */ return false; } /* do a binary search for the string */ start=0; limit=unfoldRows; while(start<limit) { i=(start+limit)/2; const char16_t *p=reinterpret_cast<const char16_t *>(unfold+(i*unfoldRowWidth)); result=strcmpMax(s, length, p, unfoldStringWidth); if(result==0) { /* found the string: add each code point, and its case closure */ UChar32 c; for(i=unfoldStringWidth; i<unfoldRowWidth && p[i]!=0;) { U16_NEXT_UNSAFE(p, i, c); sa->add(sa->set, c); ucase_addCaseClosure(c, sa); } return true; } else if(result<0) { limit=i; } else /* result>0 */ { start=i+1; } } return false; /* string not found */ } U_NAMESPACE_BEGIN FullCaseFoldingIterator::FullCaseFoldingIterator() : unfold(reinterpret_cast<const char16_t *>(ucase_props_singleton.unfold)), unfoldRows(unfold[UCASE_UNFOLD_ROWS]), unfoldRowWidth(unfold[UCASE_UNFOLD_ROW_WIDTH]), unfoldStringWidth(unfold[UCASE_UNFOLD_STRING_WIDTH]), currentRow(0), rowCpIndex(unfoldStringWidth) { unfold+=unfoldRowWidth; } UChar32 FullCaseFoldingIterator::next(UnicodeString &full) { // Advance past the last-delivered code point. const char16_t *p=unfold+(currentRow*unfoldRowWidth); if(rowCpIndex>=unfoldRowWidth || p[rowCpIndex]==0) { ++currentRow; p+=unfoldRowWidth; rowCpIndex=unfoldStringWidth; } if(currentRow>=unfoldRows) { return U_SENTINEL; } // Set "full" to the NUL-terminated string in the first unfold column. int32_t length=unfoldStringWidth; while(length>0 && p[length-1]==0) { --length; } full.setTo(false, p, length); // Return the code point. UChar32 c; U16_NEXT_UNSAFE(p, rowCpIndex, c); return c; } namespace LatinCase { const int8_t TO_LOWER_NORMAL[LIMIT] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 0, 32, 32, 32, 32, 32, 32, 32, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, EXC, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, EXC, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -121, 1, 0, 1, 0, 1, 0, EXC }; const int8_t TO_LOWER_TR_LT[LIMIT] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 32, 32, 32, 32, 32, 32, EXC, EXC, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, EXC, EXC, 32, 32, 32, 32, 32, 32, 32, 32, 32, 0, 32, 32, 32, 32, 32, 32, 32, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, EXC, 0, 1, 0, 1, 0, EXC, 0, EXC, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, EXC, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -121, 1, 0, 1, 0, 1, 0, EXC }; const int8_t TO_UPPER_NORMAL[LIMIT] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, 0, -32, -32, -32, -32, -32, -32, -32, 121, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, EXC, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, EXC, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 0, -1, EXC }; const int8_t TO_UPPER_TR[LIMIT] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -32, -32, -32, -32, -32, -32, -32, -32, EXC, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, EXC, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, -32, 0, -32, -32, -32, -32, -32, -32, -32, 121, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, EXC, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, EXC, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, -1, 0, -1, EXC }; } // namespace LatinCase U_NAMESPACE_END /** @return UCASE_NONE, UCASE_LOWER, UCASE_UPPER, UCASE_TITLE */ U_CAPI int32_t U_EXPORT2 ucase_getType(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); return UCASE_GET_TYPE(props); } /** @return same as ucase_getType() and set bit 2 if c is case-ignorable */ U_CAPI int32_t U_EXPORT2 ucase_getTypeOrIgnorable(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); return UCASE_GET_TYPE_AND_IGNORABLE(props); } /** @return UCASE_NO_DOT, UCASE_SOFT_DOTTED, UCASE_ABOVE, UCASE_OTHER_ACCENT */ static inline int32_t getDotType(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { return props&UCASE_DOT_MASK; } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); return (*pe>>UCASE_EXC_DOT_SHIFT)&UCASE_DOT_MASK; } } U_CAPI UBool U_EXPORT2 ucase_isSoftDotted(UChar32 c) { return (UBool)(getDotType(c)==UCASE_SOFT_DOTTED); } U_CAPI UBool U_EXPORT2 ucase_isCaseSensitive(UChar32 c) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { return (UBool)((props&UCASE_SENSITIVE)!=0); } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); return (UBool)((*pe&UCASE_EXC_SENSITIVE)!=0); } } /* string casing ------------------------------------------------------------ */ /* * These internal functions form the core of string case mappings. * They map single code points to result code points or strings and take * all necessary conditions (context, locale ID, options) into account. * * They do not iterate over the source or write to the destination * so that the same functions are useful for non-standard string storage, * such as in a Replaceable (for Transliterator) or UTF-8/32 strings etc. * For the same reason, the "surrounding text" context is passed in as a * UCaseContextIterator which does not make any assumptions about * the underlying storage. * * This section contains helper functions that check for conditions * in the input text surrounding the current code point * according to SpecialCasing.txt. * * Each helper function gets the index * - after the current code point if it looks at following text * - before the current code point if it looks at preceding text * * Unicode 3.2 UAX 21 "Case Mappings" defines the conditions as follows: * * Final_Sigma * C is preceded by a sequence consisting of * a cased letter and a case-ignorable sequence, * and C is not followed by a sequence consisting of * an ignorable sequence and then a cased letter. * * More_Above * C is followed by one or more characters of combining class 230 (ABOVE) * in the combining character sequence. * * After_Soft_Dotted * The last preceding character with combining class of zero before C * was Soft_Dotted, * and there is no intervening combining character class 230 (ABOVE). * * Before_Dot * C is followed by combining dot above (U+0307). * Any sequence of characters with a combining class that is neither 0 nor 230 * may intervene between the current character and the combining dot above. * * The erratum from 2002-10-31 adds the condition * * After_I * The last preceding base character was an uppercase I, and there is no * intervening combining character class 230 (ABOVE). * * (See Jitterbug 2344 and the comments on After_I below.) * * Helper definitions in Unicode 3.2 UAX 21: * * D1. A character C is defined to be cased * if it meets any of the following criteria: * * - The general category of C is Titlecase Letter (Lt) * - In [CoreProps], C has one of the properties Uppercase, or Lowercase * - Given D = NFD(C), then it is not the case that: * D = UCD_lower(D) = UCD_upper(D) = UCD_title(D) * (This third criterion does not add any characters to the list * for Unicode 3.2. Ignored.) * * D2. A character C is defined to be case-ignorable * if it meets either of the following criteria: * * - The general category of C is * Nonspacing Mark (Mn), or Enclosing Mark (Me), or Format Control (Cf), or * Letter Modifier (Lm), or Symbol Modifier (Sk) * - C is one of the following characters * U+0027 APOSTROPHE * U+00AD SOFT HYPHEN (SHY) * U+2019 RIGHT SINGLE QUOTATION MARK * (the preferred character for apostrophe) * * D3. A case-ignorable sequence is a sequence of * zero or more case-ignorable characters. */ #define is_d(c) ((c)=='d' || (c)=='D') #define is_e(c) ((c)=='e' || (c)=='E') #define is_i(c) ((c)=='i' || (c)=='I') #define is_l(c) ((c)=='l' || (c)=='L') #define is_r(c) ((c)=='r' || (c)=='R') #define is_t(c) ((c)=='t' || (c)=='T') #define is_u(c) ((c)=='u' || (c)=='U') #define is_y(c) ((c)=='y' || (c)=='Y') #define is_z(c) ((c)=='z' || (c)=='Z') /* separator? */ #define is_sep(c) ((c)=='_' || (c)=='-' || (c)==0) /** * Requires non-nullptr locale ID but otherwise does the equivalent of * checking for language codes as if uloc_getLanguage() were called: * Accepts both 2- and 3-letter codes and accepts case variants. */ U_CFUNC int32_t ucase_getCaseLocale(const char *locale) { /* * This function used to use uloc_getLanguage(), but the current code * removes the dependency of this low-level code on uloc implementation code * and is faster because not the whole locale ID has to be * examined and copied/transformed. * * Because this code does not want to depend on uloc, the caller must * pass in a non-nullptr locale, i.e., may need to call uloc_getDefault(). */ char c=*locale++; // Fastpath for English "en" which is often used for default (=root locale) case mappings, // and for Chinese "zh": Very common but no special case mapping behavior. // Then check lowercase vs. uppercase to reduce the number of comparisons // for other locales without special behavior. if(c=='e') { /* el or ell? */ c=*locale++; if(is_l(c)) { c=*locale++; if(is_l(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_GREEK; } } // en, es, ... -> root } else if(c=='z') { return UCASE_LOC_ROOT; #if U_CHARSET_FAMILY==U_ASCII_FAMILY } else if(c>='a') { // ASCII a-z = 0x61..0x7a, after A-Z #elif U_CHARSET_FAMILY==U_EBCDIC_FAMILY } else if(c<='z') { // EBCDIC a-z = 0x81..0xa9 with two gaps, before A-Z #else # error Unknown charset family! #endif // lowercase c if(c=='t') { /* tr or tur? */ c=*locale++; if(is_u(c)) { c=*locale++; } if(is_r(c)) { c=*locale; if(is_sep(c)) { return UCASE_LOC_TURKISH; } } } else if(c=='a') { /* az or aze? */ c=*locale++; if(is_z(c)) { c=*locale++; if(is_e(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_TURKISH; } } } else if(c=='l') { /* lt or lit? */ c=*locale++; if(is_i(c)) { c=*locale++; } if(is_t(c)) { c=*locale; if(is_sep(c)) { return UCASE_LOC_LITHUANIAN; } } } else if(c=='n') { /* nl or nld? */ c=*locale++; if(is_l(c)) { c=*locale++; if(is_d(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_DUTCH; } } } else if(c=='h') { /* hy or hye? *not* hyw */ c=*locale++; if(is_y(c)) { c=*locale++; if(is_e(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_ARMENIAN; } } } } else { // uppercase c // Same code as for lowercase c but also check for 'E'. if(c=='T') { /* tr or tur? */ c=*locale++; if(is_u(c)) { c=*locale++; } if(is_r(c)) { c=*locale; if(is_sep(c)) { return UCASE_LOC_TURKISH; } } } else if(c=='A') { /* az or aze? */ c=*locale++; if(is_z(c)) { c=*locale++; if(is_e(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_TURKISH; } } } else if(c=='L') { /* lt or lit? */ c=*locale++; if(is_i(c)) { c=*locale++; } if(is_t(c)) { c=*locale; if(is_sep(c)) { return UCASE_LOC_LITHUANIAN; } } } else if(c=='E') { /* el or ell? */ c=*locale++; if(is_l(c)) { c=*locale++; if(is_l(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_GREEK; } } } else if(c=='N') { /* nl or nld? */ c=*locale++; if(is_l(c)) { c=*locale++; if(is_d(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_DUTCH; } } } else if(c=='H') { /* hy or hye? *not* hyw */ c=*locale++; if(is_y(c)) { c=*locale++; if(is_e(c)) { c=*locale; } if(is_sep(c)) { return UCASE_LOC_ARMENIAN; } } } } return UCASE_LOC_ROOT; } /* * Is followed by * {case-ignorable}* cased * ? * (dir determines looking forward/backward) * If a character is case-ignorable, it is skipped regardless of whether * it is also cased or not. */ static UBool isFollowedByCasedLetter(UCaseContextIterator *iter, void *context, int8_t dir) { UChar32 c; if(iter==nullptr) { return false; } for(/* dir!=0 sets direction */; (c=iter(context, dir))>=0; dir=0) { int32_t type=ucase_getTypeOrIgnorable(c); if(type&4) { /* case-ignorable, continue with the loop */ } else if(type!=UCASE_NONE) { return true; /* followed by cased letter */ } else { return false; /* uncased and not case-ignorable */ } } return false; /* not followed by cased letter */ } /* Is preceded by Soft_Dotted character with no intervening cc=230 ? */ static UBool isPrecededBySoftDotted(UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==nullptr) { return false; } for(dir=-1; (c=iter(context, dir))>=0; dir=0) { dotType=getDotType(c); if(dotType==UCASE_SOFT_DOTTED) { return true; /* preceded by TYPE_i */ } else if(dotType!=UCASE_OTHER_ACCENT) { return false; /* preceded by different base character (not TYPE_i), or intervening cc==230 */ } } return false; /* not preceded by TYPE_i */ } /* * See Jitterbug 2344: * The condition After_I for Turkic-lowercasing of U+0307 combining dot above * is checked in ICU 2.0, 2.1, 2.6 but was not in 2.2 & 2.4 because * we made those releases compatible with Unicode 3.2 which had not fixed * a related bug in SpecialCasing.txt. * * From the Jitterbug 2344 text: * ... this bug is listed as a Unicode erratum * from 2002-10-31 at http://www.unicode.org/uni2errata/UnicodeErrata.html * <quote> * There are two errors in SpecialCasing.txt. * 1. Missing semicolons on two lines. ... [irrelevant for ICU] * 2. An incorrect context definition. Correct as follows: * < 0307; ; 0307; 0307; tr After_Soft_Dotted; # COMBINING DOT ABOVE * < 0307; ; 0307; 0307; az After_Soft_Dotted; # COMBINING DOT ABOVE * --- * > 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE * > 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE * where the context After_I is defined as: * The last preceding base character was an uppercase I, and there is no * intervening combining character class 230 (ABOVE). * </quote> * * Note that SpecialCasing.txt even in Unicode 3.2 described the condition as: * * # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i. * # This matches the behavior of the canonically equivalent I-dot_above * * See also the description in this place in older versions of uchar.c (revision 1.100). * * Markus W. Scherer 2003-feb-15 */ /* Is preceded by base character 'I' with no intervening cc=230 ? */ static UBool isPrecededBy_I(UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==nullptr) { return false; } for(dir=-1; (c=iter(context, dir))>=0; dir=0) { if(c==0x49) { return true; /* preceded by I */ } dotType=getDotType(c); if(dotType!=UCASE_OTHER_ACCENT) { return false; /* preceded by different base character (not I), or intervening cc==230 */ } } return false; /* not preceded by I */ } /* Is followed by one or more cc==230 ? */ static UBool isFollowedByMoreAbove(UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==nullptr) { return false; } for(dir=1; (c=iter(context, dir))>=0; dir=0) { dotType=getDotType(c); if(dotType==UCASE_ABOVE) { return true; /* at least one cc==230 following */ } else if(dotType!=UCASE_OTHER_ACCENT) { return false; /* next base character, no more cc==230 following */ } } return false; /* no more cc==230 following */ } /* Is followed by a dot above (without cc==230 in between) ? */ static UBool isFollowedByDotAbove(UCaseContextIterator *iter, void *context) { UChar32 c; int32_t dotType; int8_t dir; if(iter==nullptr) { return false; } for(dir=1; (c=iter(context, dir))>=0; dir=0) { if(c==0x307) { return true; } dotType=getDotType(c); if(dotType!=UCASE_OTHER_ACCENT) { return false; /* next base character or cc==230 in between */ } } return false; /* no dot above following */ } U_CAPI int32_t U_EXPORT2 ucase_toFullLower(UChar32 c, UCaseContextIterator *iter, void *context, const char16_t **pString, int32_t loc) { // The sign of the result has meaning, input must be non-negative so that it can be returned as is. U_ASSERT(c >= 0); UChar32 result=c; // Reset the output pointer in case it was uninitialized. *pString=nullptr; uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_IS_UPPER_OR_TITLE(props)) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props), *pe2; uint16_t excWord=*pe++; int32_t full; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) { /* use hardcoded conditions and mappings */ /* * Test for conditional mappings first * (otherwise the unconditional default mappings are always taken), * then test for characters that have unconditional mappings in SpecialCasing.txt, * then get the UnicodeData.txt mappings. */ if( loc==UCASE_LOC_LITHUANIAN && /* base characters, find accents above */ (((c==0x49 || c==0x4a || c==0x12e) && isFollowedByMoreAbove(iter, context)) || /* precomposed with accent above, no need to find one */ (c==0xcc || c==0xcd || c==0x128)) ) { /* # Lithuanian # Lithuanian retains the dot in a lowercase i when followed by accents. # Introduce an explicit dot above when lowercasing capital I's and J's # whenever there are more accents above. # (of the accents used in Lithuanian: grave, acute, tilde above, and ogonek) 0049; 0069 0307; 0049; 0049; lt More_Above; # LATIN CAPITAL LETTER I 004A; 006A 0307; 004A; 004A; lt More_Above; # LATIN CAPITAL LETTER J 012E; 012F 0307; 012E; 012E; lt More_Above; # LATIN CAPITAL LETTER I WITH OGONEK 00CC; 0069 0307 0300; 00CC; 00CC; lt; # LATIN CAPITAL LETTER I WITH GRAVE 00CD; 0069 0307 0301; 00CD; 00CD; lt; # LATIN CAPITAL LETTER I WITH ACUTE 0128; 0069 0307 0303; 0128; 0128; lt; # LATIN CAPITAL LETTER I WITH TILDE */ switch(c) { case 0x49: /* LATIN CAPITAL LETTER I */ *pString=iDot; return 2; case 0x4a: /* LATIN CAPITAL LETTER J */ *pString=jDot; return 2; case 0x12e: /* LATIN CAPITAL LETTER I WITH OGONEK */ *pString=iOgonekDot; return 2; case 0xcc: /* LATIN CAPITAL LETTER I WITH GRAVE */ *pString=iDotGrave; return 3; case 0xcd: /* LATIN CAPITAL LETTER I WITH ACUTE */ *pString=iDotAcute; return 3; case 0x128: /* LATIN CAPITAL LETTER I WITH TILDE */ *pString=iDotTilde; return 3; default: return 0; /* will not occur */ } /* # Turkish and Azeri */ } else if(loc==UCASE_LOC_TURKISH && c==0x130) { /* # I and i-dotless; I-dot and i are case pairs in Turkish and Azeri # The following rules handle those cases. 0130; 0069; 0130; 0130; tr # LATIN CAPITAL LETTER I WITH DOT ABOVE 0130; 0069; 0130; 0130; az # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } else if(loc==UCASE_LOC_TURKISH && c==0x307 && isPrecededBy_I(iter, context)) { /* # When lowercasing, remove dot_above in the sequence I + dot_above, which will turn into i. # This matches the behavior of the canonically equivalent I-dot_above 0307; ; 0307; 0307; tr After_I; # COMBINING DOT ABOVE 0307; ; 0307; 0307; az After_I; # COMBINING DOT ABOVE */ return 0; /* remove the dot (continue without output) */ } else if(loc==UCASE_LOC_TURKISH && c==0x49 && !isFollowedByDotAbove(iter, context)) { /* # When lowercasing, unless an I is before a dot_above, it turns into a dotless i. 0049; 0131; 0049; 0049; tr Not_Before_Dot; # LATIN CAPITAL LETTER I 0049; 0131; 0049; 0049; az Not_Before_Dot; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* # Preserve canonical equivalence for I with dot. Turkic is handled below. 0130; 0069 0307; 0130; 0130; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ *pString=iDot; return 2; } else if( c==0x3a3 && !isFollowedByCasedLetter(iter, context, 1) && isFollowedByCasedLetter(iter, context, -1) /* -1=preceded */ ) { /* greek capital sigma maps depending on surrounding cased letters (see SpecialCasing.txt) */ /* # Special case for final form of sigma 03A3; 03C2; 03A3; 03A3; Final_Sigma; # GREEK CAPITAL LETTER SIGMA */ return 0x3c2; /* greek small final sigma */ } else { /* no known conditional special case mapping, use a normal mapping */ } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); full&=UCASE_FULL_LOWER; if(full!=0) { /* set the output pointer to the lowercase mapping */ *pString=reinterpret_cast<const char16_t *>(pe+1); /* return the string length */ return full; } } if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_IS_UPPER_OR_TITLE(props)) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe2, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { GET_SLOT_VALUE(excWord, UCASE_EXC_LOWER, pe2, result); } } return (result==c) ? ~result : result; } /* internal */ static int32_t toUpperOrTitle(UChar32 c, UCaseContextIterator *iter, void *context, const char16_t **pString, int32_t loc, UBool upperNotTitle) { // The sign of the result has meaning, input must be non-negative so that it can be returned as is. U_ASSERT(c >= 0); UChar32 result=c; // Reset the output pointer in case it was uninitialized. *pString=nullptr; uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_GET_TYPE(props)==UCASE_LOWER) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props), *pe2; uint16_t excWord=*pe++; int32_t full, idx; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_SPECIAL) { /* use hardcoded conditions and mappings */ if(loc==UCASE_LOC_TURKISH && c==0x69) { /* # Turkish and Azeri # I and i-dotless; I-dot and i are case pairs in Turkish and Azeri # The following rules handle those cases. # When uppercasing, i turns into a dotted capital I 0069; 0069; 0130; 0130; tr; # LATIN SMALL LETTER I 0069; 0069; 0130; 0130; az; # LATIN SMALL LETTER I */ return 0x130; } else if(loc==UCASE_LOC_LITHUANIAN && c==0x307 && isPrecededBySoftDotted(iter, context)) { /* # Lithuanian # Lithuanian retains the dot in a lowercase i when followed by accents. # Remove DOT ABOVE after "i" with upper or titlecase 0307; 0307; ; ; lt After_Soft_Dotted; # COMBINING DOT ABOVE */ return 0; /* remove the dot (continue without output) */ } else if(c==0x0587) { // See ICU-13416: // և ligature ech-yiwn // uppercases to ԵՒ=ech+yiwn by default and in Western Armenian, // but to ԵՎ=ech+vew in Eastern Armenian. if(loc==UCASE_LOC_ARMENIAN) { *pString=upperNotTitle ? u"ԵՎ" : u"Եվ"; } else { *pString=upperNotTitle ? u"ԵՒ" : u"Եւ"; } return 2; } else { /* no known conditional special case mapping, use a normal mapping */ } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); /* start of full case mapping strings */ ++pe; /* skip the lowercase and case-folding result strings */ pe+=full&UCASE_FULL_LOWER; full>>=4; pe+=full&0xf; full>>=4; if(upperNotTitle) { full&=0xf; } else { /* skip the uppercase result string */ pe+=full&0xf; full=(full>>4)&0xf; } if(full!=0) { /* set the output pointer to the result string */ *pString=reinterpret_cast<const char16_t *>(pe); /* return the string length */ return full; } } if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_GET_TYPE(props)==UCASE_LOWER) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe2, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(!upperNotTitle && HAS_SLOT(excWord, UCASE_EXC_TITLE)) { idx=UCASE_EXC_TITLE; } else if(HAS_SLOT(excWord, UCASE_EXC_UPPER)) { /* here, titlecase is same as uppercase */ idx=UCASE_EXC_UPPER; } else { return ~c; } GET_SLOT_VALUE(excWord, idx, pe2, result); } return (result==c) ? ~result : result; } U_CAPI int32_t U_EXPORT2 ucase_toFullUpper(UChar32 c, UCaseContextIterator *iter, void *context, const char16_t **pString, int32_t caseLocale) { return toUpperOrTitle(c, iter, context, pString, caseLocale, true); } U_CAPI int32_t U_EXPORT2 ucase_toFullTitle(UChar32 c, UCaseContextIterator *iter, void *context, const char16_t **pString, int32_t caseLocale) { return toUpperOrTitle(c, iter, context, pString, caseLocale, false); } /* case folding ------------------------------------------------------------- */ /* * Case folding is similar to lowercasing. * The result may be a simple mapping, i.e., a single code point, or * a full mapping, i.e., a string. * If the case folding for a code point is the same as its simple (1:1) lowercase mapping, * then only the lowercase mapping is stored. * * Some special cases are hardcoded because their conditions cannot be * parsed and processed from CaseFolding.txt. * * Unicode 3.2 CaseFolding.txt specifies for its status field: # C: common case folding, common mappings shared by both simple and full mappings. # F: full case folding, mappings that cause strings to grow in length. Multiple characters are separated by spaces. # S: simple case folding, mappings to single characters where different from F. # T: special case for uppercase I and dotted uppercase I # - For non-Turkic languages, this mapping is normally not used. # - For Turkic languages (tr, az), this mapping can be used instead of the normal mapping for these characters. # # Usage: # A. To do a simple case folding, use the mappings with status C + S. # B. To do a full case folding, use the mappings with status C + F. # # The mappings with status T can be used or omitted depending on the desired case-folding # behavior. (The default option is to exclude them.) * Unicode 3.2 has 'T' mappings as follows: 0049; T; 0131; # LATIN CAPITAL LETTER I 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE * while the default mappings for these code points are: 0049; C; 0069; # LATIN CAPITAL LETTER I 0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE * U+0130 has no simple case folding (simple-case-folds to itself). */ /* return the simple case folding mapping for c */ U_CAPI UChar32 U_EXPORT2 ucase_fold(UChar32 c, uint32_t options) { uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_IS_UPPER_OR_TITLE(props)) { c+=UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props); uint16_t excWord=*pe++; int32_t idx; if(excWord&UCASE_EXC_CONDITIONAL_FOLD) { /* special case folding mappings, hardcoded */ if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) { /* default mappings */ if(c==0x49) { /* 0049; C; 0069; # LATIN CAPITAL LETTER I */ return 0x69; } else if(c==0x130) { /* no simple case folding for U+0130 */ return c; } } else { /* Turkic mappings */ if(c==0x49) { /* 0049; T; 0131; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } } } if((excWord&UCASE_EXC_NO_SIMPLE_CASE_FOLDING)!=0) { return c; } if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_IS_UPPER_OR_TITLE(props)) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) { idx=UCASE_EXC_FOLD; } else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { idx=UCASE_EXC_LOWER; } else { return c; } GET_SLOT_VALUE(excWord, idx, pe, c); } return c; } /* * Issue for canonical caseless match (UAX #21): * Turkic casefolding (using "T" mappings in CaseFolding.txt) does not preserve * canonical equivalence, unlike default-option casefolding. * For example, I-grave and I + grave fold to strings that are not canonically * equivalent. * For more details, see the comment in unorm_compare() in unorm.cpp * and the intermediate prototype changes for Jitterbug 2021. * (For example, revision 1.104 of uchar.c and 1.4 of CaseFolding.txt.) * * This did not get fixed because it appears that it is not possible to fix * it for uppercase and lowercase characters (I-grave vs. i-grave) * together in a way that they still fold to common result strings. */ U_CAPI int32_t U_EXPORT2 ucase_toFullFolding(UChar32 c, const char16_t **pString, uint32_t options) { // The sign of the result has meaning, input must be non-negative so that it can be returned as is. U_ASSERT(c >= 0); UChar32 result=c; // Reset the output pointer in case it was uninitialized. *pString=nullptr; uint16_t props=UTRIE2_GET16(&ucase_props_singleton.trie, c); if(!UCASE_HAS_EXCEPTION(props)) { if(UCASE_IS_UPPER_OR_TITLE(props)) { result=c+UCASE_GET_DELTA(props); } } else { const uint16_t *pe=GET_EXCEPTIONS(&ucase_props_singleton, props), *pe2; uint16_t excWord=*pe++; int32_t full, idx; pe2=pe; if(excWord&UCASE_EXC_CONDITIONAL_FOLD) { /* use hardcoded conditions and mappings */ if((options&_FOLD_CASE_OPTIONS_MASK)==U_FOLD_CASE_DEFAULT) { /* default mappings */ if(c==0x49) { /* 0049; C; 0069; # LATIN CAPITAL LETTER I */ return 0x69; } else if(c==0x130) { /* 0130; F; 0069 0307; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ *pString=iDot; return 2; } } else { /* Turkic mappings */ if(c==0x49) { /* 0049; T; 0131; # LATIN CAPITAL LETTER I */ return 0x131; } else if(c==0x130) { /* 0130; T; 0069; # LATIN CAPITAL LETTER I WITH DOT ABOVE */ return 0x69; } } } else if(HAS_SLOT(excWord, UCASE_EXC_FULL_MAPPINGS)) { GET_SLOT_VALUE(excWord, UCASE_EXC_FULL_MAPPINGS, pe, full); /* start of full case mapping strings */ ++pe; /* skip the lowercase result string */ pe+=full&UCASE_FULL_LOWER; full=(full>>4)&0xf; if(full!=0) { /* set the output pointer to the result string */ *pString=reinterpret_cast<const char16_t *>(pe); /* return the string length */ return full; } } if((excWord&UCASE_EXC_NO_SIMPLE_CASE_FOLDING)!=0) { return ~c; } if(HAS_SLOT(excWord, UCASE_EXC_DELTA) && UCASE_IS_UPPER_OR_TITLE(props)) { int32_t delta; GET_SLOT_VALUE(excWord, UCASE_EXC_DELTA, pe2, delta); return (excWord&UCASE_EXC_DELTA_IS_NEGATIVE)==0 ? c+delta : c-delta; } if(HAS_SLOT(excWord, UCASE_EXC_FOLD)) { idx=UCASE_EXC_FOLD; } else if(HAS_SLOT(excWord, UCASE_EXC_LOWER)) { idx=UCASE_EXC_LOWER; } else { return ~c; } GET_SLOT_VALUE(excWord, idx, pe2, result); } return (result==c) ? ~result : result; } /* case mapping properties API ---------------------------------------------- */ /* public API (see uchar.h) */ U_CAPI UBool U_EXPORT2 u_isULowercase(UChar32 c) { return (UBool)(UCASE_LOWER==ucase_getType(c)); } U_CAPI UBool U_EXPORT2 u_isUUppercase(UChar32 c) { return (UBool)(UCASE_UPPER==ucase_getType(c)); } /* Transforms the Unicode character to its lower case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_tolower(UChar32 c) { return ucase_tolower(c); } /* Transforms the Unicode character to its upper case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_toupper(UChar32 c) { return ucase_toupper(c); } /* Transforms the Unicode character to its title case equivalent.*/ U_CAPI UChar32 U_EXPORT2 u_totitle(UChar32 c) { return ucase_totitle(c); } /* return the simple case folding mapping for c */ U_CAPI UChar32 U_EXPORT2 u_foldCase(UChar32 c, uint32_t options) { return ucase_fold(c, options); } U_CFUNC int32_t U_EXPORT2 ucase_hasBinaryProperty(UChar32 c, UProperty which) { /* case mapping properties */ const char16_t *resultString; switch(which) { case UCHAR_LOWERCASE: return (UBool)(UCASE_LOWER==ucase_getType(c)); case UCHAR_UPPERCASE: return (UBool)(UCASE_UPPER==ucase_getType(c)); case UCHAR_SOFT_DOTTED: return ucase_isSoftDotted(c); case UCHAR_CASE_SENSITIVE: return ucase_isCaseSensitive(c); case UCHAR_CASED: return (UBool)(UCASE_NONE!=ucase_getType(c)); case UCHAR_CASE_IGNORABLE: return (UBool)(ucase_getTypeOrIgnorable(c)>>2); /* * Note: The following Changes_When_Xyz are defined as testing whether * the NFD form of the input changes when Xyz-case-mapped. * However, this simpler implementation of these properties, * ignoring NFD, passes the tests. * The implementation needs to be changed if the tests start failing. * When that happens, optimizations should be used to work with the * per-single-code point ucase_toFullXyz() functions unless * the NFD form has more than one code point, * and the property starts set needs to be the union of the * start sets for normalization and case mappings. */ case UCHAR_CHANGES_WHEN_LOWERCASED: return (UBool)(ucase_toFullLower(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0); case UCHAR_CHANGES_WHEN_UPPERCASED: return (UBool)(ucase_toFullUpper(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0); case UCHAR_CHANGES_WHEN_TITLECASED: return (UBool)(ucase_toFullTitle(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0); /* case UCHAR_CHANGES_WHEN_CASEFOLDED: -- in uprops.c */ case UCHAR_CHANGES_WHEN_CASEMAPPED: return (UBool)( ucase_toFullLower(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0 || ucase_toFullUpper(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0 || ucase_toFullTitle(c, nullptr, nullptr, &resultString, UCASE_LOC_ROOT)>=0); default: return false; } }