/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/common/ipc_channel_win.h" #include #include #include "base/command_line.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/process_util.h" #include "base/rand_util.h" #include "base/string_util.h" #include "base/win_util.h" #include "chrome/common/chrome_switches.h" #include "chrome/common/ipc_channel_utils.h" #include "chrome/common/ipc_message_utils.h" #include "mozilla/ipc/ProtocolUtils.h" #include "mozilla/Atomics.h" #include "mozilla/LateWriteChecks.h" #include "mozilla/RandomNum.h" #include "nsThreadUtils.h" using namespace mozilla::ipc; namespace IPC { //------------------------------------------------------------------------------ Channel::ChannelImpl::State::State(ChannelImpl* channel) { memset(&context.overlapped, 0, sizeof(context.overlapped)); context.handler = channel; } Channel::ChannelImpl::State::~State() { COMPILE_ASSERT(!offsetof(Channel::ChannelImpl::State, context), starts_with_io_context); } //------------------------------------------------------------------------------ Channel::ChannelImpl::ChannelImpl(const ChannelId& channel_id, Mode mode, Listener* listener) : chan_cap_("ChannelImpl::SendMutex", MessageLoopForIO::current()->SerialEventTarget()), ALLOW_THIS_IN_INITIALIZER_LIST(input_state_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(output_state_(this)) { Init(mode, listener); if (!CreatePipe(channel_id, mode)) { // The pipe may have been closed already. CHROMIUM_LOG(WARNING) << "Unable to create pipe named \"" << channel_id << "\" in " << (mode == 0 ? "server" : "client") << " mode."; } } Channel::ChannelImpl::ChannelImpl(ChannelHandle pipe, Mode mode, Listener* listener) : chan_cap_("ChannelImpl::SendMutex", MessageLoopForIO::current()->SerialEventTarget()), ALLOW_THIS_IN_INITIALIZER_LIST(input_state_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(output_state_(this)) { Init(mode, listener); if (!pipe) { return; } shared_secret_ = 0; waiting_for_shared_secret_ = false; pipe_ = pipe.release(); EnqueueHelloMessage(); } void Channel::ChannelImpl::Init(Mode mode, Listener* listener) { // Verify that we fit in a "quantum-spaced" jemalloc bucket. static_assert(sizeof(*this) <= 512, "Exceeded expected size class"); chan_cap_.NoteExclusiveAccess(); mode_ = mode; pipe_ = INVALID_HANDLE_VALUE; listener_ = listener; waiting_connect_ = true; processing_incoming_ = false; input_buf_offset_ = 0; input_buf_ = mozilla::MakeUnique(Channel::kReadBufferSize); accept_handles_ = false; privileged_ = false; other_process_ = INVALID_HANDLE_VALUE; } void Channel::ChannelImpl::OutputQueuePush(mozilla::UniquePtr msg) { chan_cap_.NoteSendMutex(); mozilla::LogIPCMessage::LogDispatchWithPid(msg.get(), other_pid_); output_queue_.Push(std::move(msg)); } void Channel::ChannelImpl::OutputQueuePop() { mozilla::UniquePtr message = output_queue_.Pop(); } void Channel::ChannelImpl::Close() { IOThread().AssertOnCurrentThread(); mozilla::MutexAutoLock lock(SendMutex()); CloseLocked(); } void Channel::ChannelImpl::CloseLocked() { chan_cap_.NoteExclusiveAccess(); if (connect_timeout_) { connect_timeout_->Cancel(); connect_timeout_ = nullptr; } // If we still have pending I/O, cancel it. The references inside // `input_state_` and `output_state_` will keep the buffers alive until they // complete. if (input_state_.is_pending || output_state_.is_pending) { CancelIo(pipe_); } // Closing the handle at this point prevents us from issuing more requests // form OnIOCompleted(). if (pipe_ != INVALID_HANDLE_VALUE) { CloseHandle(pipe_); pipe_ = INVALID_HANDLE_VALUE; } // If we have a connection to the other process, close the handle. if (other_process_ != INVALID_HANDLE_VALUE) { CloseHandle(other_process_); other_process_ = INVALID_HANDLE_VALUE; } // Don't return from `CloseLocked()` until the IO has been completed, // otherwise the IO thread may exit with outstanding IO, leaking the // ChannelImpl. // // It's OK to unlock here, as calls to `Send` from other threads will be // rejected, due to `pipe_` having been cleared. while (input_state_.is_pending || output_state_.is_pending) { mozilla::MutexAutoUnlock unlock(SendMutex()); MessageLoopForIO::current()->WaitForIOCompletion(INFINITE, this); } while (!output_queue_.IsEmpty()) { OutputQueuePop(); } } bool Channel::ChannelImpl::Send(mozilla::UniquePtr message) { mozilla::MutexAutoLock lock(SendMutex()); chan_cap_.NoteSendMutex(); #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sending message @" << message.get() << " on channel @" << this << " with type " << message->type() << " (" << output_queue_.Count() << " in queue)"; #endif if (pipe_ == INVALID_HANDLE_VALUE) { if (mozilla::ipc::LoggingEnabled()) { fprintf(stderr, "Can't send message %s, because this channel is closed.\n", message->name()); } return false; } OutputQueuePush(std::move(message)); // ensure waiting to write if (!waiting_connect_) { if (!output_state_.is_pending) { if (!ProcessOutgoingMessages(NULL, 0, false)) { return false; } } } return true; } const Channel::ChannelId Channel::ChannelImpl::PipeName( const ChannelId& channel_id, int32_t* secret) const { MOZ_ASSERT(secret); std::wostringstream ss; ss << L"\\\\.\\pipe\\chrome."; // Prevent the shared secret from ending up in the pipe name. size_t index = channel_id.find_first_of(L'\\'); if (index != std::string::npos) { StringToInt(channel_id.substr(index + 1), secret); ss << channel_id.substr(0, index - 1); } else { // This case is here to support predictable named pipes in tests. *secret = 0; ss << channel_id; } return ss.str(); } bool Channel::ChannelImpl::CreatePipe(const ChannelId& channel_id, Mode mode) { chan_cap_.NoteExclusiveAccess(); DCHECK(pipe_ == INVALID_HANDLE_VALUE); const ChannelId pipe_name = PipeName(channel_id, &shared_secret_); if (mode == MODE_SERVER) { waiting_for_shared_secret_ = !!shared_secret_; pipe_ = CreateNamedPipeW(pipe_name.c_str(), PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED | FILE_FLAG_FIRST_PIPE_INSTANCE, PIPE_TYPE_BYTE | PIPE_READMODE_BYTE, 1, // number of pipe instances // output buffer size (XXX tune) Channel::kReadBufferSize, // input buffer size (XXX tune) Channel::kReadBufferSize, 5000, // timeout in milliseconds (XXX tune) NULL); } else { pipe_ = CreateFileW( pipe_name.c_str(), GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, SECURITY_SQOS_PRESENT | SECURITY_IDENTIFICATION | FILE_FLAG_OVERLAPPED, NULL); } if (pipe_ == INVALID_HANDLE_VALUE) { // If this process is being closed, the pipe may be gone already. CHROMIUM_LOG(WARNING) << "failed to create pipe: " << GetLastError(); return false; } // Create the Hello message to be sent when Connect is called return EnqueueHelloMessage(); } bool Channel::ChannelImpl::EnqueueHelloMessage() { chan_cap_.NoteExclusiveAccess(); auto m = mozilla::MakeUnique(MSG_ROUTING_NONE, HELLO_MESSAGE_TYPE); // If we're waiting for our shared secret from the other end's hello message // then don't give the game away by sending it in ours. int32_t secret = waiting_for_shared_secret_ ? 0 : shared_secret_; // Also, don't send if the value is zero (for IPC backwards compatability). if (!m->WriteInt(GetCurrentProcessId()) || (secret && !m->WriteUInt32(secret))) { CloseHandle(pipe_); pipe_ = INVALID_HANDLE_VALUE; return false; } OutputQueuePush(std::move(m)); return true; } bool Channel::ChannelImpl::Connect() { IOThread().AssertOnCurrentThread(); mozilla::MutexAutoLock lock(SendMutex()); chan_cap_.NoteExclusiveAccess(); if (pipe_ == INVALID_HANDLE_VALUE) return false; MessageLoopForIO::current()->RegisterIOHandler(pipe_, this); // Check to see if there is a client connected to our pipe... if (mode_ == MODE_SERVER) { DCHECK(!input_state_.is_pending); if (!ProcessConnection()) { return false; } } else { waiting_connect_ = false; } if (!input_state_.is_pending) { // Complete setup asynchronously. By not setting input_state_.is_pending // to `this`, we indicate to OnIOCompleted that this is the special // initialization signal, while keeping a reference through the // `RunnableMethod`. IOThread().Dispatch( mozilla::NewRunnableMethod( "ContinueConnect", this, &ChannelImpl::OnIOCompleted, &input_state_.context, 0, 0)); } if (!waiting_connect_) { DCHECK(!output_state_.is_pending); ProcessOutgoingMessages(NULL, 0, false); } return true; } bool Channel::ChannelImpl::ProcessConnection() { chan_cap_.NoteExclusiveAccess(); DCHECK(!input_state_.is_pending); // Do we have a client connected to our pipe? if (INVALID_HANDLE_VALUE == pipe_) return false; BOOL ok = ConnectNamedPipe(pipe_, &input_state_.context.overlapped); DWORD err = GetLastError(); if (ok) { // Uhm, the API documentation says that this function should never // return success when used in overlapped mode. NOTREACHED(); return false; } switch (err) { case ERROR_IO_PENDING: { static bool kExtendedTimeout = #ifdef DEBUG true; #else !!PR_GetEnv("MOZ_RUN_GTEST"); #endif input_state_.is_pending = this; NS_NewTimerWithCallback( getter_AddRefs(connect_timeout_), [self = RefPtr{this}](nsITimer* timer) { CHROMIUM_LOG(ERROR) << "ConnectNamedPipe timed out!"; self->IOThread().AssertOnCurrentThread(); self->Close(); self->listener_->OnChannelError(); }, kExtendedTimeout ? 60000 : 10000, nsITimer::TYPE_ONE_SHOT, "ChannelImpl::ProcessConnection", IOThread().GetEventTarget()); } break; case ERROR_PIPE_CONNECTED: waiting_connect_ = false; if (connect_timeout_) { connect_timeout_->Cancel(); connect_timeout_ = nullptr; } break; case ERROR_NO_DATA: // The pipe is being closed. return false; default: NOTREACHED(); return false; } return true; } void Channel::ChannelImpl::SetOtherPid(int other_pid) { mozilla::MutexAutoLock lock(SendMutex()); chan_cap_.NoteExclusiveAccess(); other_pid_ = other_pid; // Now that we know the remote pid, open a privileged handle to the // child process if needed to transfer handles to/from it. if (privileged_ && other_process_ == INVALID_HANDLE_VALUE) { other_process_ = OpenProcess(PROCESS_DUP_HANDLE, false, other_pid_); if (!other_process_) { other_process_ = INVALID_HANDLE_VALUE; CHROMIUM_LOG(ERROR) << "Failed to acquire privileged handle to " << other_pid_ << ", cannot accept handles"; } } } bool Channel::ChannelImpl::ProcessIncomingMessages( MessageLoopForIO::IOContext* context, DWORD bytes_read, bool was_pending) { chan_cap_.NoteOnIOThread(); DCHECK(!input_state_.is_pending); if (was_pending) { DCHECK(context); if (!context || !bytes_read) return false; } else { // This happens at channel initialization. DCHECK(!bytes_read && context == &input_state_.context); } for (;;) { if (bytes_read == 0) { if (INVALID_HANDLE_VALUE == pipe_) return false; // Read from pipe... BOOL ok = ReadFile(pipe_, input_buf_.get() + input_buf_offset_, Channel::kReadBufferSize - input_buf_offset_, &bytes_read, &input_state_.context.overlapped); if (!ok) { DWORD err = GetLastError(); if (err == ERROR_IO_PENDING) { input_state_.is_pending = this; return true; } if (err != ERROR_BROKEN_PIPE) { CHROMIUM_LOG(ERROR) << "pipe error: " << err; } return false; } input_state_.is_pending = this; return true; } DCHECK(bytes_read); // Process messages from input buffer. const char* p = input_buf_.get(); const char* end = input_buf_.get() + input_buf_offset_ + bytes_read; // NOTE: We re-check `pipe_` after each message to make sure we weren't // closed while calling `OnMessageReceived` or `OnChannelConnected`. while (p < end && INVALID_HANDLE_VALUE != pipe_) { // Try to figure out how big the message is. Size is 0 if we haven't read // enough of the header to know the size. uint32_t message_length = 0; if (incoming_message_) { message_length = incoming_message_->size(); } else { message_length = Message::MessageSize(p, end); } if (!message_length) { // We haven't seen the full message header. MOZ_ASSERT(!incoming_message_); // Move everything we have to the start of the buffer. We'll finish // reading this message when we get more data. For now we leave it in // input_buf_. memmove(input_buf_.get(), p, end - p); input_buf_offset_ = end - p; break; } input_buf_offset_ = 0; bool partial; if (incoming_message_) { // We already have some data for this message stored in // incoming_message_. We want to append the new data there. Message& m = *incoming_message_; // How much data from this message remains to be added to // incoming_message_? MOZ_ASSERT(message_length > m.CurrentSize()); uint32_t remaining = message_length - m.CurrentSize(); // How much data from this message is stored in input_buf_? uint32_t in_buf = std::min(remaining, uint32_t(end - p)); m.InputBytes(p, in_buf); p += in_buf; // Are we done reading this message? partial = in_buf != remaining; } else { // How much data from this message is stored in input_buf_? uint32_t in_buf = std::min(message_length, uint32_t(end - p)); incoming_message_ = mozilla::MakeUnique(p, in_buf); p += in_buf; // Are we done reading this message? partial = in_buf != message_length; } if (partial) { break; } Message& m = *incoming_message_; // Note: We set other_pid_ below when we receive a Hello message (which // has no routing ID), but we only emit a profiler marker for messages // with a routing ID, so there's no conflict here. AddIPCProfilerMarker(m, other_pid_, MessageDirection::eReceiving, MessagePhase::TransferEnd); #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "received message on channel @" << this << " with type " << m.type(); #endif if (m.routing_id() == MSG_ROUTING_NONE && m.type() == HELLO_MESSAGE_TYPE) { // The Hello message contains the process id and must include the // shared secret, if we are waiting for it. MessageIterator it = MessageIterator(m); int32_t other_pid = it.NextInt(); SetOtherPid(other_pid); if (waiting_for_shared_secret_ && (it.NextInt() != shared_secret_)) { NOTREACHED(); // Something went wrong. Abort connection. // NOTE: Caller will `Close()` and notify `OnChannelError`. return false; } waiting_for_shared_secret_ = false; listener_->OnChannelConnected(other_pid); } else { mozilla::LogIPCMessage::Run run(&m); if (!AcceptHandles(m)) { return false; } listener_->OnMessageReceived(std::move(incoming_message_)); } incoming_message_ = nullptr; } bytes_read = 0; // Get more data. } } bool Channel::ChannelImpl::ProcessOutgoingMessages( MessageLoopForIO::IOContext* context, DWORD bytes_written, bool was_pending) { chan_cap_.NoteSendMutex(); DCHECK(!output_state_.is_pending); DCHECK(!waiting_connect_); // Why are we trying to send messages if there's // no connection? if (was_pending) { DCHECK(context); if (!context || bytes_written == 0) { DWORD err = GetLastError(); if (err != ERROR_BROKEN_PIPE) { CHROMIUM_LOG(ERROR) << "pipe error: " << err; } return false; } // Message was sent. DCHECK(!output_queue_.IsEmpty()); Message* m = output_queue_.FirstElement().get(); MOZ_RELEASE_ASSERT(partial_write_iter_.isSome()); Pickle::BufferList::IterImpl& iter = partial_write_iter_.ref(); iter.Advance(m->Buffers(), bytes_written); if (iter.Done()) { AddIPCProfilerMarker(*m, other_pid_, MessageDirection::eSending, MessagePhase::TransferEnd); partial_write_iter_.reset(); OutputQueuePop(); // m has been destroyed, so clear the dangling reference. m = nullptr; } } if (output_queue_.IsEmpty()) return true; if (INVALID_HANDLE_VALUE == pipe_) return false; // Write to pipe... Message* m = output_queue_.FirstElement().get(); if (partial_write_iter_.isNothing()) { AddIPCProfilerMarker(*m, other_pid_, MessageDirection::eSending, MessagePhase::TransferStart); if (!TransferHandles(*m)) { return false; } Pickle::BufferList::IterImpl iter(m->Buffers()); partial_write_iter_.emplace(iter); } Pickle::BufferList::IterImpl& iter = partial_write_iter_.ref(); // Don't count this write for the purposes of late write checking. If this // message results in a legitimate file write, that will show up when it // happens. mozilla::PushSuspendLateWriteChecks(); BOOL ok = WriteFile(pipe_, iter.Data(), iter.RemainingInSegment(), &bytes_written, &output_state_.context.overlapped); mozilla::PopSuspendLateWriteChecks(); if (!ok) { DWORD err = GetLastError(); if (err == ERROR_IO_PENDING) { output_state_.is_pending = this; #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sent pending message @" << m << " on channel @" << this << " with type " << m->type(); #endif return true; } if (err != ERROR_BROKEN_PIPE) { CHROMIUM_LOG(ERROR) << "pipe error: " << err; } return false; } #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sent message @" << m << " on channel @" << this << " with type " << m->type(); #endif output_state_.is_pending = this; return true; } void Channel::ChannelImpl::OnIOCompleted(MessageLoopForIO::IOContext* context, DWORD bytes_transfered, DWORD error) { // NOTE: In case the pending reference was the last reference, release it // outside of the lock. RefPtr was_pending; IOThread().AssertOnCurrentThread(); chan_cap_.NoteOnIOThread(); bool ok; if (context == &input_state_.context) { was_pending = input_state_.is_pending.forget(); bool was_waiting_connect = waiting_connect_; if (was_waiting_connect) { mozilla::MutexAutoLock lock(SendMutex()); if (!ProcessConnection()) { return; } // We may have some messages queued up to send... if (!output_queue_.IsEmpty() && !output_state_.is_pending) { ProcessOutgoingMessages(NULL, 0, false); } if (input_state_.is_pending) { return; } // else, fall-through and look for incoming messages... } // we don't support recursion through OnMessageReceived yet! DCHECK(!processing_incoming_); processing_incoming_ = true; ok = ProcessIncomingMessages(context, bytes_transfered, was_pending && !was_waiting_connect); processing_incoming_ = false; } else { mozilla::MutexAutoLock lock(SendMutex()); DCHECK(context == &output_state_.context); was_pending = output_state_.is_pending.forget(); ok = ProcessOutgoingMessages(context, bytes_transfered, was_pending); } if (!ok && INVALID_HANDLE_VALUE != pipe_) { // We don't want to re-enter Close(). Close(); listener_->OnChannelError(); } } void Channel::ChannelImpl::StartAcceptingHandles(Mode mode) { IOThread().AssertOnCurrentThread(); mozilla::MutexAutoLock lock(SendMutex()); chan_cap_.NoteExclusiveAccess(); if (accept_handles_) { MOZ_ASSERT(privileged_ == (mode == MODE_SERVER)); return; } accept_handles_ = true; privileged_ = mode == MODE_SERVER; if (privileged_ && other_pid_ != -1 && other_process_ == INVALID_HANDLE_VALUE) { other_process_ = OpenProcess(PROCESS_DUP_HANDLE, false, other_pid_); if (!other_process_) { other_process_ = INVALID_HANDLE_VALUE; CHROMIUM_LOG(ERROR) << "Failed to acquire privileged handle to " << other_pid_ << ", cannot accept handles"; } } } static uint32_t HandleToUint32(HANDLE h) { // Cast through uintptr_t and then unsigned int to make the truncation to // 32 bits explicit. Handles are size of-pointer but are always 32-bit values. // https://docs.microsoft.com/en-ca/windows/win32/winprog64/interprocess-communication // says: 64-bit versions of Windows use 32-bit handles for interoperability. return static_cast(reinterpret_cast(h)); } static HANDLE Uint32ToHandle(uint32_t h) { return reinterpret_cast( static_cast(static_cast(h))); } bool Channel::ChannelImpl::AcceptHandles(Message& msg) { chan_cap_.NoteOnIOThread(); MOZ_ASSERT(msg.num_handles() == 0); uint32_t num_handles = msg.header()->num_handles; if (num_handles == 0) { return true; } if (!accept_handles_) { CHROMIUM_LOG(ERROR) << "invalid message: " << msg.name() << ". channel is not configured to accept handles"; return false; } // Read in the payload from the footer, truncating the message. nsTArray payload; payload.AppendElements(num_handles); if (!msg.ReadFooter(payload.Elements(), num_handles * sizeof(uint32_t), /* truncate */ true)) { CHROMIUM_LOG(ERROR) << "failed to read handle payload from message"; return false; } msg.header()->num_handles = 0; // Read in the handles themselves, transferring ownership as required. nsTArray handles(num_handles); for (uint32_t handleValue : payload) { HANDLE handle = Uint32ToHandle(handleValue); // If we're the privileged process, the remote process will have leaked // the sent handles in its local address space, and be relying on us to // duplicate them, otherwise the remote privileged side will have // transferred the handles to us already. if (privileged_) { if (other_process_ == INVALID_HANDLE_VALUE) { CHROMIUM_LOG(ERROR) << "other_process_ is invalid in AcceptHandles"; return false; } if (!::DuplicateHandle(other_process_, handle, GetCurrentProcess(), &handle, 0, FALSE, DUPLICATE_SAME_ACCESS | DUPLICATE_CLOSE_SOURCE)) { CHROMIUM_LOG(ERROR) << "DuplicateHandle failed for handle " << handle << " in AcceptHandles"; return false; } } // The handle is directly owned by this process now, and can be added to // our `handles` array. handles.AppendElement(mozilla::UniqueFileHandle(handle)); } // We're done with the handle footer, truncate the message at that point. msg.SetAttachedFileHandles(std::move(handles)); MOZ_ASSERT(msg.num_handles() == num_handles); return true; } bool Channel::ChannelImpl::TransferHandles(Message& msg) { chan_cap_.NoteSendMutex(); MOZ_ASSERT(msg.header()->num_handles == 0); uint32_t num_handles = msg.num_handles(); if (num_handles == 0) { return true; } if (!accept_handles_) { CHROMIUM_LOG(ERROR) << "cannot send message: " << msg.name() << ". channel is not configured to accept handles"; return false; } #ifdef DEBUG uint32_t handles_offset = msg.header()->payload_size; #endif nsTArray payload(num_handles); for (uint32_t i = 0; i < num_handles; ++i) { // Release ownership of the handle. It'll be cloned when the parent process // transfers it with DuplicateHandle either in this process or the remote // process. HANDLE handle = msg.attached_handles_[i].release(); // If we're the privileged process, transfer the HANDLE to our remote before // sending the message. Otherwise, the remote privileged process will // transfer the handle for us, so leak it. if (privileged_) { if (other_process_ == INVALID_HANDLE_VALUE) { CHROMIUM_LOG(ERROR) << "other_process_ is invalid in TransferHandles"; return false; } if (!::DuplicateHandle(GetCurrentProcess(), handle, other_process_, &handle, 0, FALSE, DUPLICATE_SAME_ACCESS | DUPLICATE_CLOSE_SOURCE)) { CHROMIUM_LOG(ERROR) << "DuplicateHandle failed for handle " << handle << " in TransferHandles"; return false; } } payload.AppendElement(HandleToUint32(handle)); } msg.attached_handles_.Clear(); msg.WriteFooter(payload.Elements(), payload.Length() * sizeof(uint32_t)); msg.header()->num_handles = num_handles; MOZ_ASSERT(msg.header()->payload_size == handles_offset + (sizeof(uint32_t) * num_handles), "Unexpected number of bytes written for handles footer?"); return true; } //------------------------------------------------------------------------------ // Channel's methods simply call through to ChannelImpl. Channel::Channel(const ChannelId& channel_id, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(channel_id, mode, listener)) { MOZ_COUNT_CTOR(IPC::Channel); } Channel::Channel(ChannelHandle pipe, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(std::move(pipe), mode, listener)) { MOZ_COUNT_CTOR(IPC::Channel); } Channel::~Channel() { MOZ_COUNT_DTOR(IPC::Channel); } bool Channel::Connect() { return channel_impl_->Connect(); } void Channel::Close() { channel_impl_->Close(); } void Channel::StartAcceptingHandles(Mode mode) { channel_impl_->StartAcceptingHandles(mode); } Channel::Listener* Channel::set_listener(Listener* listener) { return channel_impl_->set_listener(listener); } bool Channel::Send(mozilla::UniquePtr message) { return channel_impl_->Send(std::move(message)); } int32_t Channel::OtherPid() const { return channel_impl_->OtherPid(); } bool Channel::IsClosed() const { return channel_impl_->IsClosed(); } namespace { // Global atomic used to guarantee channel IDs are unique. mozilla::Atomic g_last_id; } // namespace // static Channel::ChannelId Channel::GenerateVerifiedChannelID() { // Windows pipes can be enumerated by low-privileged processes. So, we // append a strong random value after the \ character. This value is not // included in the pipe name, but sent as part of the client hello, to // prevent hijacking the pipe name to spoof the client. int secret; do { // Guarantee we get a non-zero value. secret = base::RandInt(0, std::numeric_limits::max()); } while (secret == 0); return StringPrintf(L"%d.%u.%d\\%d", base::GetCurrentProcId(), g_last_id++, base::RandInt(0, std::numeric_limits::max()), secret); } // static Channel::ChannelId Channel::ChannelIDForCurrentProcess() { return CommandLine::ForCurrentProcess()->GetSwitchValue( switches::kProcessChannelID); } // static bool Channel::CreateRawPipe(ChannelHandle* server, ChannelHandle* client) { std::wstring pipe_name = StringPrintf(L"\\\\.\\pipe\\gecko.%lu.%lu.%I64u", ::GetCurrentProcessId(), ::GetCurrentThreadId(), mozilla::RandomUint64OrDie()); const DWORD kOpenMode = PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED | FILE_FLAG_FIRST_PIPE_INSTANCE; const DWORD kPipeMode = PIPE_TYPE_BYTE | PIPE_READMODE_BYTE; *server = mozilla::UniqueFileHandle( ::CreateNamedPipeW(pipe_name.c_str(), kOpenMode, kPipeMode, 1, // Max instances. Channel::kReadBufferSize, // Output buffer size. Channel::kReadBufferSize, // Input buffer size. 5000, // Timeout in ms. nullptr)); // Default security descriptor. if (!server) { NS_WARNING( nsPrintfCString("CreateNamedPipeW Failed %lu", ::GetLastError()).get()); return false; } const DWORD kDesiredAccess = GENERIC_READ | GENERIC_WRITE; // The SECURITY_ANONYMOUS flag means that the server side cannot impersonate // the client, which is useful as both server & client may be unprivileged. const DWORD kFlags = SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS | FILE_FLAG_OVERLAPPED; *client = mozilla::UniqueFileHandle( ::CreateFileW(pipe_name.c_str(), kDesiredAccess, 0, nullptr, OPEN_EXISTING, kFlags, nullptr)); if (!client) { NS_WARNING( nsPrintfCString("CreateFileW Failed %lu", ::GetLastError()).get()); return false; } // Since a client has connected, ConnectNamedPipe() should return zero and // GetLastError() should return ERROR_PIPE_CONNECTED. if (::ConnectNamedPipe(server->get(), nullptr) || ::GetLastError() != ERROR_PIPE_CONNECTED) { NS_WARNING( nsPrintfCString("ConnectNamedPipe Failed %lu", ::GetLastError()).get()); return false; } return true; } } // namespace IPC