/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_RootingAPI_h #define js_RootingAPI_h #include "mozilla/Attributes.h" #include "mozilla/DebugOnly.h" #include "mozilla/EnumeratedArray.h" #include "mozilla/LinkedList.h" #include "mozilla/Maybe.h" #include #include #include "jspubtd.h" #include "js/ComparisonOperators.h" // JS::detail::DefineComparisonOps #include "js/GCAnnotations.h" #include "js/GCPolicyAPI.h" #include "js/GCTypeMacros.h" // JS_FOR_EACH_PUBLIC_{,TAGGED_}GC_POINTER_TYPE #include "js/HashTable.h" #include "js/HeapAPI.h" // StackKindCount #include "js/ProfilingStack.h" #include "js/Realm.h" #include "js/Stack.h" // JS::NativeStackLimit #include "js/TypeDecls.h" #include "js/UniquePtr.h" /* * [SMDOC] Stack Rooting * * Moving GC Stack Rooting * * A moving GC may change the physical location of GC allocated things, even * when they are rooted, updating all pointers to the thing to refer to its new * location. The GC must therefore know about all live pointers to a thing, * not just one of them, in order to behave correctly. * * The |Rooted| and |Handle| classes below are used to root stack locations * whose value may be held live across a call that can trigger GC. For a * code fragment such as: * * JSObject* obj = NewObject(cx); * DoSomething(cx); * ... = obj->lastProperty(); * * If |DoSomething()| can trigger a GC, the stack location of |obj| must be * rooted to ensure that the GC does not move the JSObject referred to by * |obj| without updating |obj|'s location itself. This rooting must happen * regardless of whether there are other roots which ensure that the object * itself will not be collected. * * If |DoSomething()| cannot trigger a GC, and the same holds for all other * calls made between |obj|'s definitions and its last uses, then no rooting * is required. * * SpiderMonkey can trigger a GC at almost any time and in ways that are not * always clear. For example, the following innocuous-looking actions can * cause a GC: allocation of any new GC thing; JSObject::hasProperty; * JS_ReportError and friends; and ToNumber, among many others. The following * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_, * rt->malloc_, and friends and JS_ReportOutOfMemory. * * The following family of three classes will exactly root a stack location. * Incorrect usage of these classes will result in a compile error in almost * all cases. Therefore, it is very hard to be incorrectly rooted if you use * these classes exclusively. These classes are all templated on the type T of * the value being rooted. * * - Rooted declares a variable of type T, whose value is always rooted. * Rooted may be automatically coerced to a Handle, below. Rooted * should be used whenever a local variable's value may be held live across a * call which can trigger a GC. * * - Handle is a const reference to a Rooted. Functions which take GC * things or values as arguments and need to root those arguments should * generally use handles for those arguments and avoid any explicit rooting. * This has two benefits. First, when several such functions call each other * then redundant rooting of multiple copies of the GC thing can be avoided. * Second, if the caller does not pass a rooted value a compile error will be * generated, which is quicker and easier to fix than when relying on a * separate rooting analysis. * * - MutableHandle is a non-const reference to Rooted. It is used in the * same way as Handle and includes a |set(const T& v)| method to allow * updating the value of the referenced Rooted. A MutableHandle can be * created with an implicit cast from a Rooted*. * * In some cases the small performance overhead of exact rooting (measured to * be a few nanoseconds on desktop) is too much. In these cases, try the * following: * * - Move all Rooted above inner loops: this allows you to re-use the root * on each iteration of the loop. * * - Pass Handle through your hot call stack to avoid re-rooting costs at * every invocation. * * The following diagram explains the list of supported, implicit type * conversions between classes of this family: * * Rooted ----> Handle * | ^ * | | * | | * +---> MutableHandle * (via &) * * All of these types have an implicit conversion to raw pointers. */ namespace js { // The defaulted Enable parameter for the following two types is for restricting // specializations with std::enable_if. template struct BarrierMethods {}; template class WrappedPtrOperations {}; template class MutableWrappedPtrOperations : public WrappedPtrOperations {}; template class RootedOperations : public MutableWrappedPtrOperations {}; template class HandleOperations : public WrappedPtrOperations {}; template class MutableHandleOperations : public MutableWrappedPtrOperations { }; template class HeapOperations : public MutableWrappedPtrOperations {}; // Cannot use FOR_EACH_HEAP_ABLE_GC_POINTER_TYPE, as this would import too many // macros into scope // Add a 2nd template parameter to allow conditionally enabling partial // specializations via std::enable_if. template struct IsHeapConstructibleType : public std::false_type {}; #define JS_DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE(T) \ template <> \ struct IsHeapConstructibleType : public std::true_type {}; JS_FOR_EACH_PUBLIC_GC_POINTER_TYPE(JS_DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE) JS_FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(JS_DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE) // Note that JS_DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE is left defined, to allow // declaring other types (eg from js/public/experimental/TypedData.h) to // be used with Heap<>. namespace gc { struct Cell; } /* namespace gc */ // Important: Return a reference so passing a Rooted, etc. to // something that takes a |const T&| is not a GC hazard. #define DECLARE_POINTER_CONSTREF_OPS(T) \ operator const T&() const { return get(); } \ const T& operator->() const { return get(); } // Assignment operators on a base class are hidden by the implicitly defined // operator= on the derived class. Thus, define the operator= directly on the // class as we would need to manually pass it through anyway. #define DECLARE_POINTER_ASSIGN_OPS(Wrapper, T) \ Wrapper& operator=(const T& p) { \ set(p); \ return *this; \ } \ Wrapper& operator=(T&& p) { \ set(std::move(p)); \ return *this; \ } \ Wrapper& operator=(const Wrapper& other) { \ set(other.get()); \ return *this; \ } #define DELETE_ASSIGNMENT_OPS(Wrapper, T) \ template \ Wrapper& operator=(S) = delete; \ Wrapper& operator=(const Wrapper&) = delete; #define DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr) \ const T* address() const { return &(ptr); } \ const T& get() const { return (ptr); } #define DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr) \ T* address() { return &(ptr); } \ T& get() { return (ptr); } } /* namespace js */ namespace JS { JS_PUBLIC_API void HeapObjectPostWriteBarrier(JSObject** objp, JSObject* prev, JSObject* next); JS_PUBLIC_API void HeapStringPostWriteBarrier(JSString** objp, JSString* prev, JSString* next); JS_PUBLIC_API void HeapBigIntPostWriteBarrier(JS::BigInt** bip, JS::BigInt* prev, JS::BigInt* next); JS_PUBLIC_API void HeapObjectWriteBarriers(JSObject** objp, JSObject* prev, JSObject* next); JS_PUBLIC_API void HeapStringWriteBarriers(JSString** objp, JSString* prev, JSString* next); JS_PUBLIC_API void HeapBigIntWriteBarriers(JS::BigInt** bip, JS::BigInt* prev, JS::BigInt* next); JS_PUBLIC_API void HeapScriptWriteBarriers(JSScript** objp, JSScript* prev, JSScript* next); /** * SafelyInitialized::create() creates a safely-initialized |T|, suitable for * use as a default value in situations requiring a safe but arbitrary |T| * value. Implemented as a static method of a struct to allow partial * specialization for subclasses via the Enable template parameter. */ template struct SafelyInitialized { static T create() { // This function wants to presume that |T()| -- which value-initializes a // |T| per C++11 [expr.type.conv]p2 -- will produce a safely-initialized, // safely-usable T that it can return. #if defined(XP_WIN) || defined(XP_MACOSX) || \ (defined(XP_UNIX) && !defined(__clang__)) // That presumption holds for pointers, where value initialization produces // a null pointer. constexpr bool IsPointer = std::is_pointer_v; // For classes and unions we *assume* that if |T|'s default constructor is // non-trivial it'll initialize correctly. (This is unideal, but C++ // doesn't offer a type trait indicating whether a class's constructor is // user-defined, which better approximates our desired semantics.) constexpr bool IsNonTriviallyDefaultConstructibleClassOrUnion = (std::is_class_v || std::is_union_v)&&!std::is_trivially_default_constructible_v; static_assert(IsPointer || IsNonTriviallyDefaultConstructibleClassOrUnion, "T() must evaluate to a safely-initialized T"); #endif return T(); } }; #ifdef JS_DEBUG /** * For generational GC, assert that an object is in the tenured generation as * opposed to being in the nursery. */ extern JS_PUBLIC_API void AssertGCThingMustBeTenured(JSObject* obj); extern JS_PUBLIC_API void AssertGCThingIsNotNurseryAllocable( js::gc::Cell* cell); #else inline void AssertGCThingMustBeTenured(JSObject* obj) {} inline void AssertGCThingIsNotNurseryAllocable(js::gc::Cell* cell) {} #endif /** * The Heap class is a heap-stored reference to a JS GC thing for use outside * the JS engine. All members of heap classes that refer to GC things should use * Heap (or possibly TenuredHeap, described below). * * Heap is an abstraction that hides some of the complexity required to * maintain GC invariants for the contained reference. It uses operator * overloading to provide a normal pointer interface, but adds barriers to * notify the GC of changes. * * Heap implements the following barriers: * * - Post-write barrier (necessary for generational GC). * - Read barrier (necessary for incremental GC and cycle collector * integration). * * Note Heap does not have a pre-write barrier as used internally in the * engine. The read barrier is used to mark anything read from a Heap during * an incremental GC. * * Heap may be moved or destroyed outside of GC finalization and hence may be * used in dynamic storage such as a Vector. * * Heap instances must be traced when their containing object is traced to * keep the pointed-to GC thing alive. * * Heap objects should only be used on the heap. GC references stored on the * C/C++ stack must use Rooted/Handle/MutableHandle instead. * * Type T must be a public GC pointer type. */ template class MOZ_NON_MEMMOVABLE Heap : public js::HeapOperations> { // Please note: this can actually also be used by nsXBLMaybeCompiled, for // legacy reasons. static_assert(js::IsHeapConstructibleType::value, "Type T must be a public GC pointer type"); public: using ElementType = T; Heap() : ptr(SafelyInitialized::create()) { // No barriers are required for initialization to the default value. static_assert(sizeof(T) == sizeof(Heap), "Heap must be binary compatible with T."); } explicit Heap(const T& p) : ptr(p) { postWriteBarrier(SafelyInitialized::create(), ptr); } /* * For Heap, move semantics are equivalent to copy semantics. However, we want * the copy constructor to be explicit, and an explicit move constructor * breaks common usage of move semantics, so we need to define both, even * though they are equivalent. */ explicit Heap(const Heap& other) : ptr(other.getWithoutExpose()) { postWriteBarrier(SafelyInitialized::create(), ptr); } Heap(Heap&& other) : ptr(other.getWithoutExpose()) { postWriteBarrier(SafelyInitialized::create(), ptr); } Heap& operator=(Heap&& other) { set(other.getWithoutExpose()); other.set(SafelyInitialized::create()); return *this; } ~Heap() { postWriteBarrier(ptr, SafelyInitialized::create()); } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(Heap, T); const T* address() const { return &ptr; } void exposeToActiveJS() const { js::BarrierMethods::exposeToJS(ptr); } const T& get() const { exposeToActiveJS(); return ptr; } const T& getWithoutExpose() const { js::BarrierMethods::readBarrier(ptr); return ptr; } const T& unbarrieredGet() const { return ptr; } void set(const T& newPtr) { T tmp = ptr; ptr = newPtr; postWriteBarrier(tmp, ptr); } T* unsafeGet() { return &ptr; } void unbarrieredSet(const T& newPtr) { ptr = newPtr; } explicit operator bool() const { return bool(js::BarrierMethods::asGCThingOrNull(ptr)); } explicit operator bool() { return bool(js::BarrierMethods::asGCThingOrNull(ptr)); } private: void postWriteBarrier(const T& prev, const T& next) { js::BarrierMethods::postWriteBarrier(&ptr, prev, next); } T ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Heap& v) { return v.unbarrieredGet(); } }; } // namespace detail static MOZ_ALWAYS_INLINE bool ObjectIsTenured(JSObject* obj) { return !js::gc::IsInsideNursery(reinterpret_cast(obj)); } static MOZ_ALWAYS_INLINE bool ObjectIsTenured(const Heap& obj) { return ObjectIsTenured(obj.unbarrieredGet()); } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray(JSObject* obj) { auto cell = reinterpret_cast(obj); if (js::gc::IsInsideNursery(cell)) { return false; } auto tenuredCell = reinterpret_cast(cell); return js::gc::detail::CellIsMarkedGrayIfKnown(tenuredCell); } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray( const JS::Heap& obj) { return ObjectIsMarkedGray(obj.unbarrieredGet()); } // The following *IsNotGray functions take account of the eventual // gray marking state at the end of any ongoing incremental GC by // delaying the checks if necessary. #ifdef DEBUG inline void AssertCellIsNotGray(const js::gc::Cell* maybeCell) { if (maybeCell) { js::gc::detail::AssertCellIsNotGray(maybeCell); } } inline void AssertObjectIsNotGray(JSObject* maybeObj) { AssertCellIsNotGray(reinterpret_cast(maybeObj)); } inline void AssertObjectIsNotGray(const JS::Heap& obj) { AssertObjectIsNotGray(obj.unbarrieredGet()); } #else inline void AssertCellIsNotGray(js::gc::Cell* maybeCell) {} inline void AssertObjectIsNotGray(JSObject* maybeObj) {} inline void AssertObjectIsNotGray(const JS::Heap& obj) {} #endif /** * The TenuredHeap class is similar to the Heap class above in that it * encapsulates the GC concerns of an on-heap reference to a JS object. However, * it has two important differences: * * 1) Pointers which are statically known to only reference "tenured" objects * can avoid the extra overhead of SpiderMonkey's write barriers. * * 2) Objects in the "tenured" heap have stronger alignment restrictions than * those in the "nursery", so it is possible to store flags in the lower * bits of pointers known to be tenured. TenuredHeap wraps a normal tagged * pointer with a nice API for accessing the flag bits and adds various * assertions to ensure that it is not mis-used. * * GC things are said to be "tenured" when they are located in the long-lived * heap: e.g. they have gained tenure as an object by surviving past at least * one GC. For performance, SpiderMonkey allocates some things which are known * to normally be long lived directly into the tenured generation; for example, * global objects. Additionally, SpiderMonkey does not visit individual objects * when deleting non-tenured objects, so object with finalizers are also always * tenured; for instance, this includes most DOM objects. * * The considerations to keep in mind when using a TenuredHeap vs a normal * Heap are: * * - It is invalid for a TenuredHeap to refer to a non-tenured thing. * - It is however valid for a Heap to refer to a tenured thing. * - It is not possible to store flag bits in a Heap. */ template class TenuredHeap : public js::HeapOperations> { public: using ElementType = T; TenuredHeap() : bits(0) { static_assert(sizeof(T) == sizeof(TenuredHeap), "TenuredHeap must be binary compatible with T."); } explicit TenuredHeap(T p) : bits(0) { setPtr(p); } explicit TenuredHeap(const TenuredHeap& p) : bits(0) { setPtr(p.getPtr()); } void setPtr(T newPtr) { MOZ_ASSERT((reinterpret_cast(newPtr) & flagsMask) == 0); MOZ_ASSERT(js::gc::IsCellPointerValidOrNull(newPtr)); if (newPtr) { AssertGCThingMustBeTenured(newPtr); } bits = (bits & flagsMask) | reinterpret_cast(newPtr); } void setFlags(uintptr_t flagsToSet) { MOZ_ASSERT((flagsToSet & ~flagsMask) == 0); bits |= flagsToSet; } void unsetFlags(uintptr_t flagsToUnset) { MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0); bits &= ~flagsToUnset; } bool hasFlag(uintptr_t flag) const { MOZ_ASSERT((flag & ~flagsMask) == 0); return (bits & flag) != 0; } T unbarrieredGetPtr() const { return reinterpret_cast(bits & ~flagsMask); } uintptr_t getFlags() const { return bits & flagsMask; } void exposeToActiveJS() const { js::BarrierMethods::exposeToJS(unbarrieredGetPtr()); } T getPtr() const { exposeToActiveJS(); return unbarrieredGetPtr(); } operator T() const { return getPtr(); } T operator->() const { return getPtr(); } explicit operator bool() const { return bool(js::BarrierMethods::asGCThingOrNull(unbarrieredGetPtr())); } explicit operator bool() { return bool(js::BarrierMethods::asGCThingOrNull(unbarrieredGetPtr())); } TenuredHeap& operator=(T p) { setPtr(p); return *this; } TenuredHeap& operator=(const TenuredHeap& other) { bits = other.bits; return *this; } private: enum { maskBits = 3, flagsMask = (1 << maskBits) - 1, }; uintptr_t bits; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T get(const TenuredHeap& v) { return v.unbarrieredGetPtr(); } }; } // namespace detail // std::swap uses a stack temporary, which prevents classes like Heap // from being declared MOZ_HEAP_CLASS. template void swap(TenuredHeap& aX, TenuredHeap& aY) { T tmp = aX; aX = aY; aY = tmp; } template void swap(Heap& aX, Heap& aY) { T tmp = aX; aX = aY; aY = tmp; } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray( const JS::TenuredHeap& obj) { return ObjectIsMarkedGray(obj.unbarrieredGetPtr()); } template class MutableHandle; template class Rooted; template class PersistentRooted; /** * Reference to a T that has been rooted elsewhere. This is most useful * as a parameter type, which guarantees that the T lvalue is properly * rooted. See "Move GC Stack Rooting" above. * * If you want to add additional methods to Handle for a specific * specialization, define a HandleOperations specialization containing them. */ template class MOZ_NONHEAP_CLASS Handle : public js::HandleOperations> { friend class MutableHandle; public: using ElementType = T; Handle(const Handle&) = default; /* Creates a handle from a handle of a type convertible to T. */ template MOZ_IMPLICIT Handle( Handle handle, std::enable_if_t, int> dummy = 0) { static_assert(sizeof(Handle) == sizeof(T*), "Handle must be binary compatible with T*."); ptr = reinterpret_cast(handle.address()); } MOZ_IMPLICIT Handle(decltype(nullptr)) { static_assert(std::is_pointer_v, "nullptr_t overload not valid for non-pointer types"); static void* const ConstNullValue = nullptr; ptr = reinterpret_cast(&ConstNullValue); } MOZ_IMPLICIT Handle(MutableHandle handle) { ptr = handle.address(); } /* * Take care when calling this method! * * This creates a Handle from the raw location of a T. * * It should be called only if the following conditions hold: * * 1) the location of the T is guaranteed to be marked (for some reason * other than being a Rooted), e.g., if it is guaranteed to be reachable * from an implicit root. * * 2) the contents of the location are immutable, or at least cannot change * for the lifetime of the handle, as its users may not expect its value * to change underneath them. */ static constexpr Handle fromMarkedLocation(const T* p) { return Handle(p, DeliberatelyChoosingThisOverload, ImUsingThisOnlyInFromFromMarkedLocation); } /* * Construct a handle from an explicitly rooted location. This is the * normal way to create a handle, and normally happens implicitly. */ template inline MOZ_IMPLICIT Handle( const Rooted& root, std::enable_if_t, int> dummy = 0); template inline MOZ_IMPLICIT Handle( const PersistentRooted& root, std::enable_if_t, int> dummy = 0); /* Construct a read only handle from a mutable handle. */ template inline MOZ_IMPLICIT Handle( MutableHandle& root, std::enable_if_t, int> dummy = 0); DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr); private: Handle() = default; DELETE_ASSIGNMENT_OPS(Handle, T); enum Disambiguator { DeliberatelyChoosingThisOverload = 42 }; enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 }; constexpr Handle(const T* p, Disambiguator, CallerIdentity) : ptr(p) {} const T* ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Handle& v) { return v.get(); } }; } // namespace detail /** * Similar to a handle, but the underlying storage can be changed. This is * useful for outparams. * * If you want to add additional methods to MutableHandle for a specific * specialization, define a MutableHandleOperations specialization containing * them. */ template class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleOperations> { public: using ElementType = T; inline MOZ_IMPLICIT MutableHandle(Rooted* root); inline MOZ_IMPLICIT MutableHandle(PersistentRooted* root); private: // Disallow nullptr for overloading purposes. MutableHandle(decltype(nullptr)) = delete; public: MutableHandle(const MutableHandle&) = default; void set(const T& v) { *ptr = v; MOZ_ASSERT(GCPolicy::isValid(*ptr)); } void set(T&& v) { *ptr = std::move(v); MOZ_ASSERT(GCPolicy::isValid(*ptr)); } /* * This may be called only if the location of the T is guaranteed * to be marked (for some reason other than being a Rooted), * e.g., if it is guaranteed to be reachable from an implicit root. * * Create a MutableHandle from a raw location of a T. */ static MutableHandle fromMarkedLocation(T* p) { MutableHandle h; h.ptr = p; return h; } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr); DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr); private: MutableHandle() = default; DELETE_ASSIGNMENT_OPS(MutableHandle, T); T* ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const MutableHandle& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { namespace detail { // Default implementations for barrier methods on GC thing pointers. template struct PtrBarrierMethodsBase { static T* initial() { return nullptr; } static gc::Cell* asGCThingOrNull(T* v) { if (!v) { return nullptr; } MOZ_ASSERT(uintptr_t(v) > 32); return reinterpret_cast(v); } static void exposeToJS(T* t) { if (t) { js::gc::ExposeGCThingToActiveJS(JS::GCCellPtr(t)); } } static void readBarrier(T* t) { if (t) { js::gc::IncrementalReadBarrier(JS::GCCellPtr(t)); } } }; } // namespace detail template struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(T** vp, T* prev, T* next) { if (next) { JS::AssertGCThingIsNotNurseryAllocable( reinterpret_cast(next)); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSObject** vp, JSObject* prev, JSObject* next) { JS::HeapObjectPostWriteBarrier(vp, prev, next); } static void exposeToJS(JSObject* obj) { if (obj) { JS::ExposeObjectToActiveJS(obj); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSFunction** vp, JSFunction* prev, JSFunction* next) { JS::HeapObjectPostWriteBarrier(reinterpret_cast(vp), reinterpret_cast(prev), reinterpret_cast(next)); } static void exposeToJS(JSFunction* fun) { if (fun) { JS::ExposeObjectToActiveJS(reinterpret_cast(fun)); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSString** vp, JSString* prev, JSString* next) { JS::HeapStringPostWriteBarrier(vp, prev, next); } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JS::BigInt** vp, JS::BigInt* prev, JS::BigInt* next) { JS::HeapBigIntPostWriteBarrier(vp, prev, next); } }; // Provide hash codes for Cell kinds that may be relocated and, thus, not have // a stable address to use as the base for a hash code. Instead of the address, // this hasher uses Cell::getUniqueId to provide exact matches and as a base // for generating hash codes. // // Note: this hasher, like PointerHasher can "hash" a nullptr. While a nullptr // would not likely be a useful key, there are some cases where being able to // hash a nullptr is useful, either on purpose or because of bugs: // (1) existence checks where the key may happen to be null and (2) some // aggregate Lookup kinds embed a JSObject* that is frequently null and do not // null test before dispatching to the hasher. template struct JS_PUBLIC_API StableCellHasher { using Key = T; using Lookup = T; static bool maybeGetHash(const Lookup& l, mozilla::HashNumber* hashOut); static bool ensureHash(const Lookup& l, HashNumber* hashOut); static HashNumber hash(const Lookup& l); static bool match(const Key& k, const Lookup& l); // The rekey hash policy method is not provided since you dont't need to // rekey any more when using this policy. }; template struct JS_PUBLIC_API StableCellHasher> { using Key = JS::Heap; using Lookup = T; static bool maybeGetHash(const Lookup& l, HashNumber* hashOut) { return StableCellHasher::maybeGetHash(l, hashOut); } static bool ensureHash(const Lookup& l, HashNumber* hashOut) { return StableCellHasher::ensureHash(l, hashOut); } static HashNumber hash(const Lookup& l) { return StableCellHasher::hash(l); } static bool match(const Key& k, const Lookup& l) { return StableCellHasher::match(k.unbarrieredGet(), l); } }; } // namespace js namespace mozilla { template struct FallibleHashMethods> { template static bool maybeGetHash(Lookup&& l, HashNumber* hashOut) { return js::StableCellHasher::maybeGetHash(std::forward(l), hashOut); } template static bool ensureHash(Lookup&& l, HashNumber* hashOut) { return js::StableCellHasher::ensureHash(std::forward(l), hashOut); } }; } // namespace mozilla namespace js { struct VirtualTraceable { virtual ~VirtualTraceable() = default; virtual void trace(JSTracer* trc, const char* name) = 0; }; class StackRootedBase { public: StackRootedBase* previous() { return prev; } protected: StackRootedBase** stack; StackRootedBase* prev; template auto* derived() { return static_cast*>(this); } }; class PersistentRootedBase : protected mozilla::LinkedListElement { protected: friend class mozilla::LinkedList; friend class mozilla::LinkedListElement; template auto* derived() { return static_cast*>(this); } }; struct StackRootedTraceableBase : public StackRootedBase, public VirtualTraceable {}; class PersistentRootedTraceableBase : public PersistentRootedBase, public VirtualTraceable {}; template class TypedRootedGCThingBase : public Base { public: void trace(JSTracer* trc, const char* name); }; template class TypedRootedTraceableBase : public Base { public: void trace(JSTracer* trc, const char* name) override { auto* self = this->template derived(); JS::GCPolicy::trace(trc, self->address(), name); } }; template struct RootedTraceableTraits { using StackBase = TypedRootedTraceableBase; using PersistentBase = TypedRootedTraceableBase; }; template struct RootedGCThingTraits { using StackBase = TypedRootedGCThingBase; using PersistentBase = TypedRootedGCThingBase; }; } /* namespace js */ namespace JS { class JS_PUBLIC_API AutoGCRooter; enum class AutoGCRooterKind : uint8_t { WrapperVector, /* js::AutoWrapperVector */ Wrapper, /* js::AutoWrapperRooter */ Custom, /* js::CustomAutoRooter */ Limit }; using RootedListHeads = mozilla::EnumeratedArray; using AutoRooterListHeads = mozilla::EnumeratedArray; // Superclass of JSContext which can be used for rooting data in use by the // current thread but that does not provide all the functions of a JSContext. class RootingContext { // Stack GC roots for Rooted GC heap pointers. RootedListHeads stackRoots_; template friend class Rooted; // Stack GC roots for AutoFooRooter classes. AutoRooterListHeads autoGCRooters_; friend class AutoGCRooter; // Gecko profiling metadata. // This isn't really rooting related. It's only here because we want // GetContextProfilingStackIfEnabled to be inlineable into non-JS code, and // we didn't want to add another superclass of JSContext just for this. js::GeckoProfilerThread geckoProfiler_; public: RootingContext(); void traceStackRoots(JSTracer* trc); /* Implemented in gc/RootMarking.cpp. */ void traceAllGCRooters(JSTracer* trc); void traceWrapperGCRooters(JSTracer* trc); static void traceGCRooterList(JSTracer* trc, AutoGCRooter* head); void checkNoGCRooters(); js::GeckoProfilerThread& geckoProfiler() { return geckoProfiler_; } protected: // The remaining members in this class should only be accessed through // JSContext pointers. They are unrelated to rooting and are in place so // that inlined API functions can directly access the data. /* The current realm. */ Realm* realm_; /* The current zone. */ Zone* zone_; public: /* Limit pointer for checking native stack consumption. */ JS::NativeStackLimit nativeStackLimit[StackKindCount]; #ifdef __wasi__ // For WASI we can't catch call-stack overflows with stack-pointer checks, so // we count recursion depth with RAII based AutoCheckRecursionLimit. uint32_t wasiRecursionDepth = 0u; static constexpr uint32_t wasiRecursionDepthLimit = 350u; #endif // __wasi__ static const RootingContext* get(const JSContext* cx) { return reinterpret_cast(cx); } static RootingContext* get(JSContext* cx) { return reinterpret_cast(cx); } friend JS::Realm* js::GetContextRealm(const JSContext* cx); friend JS::Zone* js::GetContextZone(const JSContext* cx); }; class JS_PUBLIC_API AutoGCRooter { public: using Kind = AutoGCRooterKind; AutoGCRooter(JSContext* cx, Kind kind) : AutoGCRooter(JS::RootingContext::get(cx), kind) {} AutoGCRooter(RootingContext* cx, Kind kind) : down(cx->autoGCRooters_[kind]), stackTop(&cx->autoGCRooters_[kind]), kind_(kind) { MOZ_ASSERT(this != *stackTop); *stackTop = this; } ~AutoGCRooter() { MOZ_ASSERT(this == *stackTop); *stackTop = down; } void trace(JSTracer* trc); private: friend class RootingContext; AutoGCRooter* const down; AutoGCRooter** const stackTop; /* * Discriminates actual subclass of this being used. The meaning is * indicated by the corresponding value in the Kind enum. */ Kind kind_; /* No copy or assignment semantics. */ AutoGCRooter(AutoGCRooter& ida) = delete; void operator=(AutoGCRooter& ida) = delete; } JS_HAZ_ROOTED_BASE; /** * Custom rooting behavior for internal and external clients. * * Deprecated. Where possible, use Rooted<> instead. */ class MOZ_RAII JS_PUBLIC_API CustomAutoRooter : private AutoGCRooter { public: template explicit CustomAutoRooter(const CX& cx) : AutoGCRooter(cx, AutoGCRooter::Kind::Custom) {} friend void AutoGCRooter::trace(JSTracer* trc); protected: virtual ~CustomAutoRooter() = default; /** Supplied by derived class to trace roots. */ virtual void trace(JSTracer* trc) = 0; }; namespace detail { template constexpr bool IsTraceable_v = MapTypeToRootKind::kind == JS::RootKind::Traceable; template using RootedTraits = std::conditional_t, js::RootedTraceableTraits, js::RootedGCThingTraits>; } /* namespace detail */ /** * Local variable of type T whose value is always rooted. This is typically * used for local variables, or for non-rooted values being passed to a * function that requires a handle, e.g. Foo(Root(cx, x)). * * If you want to add additional methods to Rooted for a specific * specialization, define a RootedOperations specialization containing them. */ template class MOZ_RAII Rooted : public detail::RootedTraits::StackBase, public js::RootedOperations> { inline void registerWithRootLists(RootedListHeads& roots) { this->stack = &roots[JS::MapTypeToRootKind::kind]; this->prev = *this->stack; *this->stack = this; } inline RootedListHeads& rootLists(RootingContext* cx) { return cx->stackRoots_; } inline RootedListHeads& rootLists(JSContext* cx) { return rootLists(RootingContext::get(cx)); } public: using ElementType = T; // Construct an empty Rooted holding a safely initialized but empty T. // Requires T to have a copy constructor in order to copy the safely // initialized value. // // Note that for SFINAE to reject this method, the 2nd template parameter must // depend on RootingContext somehow even though we really only care about T. template , RootingContext>> explicit Rooted(const RootingContext& cx) : ptr(SafelyInitialized::create()) { registerWithRootLists(rootLists(cx)); } // Provide an initial value. Requires T to be constructible from the given // argument. template Rooted(const RootingContext& cx, S&& initial) : ptr(std::forward(initial)) { MOZ_ASSERT(GCPolicy::isValid(ptr)); registerWithRootLists(rootLists(cx)); } // (Traceables only) Construct the contained value from the given arguments. // Constructs in-place, so T does not need to be copyable or movable. // // Note that a copyable Traceable passed only a RootingContext will // choose the above SafelyInitialized constructor, because otherwise // identical functions with parameter packs are considered less specialized. // // The SFINAE type must again depend on an inferred template parameter. template < typename RootingContext, typename... CtorArgs, typename = std::enable_if_t, RootingContext>> explicit Rooted(const RootingContext& cx, CtorArgs... args) : ptr(std::forward(args)...) { MOZ_ASSERT(GCPolicy::isValid(ptr)); registerWithRootLists(rootLists(cx)); } ~Rooted() { MOZ_ASSERT(*this->stack == this); *this->stack = this->prev; } /* * This method is public for Rooted so that Codegen.py can use a Rooted * interchangeably with a MutableHandleValue. */ void set(const T& value) { ptr = value; MOZ_ASSERT(GCPolicy::isValid(ptr)); } void set(T&& value) { ptr = std::move(value); MOZ_ASSERT(GCPolicy::isValid(ptr)); } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(Rooted, T); T& get() { return ptr; } const T& get() const { return ptr; } T* address() { return &ptr; } const T* address() const { return &ptr; } private: T ptr; Rooted(const Rooted&) = delete; } JS_HAZ_ROOTED; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Rooted& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { /* * Inlinable accessors for JSContext. * * - These must not be available on the more restricted superclasses of * JSContext, so we can't simply define them on RootingContext. * * - They're perfectly ordinary JSContext functionality, so ought to be * usable without resorting to jsfriendapi.h, and when JSContext is an * incomplete type. */ inline JS::Realm* GetContextRealm(const JSContext* cx) { return JS::RootingContext::get(cx)->realm_; } inline JS::Compartment* GetContextCompartment(const JSContext* cx) { if (JS::Realm* realm = GetContextRealm(cx)) { return GetCompartmentForRealm(realm); } return nullptr; } inline JS::Zone* GetContextZone(const JSContext* cx) { return JS::RootingContext::get(cx)->zone_; } inline ProfilingStack* GetContextProfilingStackIfEnabled(JSContext* cx) { return JS::RootingContext::get(cx) ->geckoProfiler() .getProfilingStackIfEnabled(); } /** * Augment the generic Rooted interface when T = JSObject* with * class-querying and downcasting operations. * * Given a Rooted obj, one can view * Handle h = obj.as(); * as an optimization of * Rooted rooted(cx, &obj->as()); * Handle h = rooted; */ template class RootedOperations : public MutableWrappedPtrOperations { public: template JS::Handle as() const; }; /** * Augment the generic Handle interface when T = JSObject* with * downcasting operations. * * Given a Handle obj, one can view * Handle h = obj.as(); * as an optimization of * Rooted rooted(cx, &obj->as()); * Handle h = rooted; */ template class HandleOperations : public WrappedPtrOperations { public: template JS::Handle as() const; }; } /* namespace js */ namespace JS { template template inline Handle::Handle( const Rooted& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle( const PersistentRooted& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle( MutableHandle& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template inline MutableHandle::MutableHandle(Rooted* root) { static_assert(sizeof(MutableHandle) == sizeof(T*), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } template inline MutableHandle::MutableHandle(PersistentRooted* root) { static_assert(sizeof(MutableHandle) == sizeof(T*), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } JS_PUBLIC_API void AddPersistentRoot(RootingContext* cx, RootKind kind, js::PersistentRootedBase* root); JS_PUBLIC_API void AddPersistentRoot(JSRuntime* rt, RootKind kind, js::PersistentRootedBase* root); /** * A copyable, assignable global GC root type with arbitrary lifetime, an * infallible constructor, and automatic unrooting on destruction. * * These roots can be used in heap-allocated data structures, so they are not * associated with any particular JSContext or stack. They are registered with * the JSRuntime itself, without locking. Initialization may take place on * construction, or in two phases if the no-argument constructor is called * followed by init(). * * Note that you must not use an PersistentRooted in an object owned by a JS * object: * * Whenever one object whose lifetime is decided by the GC refers to another * such object, that edge must be traced only if the owning JS object is traced. * This applies not only to JS objects (which obviously are managed by the GC) * but also to C++ objects owned by JS objects. * * If you put a PersistentRooted in such a C++ object, that is almost certainly * a leak. When a GC begins, the referent of the PersistentRooted is treated as * live, unconditionally (because a PersistentRooted is a *root*), even if the * JS object that owns it is unreachable. If there is any path from that * referent back to the JS object, then the C++ object containing the * PersistentRooted will not be destructed, and the whole blob of objects will * not be freed, even if there are no references to them from the outside. * * In the context of Firefox, this is a severe restriction: almost everything in * Firefox is owned by some JS object or another, so using PersistentRooted in * such objects would introduce leaks. For these kinds of edges, Heap or * TenuredHeap would be better types. It's up to the implementor of the type * containing Heap or TenuredHeap members to make sure their referents get * marked when the object itself is marked. */ template class PersistentRooted : public detail::RootedTraits::PersistentBase, public js::RootedOperations> { void registerWithRootLists(RootingContext* cx) { MOZ_ASSERT(!initialized()); JS::RootKind kind = JS::MapTypeToRootKind::kind; AddPersistentRoot(cx, kind, this); } void registerWithRootLists(JSRuntime* rt) { MOZ_ASSERT(!initialized()); JS::RootKind kind = JS::MapTypeToRootKind::kind; AddPersistentRoot(rt, kind, this); } // Used when JSContext type is incomplete and so it is not known to inherit // from RootingContext. void registerWithRootLists(JSContext* cx) { registerWithRootLists(RootingContext::get(cx)); } public: using ElementType = T; PersistentRooted() : ptr(SafelyInitialized::create()) {} template < typename RootHolder, typename = std::enable_if_t, RootHolder>> explicit PersistentRooted(const RootHolder& cx) : ptr(SafelyInitialized::create()) { registerWithRootLists(cx); } template < typename RootHolder, typename U, typename = std::enable_if_t, RootHolder>> PersistentRooted(const RootHolder& cx, U&& initial) : ptr(std::forward(initial)) { registerWithRootLists(cx); } template , RootHolder>> explicit PersistentRooted(const RootHolder& cx, CtorArgs... args) : ptr(std::forward(args)...) { registerWithRootLists(cx); } PersistentRooted(const PersistentRooted& rhs) : ptr(rhs.ptr) { /* * Copy construction takes advantage of the fact that the original * is already inserted, and simply adds itself to whatever list the * original was on - no JSRuntime pointer needed. * * This requires mutating rhs's links, but those should be 'mutable' * anyway. C++ doesn't let us declare mutable base classes. */ const_cast(rhs).setNext(this); } bool initialized() const { return this->isInList(); } void init(RootingContext* cx) { init(cx, SafelyInitialized::create()); } void init(JSContext* cx) { init(RootingContext::get(cx)); } template void init(RootingContext* cx, U&& initial) { ptr = std::forward(initial); registerWithRootLists(cx); } template void init(JSContext* cx, U&& initial) { ptr = std::forward(initial); registerWithRootLists(RootingContext::get(cx)); } void reset() { if (initialized()) { set(SafelyInitialized::create()); this->remove(); } } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(PersistentRooted, T); T& get() { return ptr; } const T& get() const { return ptr; } T* address() { MOZ_ASSERT(initialized()); return &ptr; } const T* address() const { return &ptr; } template void set(U&& value) { MOZ_ASSERT(initialized()); ptr = std::forward(value); } private: T ptr; } JS_HAZ_ROOTED; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const PersistentRooted& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { template class WrappedPtrOperations, Container> { const UniquePtr& uniquePtr() const { return static_cast(this)->get(); } public: explicit operator bool() const { return !!uniquePtr(); } T* get() const { return uniquePtr().get(); } T* operator->() const { return get(); } T& operator*() const { return *uniquePtr(); } }; template class MutableWrappedPtrOperations, Container> : public WrappedPtrOperations, Container> { UniquePtr& uniquePtr() { return static_cast(this)->get(); } public: [[nodiscard]] typename UniquePtr::Pointer release() { return uniquePtr().release(); } void reset(T* ptr = T()) { uniquePtr().reset(ptr); } }; template class WrappedPtrOperations, Container> { const mozilla::Maybe& maybe() const { return static_cast(this)->get(); } public: // This only supports a subset of Maybe's interface. bool isSome() const { return maybe().isSome(); } bool isNothing() const { return maybe().isNothing(); } const T value() const { return maybe().value(); } const T* operator->() const { return maybe().ptr(); } const T& operator*() const { return maybe().ref(); } }; template class MutableWrappedPtrOperations, Container> : public WrappedPtrOperations, Container> { mozilla::Maybe& maybe() { return static_cast(this)->get(); } public: // This only supports a subset of Maybe's interface. T* operator->() { return maybe().ptr(); } T& operator*() { return maybe().ref(); } void reset() { return maybe().reset(); } }; namespace gc { template void CallTraceCallbackOnNonHeap(T* v, const TraceCallbacks& aCallbacks, const char* aName, void* aClosure) { static_assert(sizeof(T) == sizeof(JS::Heap), "T and Heap must be compatible."); MOZ_ASSERT(v); mozilla::DebugOnly cell = BarrierMethods::asGCThingOrNull(*v); MOZ_ASSERT(cell); MOZ_ASSERT(!IsInsideNursery(cell)); JS::Heap* asHeapT = reinterpret_cast*>(v); aCallbacks.Trace(asHeapT, aName, aClosure); } } /* namespace gc */ template class WrappedPtrOperations, Wrapper> { const std::pair& pair() const { return static_cast(this)->get(); } public: const T1& first() const { return pair().first; } const T2& second() const { return pair().second; } }; template class MutableWrappedPtrOperations, Wrapper> : public WrappedPtrOperations, Wrapper> { std::pair& pair() { return static_cast(this)->get(); } public: T1& first() { return pair().first; } T2& second() { return pair().second; } }; } /* namespace js */ #endif /* js_RootingAPI_h */