/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "builtin/Array-inl.h" #include "mozilla/CheckedInt.h" #include "mozilla/DebugOnly.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/Maybe.h" #include "mozilla/SIMD.h" #include "mozilla/TextUtils.h" #include #include #include #include "jsfriendapi.h" #include "jsnum.h" #include "jstypes.h" #include "ds/Sort.h" #include "gc/Allocator.h" #include "jit/InlinableNatives.h" #include "js/Class.h" #include "js/Conversions.h" #include "js/experimental/JitInfo.h" // JSJitGetterOp, JSJitInfo #include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_* #include "js/PropertySpec.h" #include "util/Poison.h" #include "util/StringBuffer.h" #include "util/Text.h" #include "vm/ArgumentsObject.h" #include "vm/EqualityOperations.h" #include "vm/Interpreter.h" #include "vm/Iteration.h" #include "vm/JSContext.h" #include "vm/JSFunction.h" #include "vm/JSObject.h" #include "vm/PlainObject.h" // js::PlainObject #include "vm/SelfHosting.h" #include "vm/Shape.h" #include "vm/ToSource.h" // js::ValueToSource #include "vm/TypedArrayObject.h" #include "vm/WellKnownAtom.h" // js_*_str #include "vm/WrapperObject.h" #ifdef ENABLE_RECORD_TUPLE # include "vm/TupleType.h" #endif #include "vm/ArgumentsObject-inl.h" #include "vm/ArrayObject-inl.h" #include "vm/GeckoProfiler-inl.h" #include "vm/IsGivenTypeObject-inl.h" #include "vm/JSAtom-inl.h" #include "vm/NativeObject-inl.h" using namespace js; using mozilla::Abs; using mozilla::CeilingLog2; using mozilla::CheckedInt; using mozilla::DebugOnly; using mozilla::IsAsciiDigit; using mozilla::Maybe; using mozilla::SIMD; using JS::AutoCheckCannotGC; using JS::IsArrayAnswer; using JS::ToUint32; static inline bool ObjectMayHaveExtraIndexedOwnProperties(JSObject* obj) { if (!obj->is()) { return true; } if (obj->as().isIndexed()) { return true; } if (obj->is()) { return true; } return ClassMayResolveId(*obj->runtimeFromAnyThread()->commonNames, obj->getClass(), PropertyKey::Int(0), obj); } bool js::PrototypeMayHaveIndexedProperties(NativeObject* obj) { do { MOZ_ASSERT(obj->hasStaticPrototype(), "dynamic-prototype objects must be non-native"); JSObject* proto = obj->staticPrototype(); if (!proto) { return false; // no extra indexed properties found } if (ObjectMayHaveExtraIndexedOwnProperties(proto)) { return true; } obj = &proto->as(); if (obj->getDenseInitializedLength() != 0) { return true; } } while (true); } /* * Whether obj may have indexed properties anywhere besides its dense * elements. This includes other indexed properties in its shape hierarchy, and * indexed properties or elements along its prototype chain. */ static bool ObjectMayHaveExtraIndexedProperties(JSObject* obj) { MOZ_ASSERT_IF(obj->hasDynamicPrototype(), !obj->is()); if (ObjectMayHaveExtraIndexedOwnProperties(obj)) { return true; } return PrototypeMayHaveIndexedProperties(&obj->as()); } bool JS::IsArray(JSContext* cx, HandleObject obj, IsArrayAnswer* answer) { if (obj->is()) { *answer = IsArrayAnswer::Array; return true; } if (obj->is()) { return Proxy::isArray(cx, obj, answer); } *answer = IsArrayAnswer::NotArray; return true; } bool JS::IsArray(JSContext* cx, HandleObject obj, bool* isArray) { IsArrayAnswer answer; if (!IsArray(cx, obj, &answer)) { return false; } if (answer == IsArrayAnswer::RevokedProxy) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROXY_REVOKED); return false; } *isArray = answer == IsArrayAnswer::Array; return true; } bool js::IsArrayFromJit(JSContext* cx, HandleObject obj, bool* isArray) { return JS::IsArray(cx, obj, isArray); } // ES2017 7.1.15 ToLength. bool js::ToLength(JSContext* cx, HandleValue v, uint64_t* out) { if (v.isInt32()) { int32_t i = v.toInt32(); *out = i < 0 ? 0 : i; return true; } double d; if (v.isDouble()) { d = v.toDouble(); } else { if (!ToNumber(cx, v, &d)) { return false; } } d = JS::ToInteger(d); if (d <= 0.0) { *out = 0; } else { *out = uint64_t(std::min(d, DOUBLE_INTEGRAL_PRECISION_LIMIT - 1)); } return true; } bool js::GetLengthProperty(JSContext* cx, HandleObject obj, uint64_t* lengthp) { if (obj->is()) { *lengthp = obj->as().length(); return true; } if (obj->is()) { ArgumentsObject& argsobj = obj->as(); if (!argsobj.hasOverriddenLength()) { *lengthp = argsobj.initialLength(); return true; } } RootedValue value(cx); if (!GetProperty(cx, obj, obj, cx->names().length, &value)) { return false; } return ToLength(cx, value, lengthp); } // Fast path for array functions where the object is expected to be an array. static MOZ_ALWAYS_INLINE bool GetLengthPropertyInlined(JSContext* cx, HandleObject obj, uint64_t* lengthp) { if (obj->is()) { *lengthp = obj->as().length(); return true; } return GetLengthProperty(cx, obj, lengthp); } /* * Determine if the id represents an array index. * * An id is an array index according to ECMA by (15.4): * * "Array objects give special treatment to a certain class of property names. * A property name P (in the form of a string value) is an array index if and * only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal * to 2^32-1." * * This means the largest allowed index is actually 2^32-2 (4294967294). * * In our implementation, it would be sufficient to check for id.isInt32() * except that by using signed 31-bit integers we miss the top half of the * valid range. This function checks the string representation itself; note * that calling a standard conversion routine might allow strings such as * "08" or "4.0" as array indices, which they are not. * */ JS_PUBLIC_API bool js::StringIsArrayIndex(JSLinearString* str, uint32_t* indexp) { if (!str->isIndex(indexp)) { return false; } MOZ_ASSERT(*indexp <= MAX_ARRAY_INDEX); return true; } JS_PUBLIC_API bool js::StringIsArrayIndex(const char16_t* str, uint32_t length, uint32_t* indexp) { if (length == 0 || length > UINT32_CHAR_BUFFER_LENGTH) { return false; } if (!mozilla::IsAsciiDigit(str[0])) { return false; } if (!CheckStringIsIndex(str, length, indexp)) { return false; } MOZ_ASSERT(*indexp <= MAX_ARRAY_INDEX); return true; } template static bool ToId(JSContext* cx, T index, MutableHandleId id); template <> bool ToId(JSContext* cx, uint32_t index, MutableHandleId id) { return IndexToId(cx, index, id); } template <> bool ToId(JSContext* cx, uint64_t index, MutableHandleId id) { MOZ_ASSERT(index < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); if (index == uint32_t(index)) { return IndexToId(cx, uint32_t(index), id); } Value tmp = DoubleValue(index); return PrimitiveValueToId(cx, HandleValue::fromMarkedLocation(&tmp), id); } /* * If the property at the given index exists, get its value into |vp| and set * |*hole| to false. Otherwise set |*hole| to true and |vp| to Undefined. */ template static bool HasAndGetElement(JSContext* cx, HandleObject obj, HandleObject receiver, T index, bool* hole, MutableHandleValue vp) { if (obj->is()) { NativeObject* nobj = &obj->as(); if (index < nobj->getDenseInitializedLength()) { vp.set(nobj->getDenseElement(size_t(index))); if (!vp.isMagic(JS_ELEMENTS_HOLE)) { *hole = false; return true; } } if (nobj->is() && index <= UINT32_MAX) { if (nobj->as().maybeGetElement(uint32_t(index), vp)) { *hole = false; return true; } } } RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } bool found; if (!HasProperty(cx, obj, id, &found)) { return false; } if (found) { if (!GetProperty(cx, obj, receiver, id, vp)) { return false; } } else { vp.setUndefined(); } *hole = !found; return true; } template static inline bool HasAndGetElement(JSContext* cx, HandleObject obj, T index, bool* hole, MutableHandleValue vp) { return HasAndGetElement(cx, obj, obj, index, hole, vp); } bool ElementAdder::append(JSContext* cx, HandleValue v) { MOZ_ASSERT(index_ < length_); if (resObj_) { NativeObject* resObj = &resObj_->as(); DenseElementResult result = resObj->setOrExtendDenseElements(cx, index_, v.address(), 1); if (result == DenseElementResult::Failure) { return false; } if (result == DenseElementResult::Incomplete) { if (!DefineDataElement(cx, resObj_, index_, v)) { return false; } } } else { vp_[index_] = v; } index_++; return true; } void ElementAdder::appendHole() { MOZ_ASSERT(getBehavior_ == ElementAdder::CheckHasElemPreserveHoles); MOZ_ASSERT(index_ < length_); if (!resObj_) { vp_[index_].setMagic(JS_ELEMENTS_HOLE); } index_++; } bool js::GetElementsWithAdder(JSContext* cx, HandleObject obj, HandleObject receiver, uint32_t begin, uint32_t end, ElementAdder* adder) { MOZ_ASSERT(begin <= end); RootedValue val(cx); for (uint32_t i = begin; i < end; i++) { if (adder->getBehavior() == ElementAdder::CheckHasElemPreserveHoles) { bool hole; if (!HasAndGetElement(cx, obj, receiver, i, &hole, &val)) { return false; } if (hole) { adder->appendHole(); continue; } } else { MOZ_ASSERT(adder->getBehavior() == ElementAdder::GetElement); if (!GetElement(cx, obj, receiver, i, &val)) { return false; } } if (!adder->append(cx, val)) { return false; } } return true; } static inline bool IsPackedArrayOrNoExtraIndexedProperties(JSObject* obj, uint64_t length) { return (IsPackedArray(obj) && obj->as().length() == length) || !ObjectMayHaveExtraIndexedProperties(obj); } static bool GetDenseElements(NativeObject* aobj, uint32_t length, Value* vp) { MOZ_ASSERT(IsPackedArrayOrNoExtraIndexedProperties(aobj, length)); if (length > aobj->getDenseInitializedLength()) { return false; } for (size_t i = 0; i < length; i++) { vp[i] = aobj->getDenseElement(i); // No other indexed properties so hole => undefined. if (vp[i].isMagic(JS_ELEMENTS_HOLE)) { vp[i] = UndefinedValue(); } } return true; } bool js::GetElements(JSContext* cx, HandleObject aobj, uint32_t length, Value* vp) { if (IsPackedArrayOrNoExtraIndexedProperties(aobj, length)) { if (GetDenseElements(&aobj->as(), length, vp)) { return true; } } if (aobj->is()) { ArgumentsObject& argsobj = aobj->as(); if (!argsobj.hasOverriddenLength()) { if (argsobj.maybeGetElements(0, length, vp)) { return true; } } } if (aobj->is()) { Handle typedArray = aobj.as(); if (typedArray->length() == length) { return TypedArrayObject::getElements(cx, typedArray, vp); } } if (js::GetElementsOp op = aobj->getOpsGetElements()) { ElementAdder adder(cx, vp, length, ElementAdder::GetElement); return op(cx, aobj, 0, length, &adder); } for (uint32_t i = 0; i < length; i++) { if (!GetElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i]))) { return false; } } return true; } static inline bool GetArrayElement(JSContext* cx, HandleObject obj, uint64_t index, MutableHandleValue vp) { if (obj->is()) { NativeObject* nobj = &obj->as(); if (index < nobj->getDenseInitializedLength()) { vp.set(nobj->getDenseElement(size_t(index))); if (!vp.isMagic(JS_ELEMENTS_HOLE)) { return true; } } if (nobj->is() && index <= UINT32_MAX) { if (nobj->as().maybeGetElement(uint32_t(index), vp)) { return true; } } } RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } return GetProperty(cx, obj, obj, id, vp); } static inline bool DefineArrayElement(JSContext* cx, HandleObject obj, uint64_t index, HandleValue value) { RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } return DefineDataProperty(cx, obj, id, value); } // Set the value of the property at the given index to v. static inline bool SetArrayElement(JSContext* cx, HandleObject obj, uint64_t index, HandleValue v) { RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } return SetProperty(cx, obj, id, v); } /* * Attempt to delete the element |index| from |obj| as if by * |obj.[[Delete]](index)|. * * If an error occurs while attempting to delete the element (that is, the call * to [[Delete]] threw), return false. * * Otherwise call result.succeed() or result.fail() to indicate whether the * deletion attempt succeeded (that is, whether the call to [[Delete]] returned * true or false). (Deletes generally fail only when the property is * non-configurable, but proxies may implement different semantics.) */ static bool DeleteArrayElement(JSContext* cx, HandleObject obj, uint64_t index, ObjectOpResult& result) { if (obj->is() && !obj->as().isIndexed() && !obj->as().denseElementsAreSealed()) { ArrayObject* aobj = &obj->as(); if (index <= UINT32_MAX) { uint32_t idx = uint32_t(index); if (idx < aobj->getDenseInitializedLength()) { if (idx + 1 == aobj->getDenseInitializedLength()) { aobj->setDenseInitializedLengthMaybeNonExtensible(cx, idx); } else { aobj->setDenseElementHole(idx); } if (!SuppressDeletedElement(cx, obj, idx)) { return false; } } } return result.succeed(); } RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } return DeleteProperty(cx, obj, id, result); } /* ES6 draft rev 32 (2 Febr 2015) 7.3.7 */ static bool DeletePropertyOrThrow(JSContext* cx, HandleObject obj, uint64_t index) { ObjectOpResult success; if (!DeleteArrayElement(cx, obj, index, success)) { return false; } if (!success) { RootedId id(cx); if (!ToId(cx, index, &id)) { return false; } return success.reportError(cx, obj, id); } return true; } static bool DeletePropertiesOrThrow(JSContext* cx, HandleObject obj, uint64_t len, uint64_t finalLength) { if (obj->is() && !obj->as().isIndexed() && !obj->as().denseElementsAreSealed()) { if (len <= UINT32_MAX) { // Skip forward to the initialized elements of this array. len = std::min(uint32_t(len), obj->as().getDenseInitializedLength()); } } for (uint64_t k = len; k > finalLength; k--) { if (!CheckForInterrupt(cx)) { return false; } if (!DeletePropertyOrThrow(cx, obj, k - 1)) { return false; } } return true; } static bool SetArrayLengthProperty(JSContext* cx, Handle obj, HandleValue value) { RootedId id(cx, NameToId(cx->names().length)); ObjectOpResult result; if (obj->lengthIsWritable()) { Rooted desc( cx, PropertyDescriptor::Data(value, JS::PropertyAttribute::Writable)); if (!ArraySetLength(cx, obj, id, desc, result)) { return false; } } else { MOZ_ALWAYS_TRUE(result.fail(JSMSG_READ_ONLY)); } return result.checkStrict(cx, obj, id); } static bool SetLengthProperty(JSContext* cx, HandleObject obj, uint64_t length) { MOZ_ASSERT(length < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); RootedValue v(cx, NumberValue(length)); if (obj->is()) { return SetArrayLengthProperty(cx, obj.as(), v); } return SetProperty(cx, obj, cx->names().length, v); } bool js::SetLengthProperty(JSContext* cx, HandleObject obj, uint32_t length) { RootedValue v(cx, NumberValue(length)); if (obj->is()) { return SetArrayLengthProperty(cx, obj.as(), v); } return SetProperty(cx, obj, cx->names().length, v); } bool js::ArrayLengthGetter(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp) { MOZ_ASSERT(id == NameToId(cx->names().length)); vp.setNumber(obj->as().length()); return true; } bool js::ArrayLengthSetter(JSContext* cx, HandleObject obj, HandleId id, HandleValue v, ObjectOpResult& result) { MOZ_ASSERT(id == NameToId(cx->names().length)); Handle arr = obj.as(); MOZ_ASSERT(arr->lengthIsWritable(), "setter shouldn't be called if property is non-writable"); Rooted desc( cx, PropertyDescriptor::Data(v, JS::PropertyAttribute::Writable)); return ArraySetLength(cx, arr, id, desc, result); } struct ReverseIndexComparator { bool operator()(const uint32_t& a, const uint32_t& b, bool* lessOrEqualp) { MOZ_ASSERT(a != b, "how'd we get duplicate indexes?"); *lessOrEqualp = b <= a; return true; } }; /* ES6 draft rev 34 (2015 Feb 20) 9.4.2.4 ArraySetLength */ bool js::ArraySetLength(JSContext* cx, Handle arr, HandleId id, Handle desc, ObjectOpResult& result) { MOZ_ASSERT(id == NameToId(cx->names().length)); MOZ_ASSERT(desc.isDataDescriptor() || desc.isGenericDescriptor()); // Step 1. uint32_t newLen; if (!desc.hasValue()) { // The spec has us calling OrdinaryDefineOwnProperty if // Desc.[[Value]] is absent, but our implementation is so different that // this is impossible. Instead, set newLen to the current length and // proceed to step 9. newLen = arr->length(); } else { // Step 2 is irrelevant in our implementation. // Step 3. if (!ToUint32(cx, desc.value(), &newLen)) { return false; } // Step 4. double d; if (!ToNumber(cx, desc.value(), &d)) { return false; } // Step 5. if (d != newLen) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } // Steps 6-8 are irrelevant in our implementation. } // Steps 9-11. bool lengthIsWritable = arr->lengthIsWritable(); #ifdef DEBUG { mozilla::Maybe lengthProp = arr->lookupPure(id); MOZ_ASSERT(lengthProp.isSome()); MOZ_ASSERT(lengthProp->writable() == lengthIsWritable); } #endif uint32_t oldLen = arr->length(); // Part of steps 1.a, 12.a, and 16: Fail if we're being asked to change // enumerability or configurability, or otherwise break the object // invariants. (ES6 checks these by calling OrdinaryDefineOwnProperty, but // in SM, the array length property is hardly ordinary.) if ((desc.hasConfigurable() && desc.configurable()) || (desc.hasEnumerable() && desc.enumerable()) || (!lengthIsWritable && desc.hasWritable() && desc.writable())) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } // Steps 12-13 for arrays with non-writable length. if (!lengthIsWritable) { if (newLen == oldLen) { return result.succeed(); } return result.fail(JSMSG_CANT_REDEFINE_ARRAY_LENGTH); } // Step 19. bool succeeded = true; do { // The initialized length and capacity of an array only need updating // when non-hole elements are added or removed, which doesn't happen // when array length stays the same or increases. if (newLen >= oldLen) { break; } // Attempt to propagate dense-element optimization tricks, if possible, // and avoid the generic (and accordingly slow) deletion code below. // We can only do this if there are only densely-indexed elements. // Once there's a sparse indexed element, there's no good way to know, // save by enumerating all the properties to find it. But we *have* to // know in case that sparse indexed element is non-configurable, as // that element must prevent any deletions below it. Bug 586842 should // fix this inefficiency by moving indexed storage to be entirely // separate from non-indexed storage. // A second reason for this optimization to be invalid is an active // for..in iteration over the array. Keys deleted before being reached // during the iteration must not be visited, and suppressing them here // would be too costly. // This optimization is also invalid when there are sealed // (non-configurable) elements. if (!arr->isIndexed() && !arr->denseElementsMaybeInIteration() && !arr->denseElementsAreSealed()) { uint32_t oldCapacity = arr->getDenseCapacity(); uint32_t oldInitializedLength = arr->getDenseInitializedLength(); MOZ_ASSERT(oldCapacity >= oldInitializedLength); if (oldInitializedLength > newLen) { arr->setDenseInitializedLengthMaybeNonExtensible(cx, newLen); } if (oldCapacity > newLen) { if (arr->isExtensible()) { arr->shrinkElements(cx, newLen); } else { MOZ_ASSERT(arr->getDenseInitializedLength() == arr->getDenseCapacity()); } } // We've done the work of deleting any dense elements needing // deletion, and there are no sparse elements. Thus we can skip // straight to defining the length. break; } // Step 15. // // Attempt to delete all elements above the new length, from greatest // to least. If any of these deletions fails, we're supposed to define // the length to one greater than the index that couldn't be deleted, // *with the property attributes specified*. This might convert the // length to be not the value specified, yet non-writable. (You may be // forgiven for thinking these are interesting semantics.) Example: // // var arr = // Object.defineProperty([0, 1, 2, 3], 1, { writable: false }); // Object.defineProperty(arr, "length", // { value: 0, writable: false }); // // will convert |arr| to an array of non-writable length two, then // throw a TypeError. // // We implement this behavior, in the relevant lops below, by setting // |succeeded| to false. Then we exit the loop, define the length // appropriately, and only then throw a TypeError, if necessary. uint32_t gap = oldLen - newLen; const uint32_t RemoveElementsFastLimit = 1 << 24; if (gap < RemoveElementsFastLimit) { // If we're removing a relatively small number of elements, just do // it exactly by the spec. while (newLen < oldLen) { // Step 15a. oldLen--; // Steps 15b-d. ObjectOpResult deleteSucceeded; if (!DeleteElement(cx, arr, oldLen, deleteSucceeded)) { return false; } if (!deleteSucceeded) { newLen = oldLen + 1; succeeded = false; break; } } } else { // If we're removing a large number of elements from an array // that's probably sparse, try a different tack. Get all the own // property names, sift out the indexes in the deletion range into // a vector, sort the vector greatest to least, then delete the // indexes greatest to least using that vector. See bug 322135. // // This heuristic's kind of a huge guess -- "large number of // elements" and "probably sparse" are completely unprincipled // predictions. In the long run, bug 586842 will support the right // fix: store sparse elements in a sorted data structure that // permits fast in-reverse-order traversal and concurrent removals. Vector indexes(cx); { RootedIdVector props(cx); if (!GetPropertyKeys(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props)) { return false; } for (size_t i = 0; i < props.length(); i++) { if (!CheckForInterrupt(cx)) { return false; } uint32_t index; if (!IdIsIndex(props[i], &index)) { continue; } if (index >= newLen && index < oldLen) { if (!indexes.append(index)) { return false; } } } } uint32_t count = indexes.length(); { // We should use radix sort to be O(n), but this is uncommon // enough that we'll punt til someone complains. Vector scratch(cx); if (!scratch.resize(count)) { return false; } MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(), ReverseIndexComparator())); } uint32_t index = UINT32_MAX; for (uint32_t i = 0; i < count; i++) { MOZ_ASSERT(indexes[i] < index, "indexes should never repeat"); index = indexes[i]; // Steps 15b-d. ObjectOpResult deleteSucceeded; if (!DeleteElement(cx, arr, index, deleteSucceeded)) { return false; } if (!deleteSucceeded) { newLen = index + 1; succeeded = false; break; } } } } while (false); // Update array length. Technically we should have been doing this // throughout the loop, in step 19.d.iii. arr->setLength(newLen); // Step 20. if (desc.hasWritable() && !desc.writable()) { Maybe lengthProp = arr->lookup(cx, id); MOZ_ASSERT(lengthProp.isSome()); MOZ_ASSERT(lengthProp->isCustomDataProperty()); PropertyFlags flags = lengthProp->flags(); flags.clearFlag(PropertyFlag::Writable); if (!NativeObject::changeCustomDataPropAttributes(cx, arr, id, flags)) { return false; } } // All operations past here until the |!succeeded| code must be infallible, // so that all element fields remain properly synchronized. // Trim the initialized length, if needed, to preserve the <= length // invariant. (Capacity was already reduced during element deletion, if // necessary.) ObjectElements* header = arr->getElementsHeader(); header->initializedLength = std::min(header->initializedLength, newLen); if (!arr->isExtensible()) { arr->shrinkCapacityToInitializedLength(cx); } if (desc.hasWritable() && !desc.writable()) { arr->setNonWritableLength(cx); } if (!succeeded) { return result.fail(JSMSG_CANT_TRUNCATE_ARRAY); } return result.succeed(); } static bool array_addProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v) { ArrayObject* arr = &obj->as(); uint32_t index; if (!IdIsIndex(id, &index)) { return true; } uint32_t length = arr->length(); if (index >= length) { MOZ_ASSERT(arr->lengthIsWritable(), "how'd this element get added if length is non-writable?"); arr->setLength(index + 1); } return true; } static SharedShape* AddLengthProperty(JSContext* cx, Handle shape) { // Add the 'length' property for a newly created array shape. MOZ_ASSERT(shape->propMapLength() == 0); MOZ_ASSERT(shape->getObjectClass() == &ArrayObject::class_); RootedId lengthId(cx, NameToId(cx->names().length)); constexpr PropertyFlags flags = {PropertyFlag::CustomDataProperty, PropertyFlag::Writable}; Rooted map(cx, shape->propMap()); uint32_t mapLength = shape->propMapLength(); ObjectFlags objectFlags = shape->objectFlags(); if (!SharedPropMap::addCustomDataProperty(cx, &ArrayObject::class_, &map, &mapLength, lengthId, flags, &objectFlags)) { return nullptr; } return SharedShape::getPropMapShape(cx, shape->base(), shape->numFixedSlots(), map, mapLength, objectFlags); } static bool IsArrayConstructor(const JSObject* obj) { // Note: this also returns true for cross-realm Array constructors in the // same compartment. return IsNativeFunction(obj, ArrayConstructor); } static bool IsArrayConstructor(const Value& v) { return v.isObject() && IsArrayConstructor(&v.toObject()); } bool js::IsCrossRealmArrayConstructor(JSContext* cx, JSObject* obj, bool* result) { if (obj->is()) { obj = CheckedUnwrapDynamic(obj, cx); if (!obj) { ReportAccessDenied(cx); return false; } } *result = IsArrayConstructor(obj) && obj->as().realm() != cx->realm(); return true; } static MOZ_ALWAYS_INLINE bool IsArraySpecies(JSContext* cx, HandleObject origArray) { if (MOZ_UNLIKELY(origArray->is())) { if (origArray->getClass()->isDOMClass()) { #ifdef DEBUG // We assume DOM proxies never return true for IsArray. IsArrayAnswer answer; MOZ_ASSERT(Proxy::isArray(cx, origArray, &answer)); MOZ_ASSERT(answer == IsArrayAnswer::NotArray); #endif return true; } return false; } // 9.4.2.3 Step 4. Non-array objects always use the default constructor. if (!origArray->is()) { return true; } if (cx->realm()->arraySpeciesLookup.tryOptimizeArray( cx, &origArray->as())) { return true; } Value ctor; if (!GetPropertyPure(cx, origArray, NameToId(cx->names().constructor), &ctor)) { return false; } if (!IsArrayConstructor(ctor)) { return ctor.isUndefined(); } // 9.4.2.3 Step 6.c. Use the current realm's constructor if |ctor| is a // cross-realm Array constructor. if (cx->realm() != ctor.toObject().as().realm()) { return true; } jsid speciesId = PropertyKey::Symbol(cx->wellKnownSymbols().species); JSFunction* getter; if (!GetGetterPure(cx, &ctor.toObject(), speciesId, &getter)) { return false; } if (!getter) { return false; } return IsSelfHostedFunctionWithName(getter, cx->names().ArraySpecies); } static bool ArraySpeciesCreate(JSContext* cx, HandleObject origArray, uint64_t length, MutableHandleObject arr) { MOZ_ASSERT(length < DOUBLE_INTEGRAL_PRECISION_LIMIT); FixedInvokeArgs<2> args(cx); args[0].setObject(*origArray); args[1].set(NumberValue(length)); RootedValue rval(cx); if (!CallSelfHostedFunction(cx, cx->names().ArraySpeciesCreate, UndefinedHandleValue, args, &rval)) { return false; } MOZ_ASSERT(rval.isObject()); arr.set(&rval.toObject()); return true; } JSString* js::ArrayToSource(JSContext* cx, HandleObject obj) { AutoCycleDetector detector(cx, obj); if (!detector.init()) { return nullptr; } JSStringBuilder sb(cx); if (detector.foundCycle()) { if (!sb.append("[]")) { return nullptr; } return sb.finishString(); } if (!sb.append('[')) { return nullptr; } uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return nullptr; } RootedValue elt(cx); for (uint64_t index = 0; index < length; index++) { bool hole; if (!CheckForInterrupt(cx) || !HasAndGetElement(cx, obj, index, &hole, &elt)) { return nullptr; } /* Get element's character string. */ JSString* str; if (hole) { str = cx->runtime()->emptyString; } else { str = ValueToSource(cx, elt); if (!str) { return nullptr; } } /* Append element to buffer. */ if (!sb.append(str)) { return nullptr; } if (index + 1 != length) { if (!sb.append(", ")) { return nullptr; } } else if (hole) { if (!sb.append(',')) { return nullptr; } } } /* Finalize the buffer. */ if (!sb.append(']')) { return nullptr; } return sb.finishString(); } static bool array_toSource(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "toSource"); CallArgs args = CallArgsFromVp(argc, vp); if (!args.thisv().isObject()) { ReportIncompatible(cx, args); return false; } Rooted obj(cx, &args.thisv().toObject()); JSString* str = ArrayToSource(cx, obj); if (!str) { return false; } args.rval().setString(str); return true; } template static bool ArrayJoinDenseKernel(JSContext* cx, SeparatorOp sepOp, Handle obj, uint64_t length, StringBuffer& sb, uint32_t* numProcessed) { // This loop handles all elements up to initializedLength. If // length > initLength we rely on the second loop to add the // other elements. MOZ_ASSERT(*numProcessed == 0); uint64_t initLength = std::min(obj->getDenseInitializedLength(), length); MOZ_ASSERT(initLength <= UINT32_MAX, "initialized length shouldn't exceed UINT32_MAX"); uint32_t initLengthClamped = uint32_t(initLength); while (*numProcessed < initLengthClamped) { if (!CheckForInterrupt(cx)) { return false; } // Step 7.b. Value elem = obj->getDenseElement(*numProcessed); // Steps 7.c-d. if (elem.isString()) { if (!sb.append(elem.toString())) { return false; } } else if (elem.isNumber()) { if (!NumberValueToStringBuffer(elem, sb)) { return false; } } else if (elem.isBoolean()) { if (!BooleanToStringBuffer(elem.toBoolean(), sb)) { return false; } } else if (elem.isObject() || elem.isSymbol()) { /* * Object stringifying could modify the initialized length or make * the array sparse. Delegate it to a separate loop to keep this * one tight. * * Symbol stringifying is a TypeError, so into the slow path * with those as well. */ break; } else if (elem.isBigInt()) { // ToString(bigint) doesn't access bigint.toString or // anything like that, so it can't mutate the array we're // walking through, so it *could* be handled here. We don't // do so yet for reasons of initial-implementation economy. break; } else { MOZ_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined()); } // Steps 7.a, 7.e. if (++(*numProcessed) != length && !sepOp(sb)) { return false; } } return true; } template static bool ArrayJoinKernel(JSContext* cx, SeparatorOp sepOp, HandleObject obj, uint64_t length, StringBuffer& sb) { // Step 6. uint32_t numProcessed = 0; if (IsPackedArrayOrNoExtraIndexedProperties(obj, length)) { if (!ArrayJoinDenseKernel(cx, sepOp, obj.as(), length, sb, &numProcessed)) { return false; } } // Step 7. if (numProcessed != length) { RootedValue v(cx); for (uint64_t i = numProcessed; i < length;) { if (!CheckForInterrupt(cx)) { return false; } // Step 7.b. if (!GetArrayElement(cx, obj, i, &v)) { return false; } // Steps 7.c-d. if (!v.isNullOrUndefined()) { if (!ValueToStringBuffer(cx, v, sb)) { return false; } } // Steps 7.a, 7.e. if (++i != length && !sepOp(sb)) { return false; } } } return true; } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.13 Array.prototype.join ( separator ) bool js::array_join(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "join"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } AutoCycleDetector detector(cx, obj); if (!detector.init()) { return false; } if (detector.foundCycle()) { args.rval().setString(cx->names().empty); return true; } // Step 2. uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return false; } // Steps 3-4. Rooted sepstr(cx); if (args.hasDefined(0)) { JSString* s = ToString(cx, args[0]); if (!s) { return false; } sepstr = s->ensureLinear(cx); if (!sepstr) { return false; } } else { sepstr = cx->names().comma; } // Steps 5-8 (When the length is zero, directly return the empty string). if (length == 0) { args.rval().setString(cx->emptyString()); return true; } // An optimized version of a special case of steps 5-8: when length==1 and // the 0th element is a string, ToString() of that element is a no-op and // so it can be immediately returned as the result. if (length == 1 && obj->is()) { NativeObject* nobj = &obj->as(); if (nobj->getDenseInitializedLength() == 1) { Value elem0 = nobj->getDenseElement(0); if (elem0.isString()) { args.rval().set(elem0); return true; } } } // Step 5. JSStringBuilder sb(cx); if (sepstr->hasTwoByteChars() && !sb.ensureTwoByteChars()) { return false; } // The separator will be added |length - 1| times, reserve space for that // so that we don't have to unnecessarily grow the buffer. size_t seplen = sepstr->length(); if (seplen > 0) { if (length > UINT32_MAX) { ReportAllocationOverflow(cx); return false; } CheckedInt res = CheckedInt(seplen) * (uint32_t(length) - 1); if (!res.isValid()) { ReportAllocationOverflow(cx); return false; } if (!sb.reserve(res.value())) { return false; } } // Various optimized versions of steps 6-7. if (seplen == 0) { auto sepOp = [](StringBuffer&) { return true; }; if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { return false; } } else if (seplen == 1) { char16_t c = sepstr->latin1OrTwoByteChar(0); if (c <= JSString::MAX_LATIN1_CHAR) { Latin1Char l1char = Latin1Char(c); auto sepOp = [l1char](StringBuffer& sb) { return sb.append(l1char); }; if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { return false; } } else { auto sepOp = [c](StringBuffer& sb) { return sb.append(c); }; if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { return false; } } } else { Handle sepHandle = sepstr; auto sepOp = [sepHandle](StringBuffer& sb) { return sb.append(sepHandle); }; if (!ArrayJoinKernel(cx, sepOp, obj, length, sb)) { return false; } } // Step 8. JSString* str = sb.finishString(); if (!str) { return false; } args.rval().setString(str); return true; } // ES2017 draft rev f8a9be8ea4bd97237d176907a1e3080dce20c68f // 22.1.3.27 Array.prototype.toLocaleString ([ reserved1 [ , reserved2 ] ]) // ES2017 Intl draft rev 78bbe7d1095f5ff3760ac4017ed366026e4cb276 // 13.4.1 Array.prototype.toLocaleString ([ locales [ , options ]]) static bool array_toLocaleString(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "toLocaleString"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1 RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Avoid calling into self-hosted code if the array is empty. if (obj->is() && obj->as().length() == 0) { args.rval().setString(cx->names().empty); return true; } AutoCycleDetector detector(cx, obj); if (!detector.init()) { return false; } if (detector.foundCycle()) { args.rval().setString(cx->names().empty); return true; } FixedInvokeArgs<2> args2(cx); args2[0].set(args.get(0)); args2[1].set(args.get(1)); // Steps 2-10. RootedValue thisv(cx, ObjectValue(*obj)); return CallSelfHostedFunction(cx, cx->names().ArrayToLocaleString, thisv, args2, args.rval()); } /* vector must point to rooted memory. */ static bool SetArrayElements(JSContext* cx, HandleObject obj, uint64_t start, uint32_t count, const Value* vector) { MOZ_ASSERT(count <= MAX_ARRAY_INDEX); MOZ_ASSERT(start + count < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)); if (count == 0) { return true; } if (!ObjectMayHaveExtraIndexedProperties(obj) && start <= UINT32_MAX) { NativeObject* nobj = &obj->as(); DenseElementResult result = nobj->setOrExtendDenseElements(cx, uint32_t(start), vector, count); if (result != DenseElementResult::Incomplete) { return result == DenseElementResult::Success; } } RootedId id(cx); const Value* end = vector + count; while (vector < end) { if (!CheckForInterrupt(cx)) { return false; } if (!ToId(cx, start++, &id)) { return false; } if (!SetProperty(cx, obj, id, HandleValue::fromMarkedLocation(vector++))) { return false; } } return true; } static DenseElementResult ArrayReverseDenseKernel(JSContext* cx, Handle obj, uint32_t length) { MOZ_ASSERT(length > 1); // If there are no elements, we're done. if (obj->getDenseInitializedLength() == 0) { return DenseElementResult::Success; } if (!obj->isExtensible()) { return DenseElementResult::Incomplete; } if (!IsPackedArray(obj)) { /* * It's actually surprisingly complicated to reverse an array due * to the orthogonality of array length and array capacity while * handling leading and trailing holes correctly. Reversing seems * less likely to be a common operation than other array * mass-mutation methods, so for now just take a probably-small * memory hit (in the absence of too many holes in the array at * its start) and ensure that the capacity is sufficient to hold * all the elements in the array if it were full. */ DenseElementResult result = obj->ensureDenseElements(cx, length, 0); if (result != DenseElementResult::Success) { return result; } /* Fill out the array's initialized length to its proper length. */ obj->ensureDenseInitializedLength(length, 0); } if (!obj->denseElementsMaybeInIteration() && !cx->zone()->needsIncrementalBarrier()) { obj->reverseDenseElementsNoPreBarrier(length); return DenseElementResult::Success; } auto setElementMaybeHole = [](JSContext* cx, Handle obj, uint32_t index, const Value& val) { if (MOZ_LIKELY(!val.isMagic(JS_ELEMENTS_HOLE))) { obj->setDenseElement(index, val); return true; } obj->setDenseElementHole(index); return SuppressDeletedProperty(cx, obj, PropertyKey::Int(index)); }; RootedValue origlo(cx), orighi(cx); uint32_t lo = 0, hi = length - 1; for (; lo < hi; lo++, hi--) { origlo = obj->getDenseElement(lo); orighi = obj->getDenseElement(hi); if (!setElementMaybeHole(cx, obj, lo, orighi)) { return DenseElementResult::Failure; } if (!setElementMaybeHole(cx, obj, hi, origlo)) { return DenseElementResult::Failure; } } return DenseElementResult::Success; } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.21 Array.prototype.reverse ( ) static bool array_reverse(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "reverse"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // An empty array or an array with length 1 is already reversed. if (len <= 1) { args.rval().setObject(*obj); return true; } if (IsPackedArrayOrNoExtraIndexedProperties(obj, len) && len <= UINT32_MAX) { DenseElementResult result = ArrayReverseDenseKernel(cx, obj.as(), uint32_t(len)); if (result != DenseElementResult::Incomplete) { /* * Per ECMA-262, don't update the length of the array, even if the new * array has trailing holes (and thus the original array began with * holes). */ args.rval().setObject(*obj); return result == DenseElementResult::Success; } } // Steps 3-5. RootedValue lowval(cx), hival(cx); for (uint64_t i = 0, half = len / 2; i < half; i++) { bool hole, hole2; if (!CheckForInterrupt(cx) || !HasAndGetElement(cx, obj, i, &hole, &lowval) || !HasAndGetElement(cx, obj, len - i - 1, &hole2, &hival)) { return false; } if (!hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) { return false; } if (!SetArrayElement(cx, obj, len - i - 1, lowval)) { return false; } } else if (hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) { return false; } if (!DeletePropertyOrThrow(cx, obj, len - i - 1)) { return false; } } else if (!hole && hole2) { if (!DeletePropertyOrThrow(cx, obj, i)) { return false; } if (!SetArrayElement(cx, obj, len - i - 1, lowval)) { return false; } } else { // No action required. } } // Step 6. args.rval().setObject(*obj); return true; } static inline bool CompareStringValues(JSContext* cx, const Value& a, const Value& b, bool* lessOrEqualp) { if (!CheckForInterrupt(cx)) { return false; } JSString* astr = a.toString(); JSString* bstr = b.toString(); int32_t result; if (!CompareStrings(cx, astr, bstr, &result)) { return false; } *lessOrEqualp = (result <= 0); return true; } static const uint64_t powersOf10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL}; static inline unsigned NumDigitsBase10(uint32_t n) { /* * This is just floor_log10(n) + 1 * Algorithm taken from * http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 */ uint32_t log2 = CeilingLog2(n); uint32_t t = log2 * 1233 >> 12; return t - (n < powersOf10[t]) + 1; } static inline bool CompareLexicographicInt32(const Value& a, const Value& b, bool* lessOrEqualp) { int32_t aint = a.toInt32(); int32_t bint = b.toInt32(); /* * If both numbers are equal ... trivial * If only one of both is negative --> arithmetic comparison as char code * of '-' is always less than any other digit * If both numbers are negative convert them to positive and continue * handling ... */ if (aint == bint) { *lessOrEqualp = true; } else if ((aint < 0) && (bint >= 0)) { *lessOrEqualp = true; } else if ((aint >= 0) && (bint < 0)) { *lessOrEqualp = false; } else { uint32_t auint = Abs(aint); uint32_t buint = Abs(bint); /* * ... get number of digits of both integers. * If they have the same number of digits --> arithmetic comparison. * If digits_a > digits_b: a < b*10e(digits_a - digits_b). * If digits_b > digits_a: a*10e(digits_b - digits_a) <= b. */ unsigned digitsa = NumDigitsBase10(auint); unsigned digitsb = NumDigitsBase10(buint); if (digitsa == digitsb) { *lessOrEqualp = (auint <= buint); } else if (digitsa > digitsb) { MOZ_ASSERT((digitsa - digitsb) < std::size(powersOf10)); *lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]); } else { /* if (digitsb > digitsa) */ MOZ_ASSERT((digitsb - digitsa) < std::size(powersOf10)); *lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint)); } } return true; } template static inline bool CompareSubStringValues(JSContext* cx, const Char1* s1, size_t len1, const Char2* s2, size_t len2, bool* lessOrEqualp) { if (!CheckForInterrupt(cx)) { return false; } if (!s1 || !s2) { return false; } int32_t result = CompareChars(s1, len1, s2, len2); *lessOrEqualp = (result <= 0); return true; } namespace { struct SortComparatorStrings { JSContext* const cx; explicit SortComparatorStrings(JSContext* cx) : cx(cx) {} bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { return CompareStringValues(cx, a, b, lessOrEqualp); } }; struct SortComparatorLexicographicInt32 { bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { return CompareLexicographicInt32(a, b, lessOrEqualp); } }; struct StringifiedElement { size_t charsBegin; size_t charsEnd; size_t elementIndex; }; struct SortComparatorStringifiedElements { JSContext* const cx; const StringBuffer& sb; SortComparatorStringifiedElements(JSContext* cx, const StringBuffer& sb) : cx(cx), sb(sb) {} bool operator()(const StringifiedElement& a, const StringifiedElement& b, bool* lessOrEqualp) { size_t lenA = a.charsEnd - a.charsBegin; size_t lenB = b.charsEnd - b.charsBegin; if (sb.isUnderlyingBufferLatin1()) { return CompareSubStringValues(cx, sb.rawLatin1Begin() + a.charsBegin, lenA, sb.rawLatin1Begin() + b.charsBegin, lenB, lessOrEqualp); } return CompareSubStringValues(cx, sb.rawTwoByteBegin() + a.charsBegin, lenA, sb.rawTwoByteBegin() + b.charsBegin, lenB, lessOrEqualp); } }; struct NumericElement { double dv; size_t elementIndex; }; static bool ComparatorNumericLeftMinusRight(const NumericElement& a, const NumericElement& b, bool* lessOrEqualp) { *lessOrEqualp = std::isunordered(a.dv, b.dv) || (a.dv <= b.dv); return true; } static bool ComparatorNumericRightMinusLeft(const NumericElement& a, const NumericElement& b, bool* lessOrEqualp) { *lessOrEqualp = std::isunordered(a.dv, b.dv) || (b.dv <= a.dv); return true; } using ComparatorNumeric = bool (*)(const NumericElement&, const NumericElement&, bool*); static const ComparatorNumeric SortComparatorNumerics[] = { nullptr, nullptr, ComparatorNumericLeftMinusRight, ComparatorNumericRightMinusLeft}; static bool ComparatorInt32LeftMinusRight(const Value& a, const Value& b, bool* lessOrEqualp) { *lessOrEqualp = (a.toInt32() <= b.toInt32()); return true; } static bool ComparatorInt32RightMinusLeft(const Value& a, const Value& b, bool* lessOrEqualp) { *lessOrEqualp = (b.toInt32() <= a.toInt32()); return true; } using ComparatorInt32 = bool (*)(const Value&, const Value&, bool*); static const ComparatorInt32 SortComparatorInt32s[] = { nullptr, nullptr, ComparatorInt32LeftMinusRight, ComparatorInt32RightMinusLeft}; // Note: Values for this enum must match up with SortComparatorNumerics // and SortComparatorInt32s. enum ComparatorMatchResult { Match_Failure = 0, Match_None, Match_LeftMinusRight, Match_RightMinusLeft }; } // namespace /* * Specialize behavior for comparator functions with particular common bytecode * patterns: namely, |return x - y| and |return y - x|. */ static ComparatorMatchResult MatchNumericComparator(JSContext* cx, JSObject* obj) { if (!obj->is()) { return Match_None; } RootedFunction fun(cx, &obj->as()); if (!fun->isInterpreted() || fun->isClassConstructor()) { return Match_None; } JSScript* script = JSFunction::getOrCreateScript(cx, fun); if (!script) { return Match_Failure; } jsbytecode* pc = script->code(); uint16_t arg0, arg1; if (JSOp(*pc) != JSOp::GetArg) { return Match_None; } arg0 = GET_ARGNO(pc); pc += JSOpLength_GetArg; if (JSOp(*pc) != JSOp::GetArg) { return Match_None; } arg1 = GET_ARGNO(pc); pc += JSOpLength_GetArg; if (JSOp(*pc) != JSOp::Sub) { return Match_None; } pc += JSOpLength_Sub; if (JSOp(*pc) != JSOp::Return) { return Match_None; } if (arg0 == 0 && arg1 == 1) { return Match_LeftMinusRight; } if (arg0 == 1 && arg1 == 0) { return Match_RightMinusLeft; } return Match_None; } template static inline bool MergeSortByKey(K keys, size_t len, K scratch, C comparator, MutableHandle> vec) { MOZ_ASSERT(vec.length() >= len); /* Sort keys. */ if (!MergeSort(keys, len, scratch, comparator)) { return false; } /* * Reorder vec by keys in-place, going element by element. When an out-of- * place element is encountered, move that element to its proper position, * displacing whatever element was at *that* point to its proper position, * and so on until an element must be moved to the current position. * * At each outer iteration all elements up to |i| are sorted. If * necessary each inner iteration moves some number of unsorted elements * (including |i|) directly to sorted position. Thus on completion |*vec| * is sorted, and out-of-position elements have moved once. Complexity is * Θ(len) + O(len) == O(2*len), with each element visited at most twice. */ for (size_t i = 0; i < len; i++) { size_t j = keys[i].elementIndex; if (i == j) { continue; // fixed point } MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!"); Value tv = vec[j]; do { size_t k = keys[j].elementIndex; keys[j].elementIndex = j; vec[j].set(vec[k]); j = k; } while (j != i); // We could assert the loop invariant that |i == keys[i].elementIndex| // here if we synced |keys[i].elementIndex|. But doing so would render // the assertion vacuous, so don't bother, even in debug builds. vec[i].set(tv); } return true; } /* * Sort Values as strings. * * To minimize #conversions, SortLexicographically() first converts all Values * to strings at once, then sorts the elements by these cached strings. */ static bool SortLexicographically(JSContext* cx, MutableHandle> vec, size_t len) { MOZ_ASSERT(vec.length() >= len); StringBuffer sb(cx); Vector strElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!strElements.resize(2 * len)) { return false; } /* Convert Values to strings. */ size_t cursor = 0; for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) { return false; } if (!ValueToStringBuffer(cx, vec[i], sb)) { return false; } strElements[i] = {cursor, sb.length(), i}; cursor = sb.length(); } /* Sort Values in vec alphabetically. */ return MergeSortByKey(strElements.begin(), len, strElements.begin() + len, SortComparatorStringifiedElements(cx, sb), vec); } /* * Sort Values as numbers. * * To minimize #conversions, SortNumerically first converts all Values to * numerics at once, then sorts the elements by these cached numerics. */ static bool SortNumerically(JSContext* cx, MutableHandle> vec, size_t len, ComparatorMatchResult comp) { MOZ_ASSERT(vec.length() >= len); Vector numElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!numElements.resize(2 * len)) { return false; } /* Convert Values to numerics. */ for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) { return false; } double dv; if (!ToNumber(cx, vec[i], &dv)) { return false; } numElements[i] = {dv, i}; } /* Sort Values in vec numerically. */ return MergeSortByKey(numElements.begin(), len, numElements.begin() + len, SortComparatorNumerics[comp], vec); } static bool FillWithUndefined(JSContext* cx, HandleObject obj, uint32_t start, uint32_t count) { MOZ_ASSERT(start < start + count, "count > 0 and start + count doesn't overflow"); do { if (ObjectMayHaveExtraIndexedProperties(obj)) { break; } NativeObject* nobj = &obj->as(); if (!nobj->isExtensible()) { break; } if (obj->is() && !obj->as().lengthIsWritable() && start + count >= obj->as().length()) { break; } DenseElementResult result = nobj->ensureDenseElements(cx, start, count); if (result != DenseElementResult::Success) { if (result == DenseElementResult::Failure) { return false; } MOZ_ASSERT(result == DenseElementResult::Incomplete); break; } if (obj->is() && start + count >= obj->as().length()) { obj->as().setLength(start + count); } for (uint32_t i = 0; i < count; i++) { nobj->setDenseElement(start + i, UndefinedHandleValue); } return true; } while (false); for (uint32_t i = 0; i < count; i++) { if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, start + i, UndefinedHandleValue)) { return false; } } return true; } static bool ArrayNativeSortImpl(JSContext* cx, Handle obj, Handle fval, ComparatorMatchResult comp); bool js::intrinsic_ArrayNativeSort(JSContext* cx, unsigned argc, Value* vp) { // This function is called from the self-hosted Array.prototype.sort // implementation. It returns |true| if the array was sorted, otherwise it // returns |false| to notify the self-hosted code to perform the sorting. CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); HandleValue fval = args[0]; MOZ_ASSERT(fval.isUndefined() || IsCallable(fval)); ComparatorMatchResult comp; if (fval.isObject()) { comp = MatchNumericComparator(cx, &fval.toObject()); if (comp == Match_Failure) { return false; } if (comp == Match_None) { // Non-optimized user supplied comparators perform much better when // called from within a self-hosted sorting function. args.rval().setBoolean(false); return true; } } else { comp = Match_None; } Rooted obj(cx, &args.thisv().toObject()); if (!ArrayNativeSortImpl(cx, obj, fval, comp)) { return false; } args.rval().setBoolean(true); return true; } static bool ArrayNativeSortImpl(JSContext* cx, Handle obj, Handle fval, ComparatorMatchResult comp) { uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return false; } if (length < 2) { /* [] and [a] remain unchanged when sorted. */ return true; } if (length > UINT32_MAX) { ReportAllocationOverflow(cx); return false; } uint32_t len = uint32_t(length); /* * We need a temporary array of 2 * len Value to hold the array elements * and the scratch space for merge sort. Check that its size does not * overflow size_t, which would allow for indexing beyond the end of the * malloc'd vector. */ #if JS_BITS_PER_WORD == 32 if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) { ReportAllocationOverflow(cx); return false; } #endif size_t n, undefs; { Rooted> vec(cx, GCVector(cx)); if (!vec.reserve(2 * size_t(len))) { return false; } /* * By ECMA 262, 15.4.4.11, a property that does not exist (which we * call a "hole") is always greater than an existing property with * value undefined and that is always greater than any other property. * Thus to sort holes and undefs we simply count them, sort the rest * of elements, append undefs after them and then make holes after * undefs. */ undefs = 0; bool allStrings = true; bool allInts = true; RootedValue v(cx); if (IsPackedArray(obj)) { Handle array = obj.as(); for (uint32_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) { return false; } v.set(array->getDenseElement(i)); MOZ_ASSERT(!v.isMagic(JS_ELEMENTS_HOLE)); if (v.isUndefined()) { ++undefs; continue; } vec.infallibleAppend(v); allStrings = allStrings && v.isString(); allInts = allInts && v.isInt32(); } } else { for (uint32_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) { return false; } bool hole; if (!HasAndGetElement(cx, obj, i, &hole, &v)) { return false; } if (hole) { continue; } if (v.isUndefined()) { ++undefs; continue; } vec.infallibleAppend(v); allStrings = allStrings && v.isString(); allInts = allInts && v.isInt32(); } } /* * If the array only contains holes, we're done. But if it contains * undefs, those must be sorted to the front of the array. */ n = vec.length(); if (n == 0 && undefs == 0) { return true; } /* Here len == n + undefs + number_of_holes. */ if (comp == Match_None) { /* * Sort using the default comparator converting all elements to * strings. */ if (allStrings) { MOZ_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx))) { return false; } } else if (allInts) { MOZ_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorLexicographicInt32())) { return false; } } else { if (!SortLexicographically(cx, &vec, n)) { return false; } } } else { if (allInts) { MOZ_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp])) { return false; } } else { if (!SortNumerically(cx, &vec, n, comp)) { return false; } } } if (!SetArrayElements(cx, obj, 0, uint32_t(n), vec.begin())) { return false; } } /* Set undefs that sorted after the rest of elements. */ if (undefs > 0) { if (!FillWithUndefined(cx, obj, n, undefs)) { return false; } n += undefs; } /* Re-create any holes that sorted to the end of the array. */ for (uint32_t i = n; i < len; i++) { if (!CheckForInterrupt(cx) || !DeletePropertyOrThrow(cx, obj, i)) { return false; } } return true; } bool js::NewbornArrayPush(JSContext* cx, HandleObject obj, const Value& v) { Handle arr = obj.as(); MOZ_ASSERT(!v.isMagic()); MOZ_ASSERT(arr->lengthIsWritable()); uint32_t length = arr->length(); MOZ_ASSERT(length <= arr->getDenseCapacity()); if (!arr->ensureElements(cx, length + 1)) { return false; } arr->setDenseInitializedLength(length + 1); arr->setLength(length + 1); arr->initDenseElement(length, v); return true; } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.18 Array.prototype.push ( ...items ) static bool array_push(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "push"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return false; } if (!ObjectMayHaveExtraIndexedProperties(obj) && length <= UINT32_MAX) { DenseElementResult result = obj->as().setOrExtendDenseElements( cx, uint32_t(length), args.array(), args.length()); if (result != DenseElementResult::Incomplete) { if (result == DenseElementResult::Failure) { return false; } uint32_t newlength = uint32_t(length) + args.length(); args.rval().setNumber(newlength); // setOrExtendDenseElements takes care of updating the length for // arrays. Handle updates to the length of non-arrays here. if (!obj->is()) { MOZ_ASSERT(obj->is()); return SetLengthProperty(cx, obj, newlength); } return true; } } // Step 5. uint64_t newlength = length + args.length(); if (newlength >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TOO_LONG_ARRAY); return false; } // Steps 3-6. if (!SetArrayElements(cx, obj, length, args.length(), args.array())) { return false; } // Steps 7-8. args.rval().setNumber(double(newlength)); return SetLengthProperty(cx, obj, newlength); } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.17 Array.prototype.pop ( ) bool js::array_pop(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "pop"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t index; if (!GetLengthPropertyInlined(cx, obj, &index)) { return false; } // Steps 3-4. if (index == 0) { // Step 3.b. args.rval().setUndefined(); } else { // Steps 4.a-b. index--; // Steps 4.c, 4.f. if (!GetArrayElement(cx, obj, index, args.rval())) { return false; } // Steps 4.d. if (!DeletePropertyOrThrow(cx, obj, index)) { return false; } } // Steps 3.a, 4.e. return SetLengthProperty(cx, obj, index); } void js::ArrayShiftMoveElements(ArrayObject* arr) { AutoUnsafeCallWithABI unsafe; MOZ_ASSERT(arr->isExtensible()); MOZ_ASSERT(arr->lengthIsWritable()); MOZ_ASSERT(IsPackedArray(arr)); MOZ_ASSERT(!arr->denseElementsHaveMaybeInIterationFlag()); size_t initlen = arr->getDenseInitializedLength(); MOZ_ASSERT(initlen > 0); if (!arr->tryShiftDenseElements(1)) { arr->moveDenseElements(0, 1, initlen - 1); arr->setDenseInitializedLength(initlen - 1); } MOZ_ASSERT(arr->getDenseInitializedLength() == initlen - 1); arr->setLength(initlen - 1); } static inline void SetInitializedLength(JSContext* cx, NativeObject* obj, size_t initlen) { MOZ_ASSERT(obj->isExtensible()); size_t oldInitlen = obj->getDenseInitializedLength(); obj->setDenseInitializedLength(initlen); if (initlen < oldInitlen) { obj->shrinkElements(cx, initlen); } } static DenseElementResult ArrayShiftDenseKernel(JSContext* cx, HandleObject obj, MutableHandleValue rval) { if (!IsPackedArray(obj) && ObjectMayHaveExtraIndexedProperties(obj)) { return DenseElementResult::Incomplete; } Handle nobj = obj.as(); if (nobj->denseElementsMaybeInIteration()) { return DenseElementResult::Incomplete; } if (!nobj->isExtensible()) { return DenseElementResult::Incomplete; } size_t initlen = nobj->getDenseInitializedLength(); if (initlen == 0) { return DenseElementResult::Incomplete; } rval.set(nobj->getDenseElement(0)); if (rval.isMagic(JS_ELEMENTS_HOLE)) { rval.setUndefined(); } if (nobj->tryShiftDenseElements(1)) { return DenseElementResult::Success; } nobj->moveDenseElements(0, 1, initlen - 1); SetInitializedLength(cx, nobj, initlen - 1); return DenseElementResult::Success; } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.22 Array.prototype.shift ( ) static bool array_shift(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "shift"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 3. if (len == 0) { // Step 3.a. if (!SetLengthProperty(cx, obj, uint32_t(0))) { return false; } // Step 3.b. args.rval().setUndefined(); return true; } uint64_t newlen = len - 1; /* Fast paths. */ uint64_t startIndex; DenseElementResult result = ArrayShiftDenseKernel(cx, obj, args.rval()); if (result != DenseElementResult::Incomplete) { if (result == DenseElementResult::Failure) { return false; } if (len <= UINT32_MAX) { return SetLengthProperty(cx, obj, newlen); } startIndex = UINT32_MAX - 1; } else { // Steps 4, 9. if (!GetElement(cx, obj, 0, args.rval())) { return false; } startIndex = 0; } // Steps 5-6. RootedValue value(cx); for (uint64_t i = startIndex; i < newlen; i++) { if (!CheckForInterrupt(cx)) { return false; } bool hole; if (!HasAndGetElement(cx, obj, i + 1, &hole, &value)) { return false; } if (hole) { if (!DeletePropertyOrThrow(cx, obj, i)) { return false; } } else { if (!SetArrayElement(cx, obj, i, value)) { return false; } } } // Step 7. if (!DeletePropertyOrThrow(cx, obj, newlen)) { return false; } // Step 8. return SetLengthProperty(cx, obj, newlen); } // ES2017 draft rev 1b0184bc17fc09a8ddcf4aeec9b6d9fcac4eafce // 22.1.3.29 Array.prototype.unshift ( ...items ) static bool array_unshift(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "unshift"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return false; } // Steps 3-4. if (args.length() > 0) { bool optimized = false; do { if (length > UINT32_MAX) { break; } if (ObjectMayHaveExtraIndexedProperties(obj)) { break; } NativeObject* nobj = &obj->as(); if (nobj->denseElementsMaybeInIteration()) { break; } if (!nobj->isExtensible()) { break; } if (nobj->is() && !nobj->as().lengthIsWritable()) { break; } if (!nobj->tryUnshiftDenseElements(args.length())) { DenseElementResult result = nobj->ensureDenseElements(cx, uint32_t(length), args.length()); if (result != DenseElementResult::Success) { if (result == DenseElementResult::Failure) { return false; } MOZ_ASSERT(result == DenseElementResult::Incomplete); break; } if (length > 0) { nobj->moveDenseElements(args.length(), 0, uint32_t(length)); } } for (uint32_t i = 0; i < args.length(); i++) { nobj->setDenseElement(i, args[i]); } optimized = true; } while (false); if (!optimized) { if (length > 0) { uint64_t last = length; uint64_t upperIndex = last + args.length(); // Step 4.a. if (upperIndex >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TOO_LONG_ARRAY); return false; } // Steps 4.b-c. RootedValue value(cx); do { --last; --upperIndex; if (!CheckForInterrupt(cx)) { return false; } bool hole; if (!HasAndGetElement(cx, obj, last, &hole, &value)) { return false; } if (hole) { if (!DeletePropertyOrThrow(cx, obj, upperIndex)) { return false; } } else { if (!SetArrayElement(cx, obj, upperIndex, value)) { return false; } } } while (last != 0); } // Steps 4.d-f. /* Copy from args to the bottom of the array. */ if (!SetArrayElements(cx, obj, 0, args.length(), args.array())) { return false; } } } // Step 5. uint64_t newlength = length + args.length(); if (!SetLengthProperty(cx, obj, newlength)) { return false; } // Step 6. /* Follow Perl by returning the new array length. */ args.rval().setNumber(double(newlength)); return true; } enum class ArrayAccess { Read, Write }; /* * Returns true if this is a dense array whose properties ending at |endIndex| * (exclusive) may be accessed (get, set, delete) directly through its * contiguous vector of elements without fear of getters, setters, etc. along * the prototype chain, or of enumerators requiring notification of * modifications. */ template static bool CanOptimizeForDenseStorage(HandleObject arr, uint64_t endIndex) { /* If the desired properties overflow dense storage, we can't optimize. */ if (endIndex > UINT32_MAX) { return false; } if (Access == ArrayAccess::Read) { /* * Dense storage read access is possible for any packed array as long * as we only access properties within the initialized length. In all * other cases we need to ensure there are no other indexed properties * on this object or on the prototype chain. Callers are required to * clamp the read length, so it doesn't exceed the initialized length. */ if (IsPackedArray(arr) && endIndex <= arr->as().getDenseInitializedLength()) { return true; } return !ObjectMayHaveExtraIndexedProperties(arr); } /* There's no optimizing possible if it's not an array. */ if (!arr->is()) { return false; } /* If the length is non-writable, always pick the slow path */ if (!arr->as().lengthIsWritable()) { return false; } /* Also pick the slow path if the object is non-extensible. */ if (!arr->as().isExtensible()) { return false; } /* Also pick the slow path if the object is being iterated over. */ if (arr->as().denseElementsMaybeInIteration()) { return false; } /* Or we attempt to write to indices outside the initialized length. */ if (endIndex > arr->as().getDenseInitializedLength()) { return false; } /* * Now watch out for getters and setters along the prototype chain or in * other indexed properties on the object. Packed arrays don't have any * other indexed properties by definition. */ return IsPackedArray(arr) || !ObjectMayHaveExtraIndexedProperties(arr); } static ArrayObject* CopyDenseArrayElements(JSContext* cx, Handle obj, uint32_t begin, uint32_t count) { size_t initlen = obj->getDenseInitializedLength(); MOZ_ASSERT(initlen <= UINT32_MAX, "initialized length shouldn't exceed UINT32_MAX"); uint32_t newlength = 0; if (initlen > begin) { newlength = std::min(initlen - begin, count); } ArrayObject* narr = NewDenseFullyAllocatedArray(cx, newlength); if (!narr) { return nullptr; } MOZ_ASSERT(count >= narr->length()); narr->setLength(count); if (newlength > 0) { narr->initDenseElements(obj, begin, newlength); } return narr; } static bool CopyArrayElements(JSContext* cx, HandleObject obj, uint64_t begin, uint64_t count, Handle result) { MOZ_ASSERT(result->length() == count); uint64_t startIndex = 0; RootedValue value(cx); // Use dense storage for new indexed properties where possible. { uint32_t index = 0; uint32_t limit = std::min(count, PropertyKey::IntMax); for (; index < limit; index++) { bool hole; if (!CheckForInterrupt(cx) || !HasAndGetElement(cx, obj, begin + index, &hole, &value)) { return false; } if (!hole) { DenseElementResult edResult = result->ensureDenseElements(cx, index, 1); if (edResult != DenseElementResult::Success) { if (edResult == DenseElementResult::Failure) { return false; } MOZ_ASSERT(edResult == DenseElementResult::Incomplete); if (!DefineDataElement(cx, result, index, value)) { return false; } break; } result->setDenseElement(index, value); } } startIndex = index + 1; } // Copy any remaining elements. for (uint64_t i = startIndex; i < count; i++) { bool hole; if (!CheckForInterrupt(cx) || !HasAndGetElement(cx, obj, begin + i, &hole, &value)) { return false; } if (!hole && !DefineArrayElement(cx, result, i, value)) { return false; } } return true; } // Helpers for array_splice_impl() and array_to_spliced() // // Initialize variables common to splice() and toSpliced(): // - GetActualStart() returns the index at which to start deleting elements. // - GetItemCount() returns the number of new elements being added. // - GetActualDeleteCount() returns the number of elements being deleted. static bool GetActualStart(JSContext* cx, HandleValue start, uint64_t len, uint64_t* result) { MOZ_ASSERT(len < DOUBLE_INTEGRAL_PRECISION_LIMIT); // Steps from proposal: https://github.com/tc39/proposal-change-array-by-copy // Array.prototype.toSpliced() // Step 3. Let relativeStart be ? ToIntegerOrInfinity(start). double relativeStart; if (!ToInteger(cx, start, &relativeStart)) { return false; } // Steps 4-5. If relativeStart is -∞, let actualStart be 0. // Else if relativeStart < 0, let actualStart be max(len + relativeStart, 0). if (relativeStart < 0) { *result = uint64_t(std::max(double(len) + relativeStart, 0.0)); } else { // Step 6. Else, let actualStart be min(relativeStart, len). *result = uint64_t(std::min(relativeStart, double(len))); } return true; } static uint32_t GetItemCount(const CallArgs& args) { if (args.length() < 2) { return 0; } return (args.length() - 2); } static bool GetActualDeleteCount(JSContext* cx, const CallArgs& args, HandleObject obj, uint64_t len, uint64_t actualStart, uint32_t insertCount, uint64_t* actualDeleteCount) { MOZ_ASSERT(len < DOUBLE_INTEGRAL_PRECISION_LIMIT); MOZ_ASSERT(actualStart <= len); MOZ_ASSERT(insertCount == GetItemCount(args)); // Steps from proposal: https://github.com/tc39/proposal-change-array-by-copy // Array.prototype.toSpliced() if (args.length() < 1) { // Step 8. If start is not present, then let actualDeleteCount be 0. *actualDeleteCount = 0; } else if (args.length() < 2) { // Step 9. Else if deleteCount is not present, then let actualDeleteCount be // len - actualStart. *actualDeleteCount = len - actualStart; } else { // Step 10.a. Else, let dc be toIntegerOrInfinity(deleteCount). double deleteCount; if (!ToInteger(cx, args.get(1), &deleteCount)) { return false; } // Step 10.b. Let actualDeleteCount be the result of clamping dc between 0 // and len - actualStart. *actualDeleteCount = uint64_t( std::min(std::max(0.0, deleteCount), double(len - actualStart))); MOZ_ASSERT(*actualDeleteCount <= len); // Step 11. Let newLen be len + insertCount - actualDeleteCount. // Step 12. If newLen > 2^53 - 1, throw a TypeError exception. if (len + uint64_t(insertCount) - *actualDeleteCount >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TOO_LONG_ARRAY); return false; } } MOZ_ASSERT(actualStart + *actualDeleteCount <= len); return true; } static bool array_splice_impl(JSContext* cx, unsigned argc, Value* vp, bool returnValueIsUsed) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "splice"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } /* Step 2. */ uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } /* Steps 3-6. */ /* actualStart is the index after which elements will be deleted and/or new elements will be added */ uint64_t actualStart; if (!GetActualStart(cx, args.get(0), len, &actualStart)) { return false; } /* Steps 7-10.*/ /* itemCount is the number of elements being added */ uint32_t itemCount = GetItemCount(args); /* actualDeleteCount is the number of elements being deleted */ uint64_t actualDeleteCount; if (!GetActualDeleteCount(cx, args, obj, len, actualStart, itemCount, &actualDeleteCount)) { return false; } RootedObject arr(cx); if (IsArraySpecies(cx, obj)) { if (actualDeleteCount > UINT32_MAX) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } uint32_t count = uint32_t(actualDeleteCount); if (CanOptimizeForDenseStorage(obj, actualStart + count)) { MOZ_ASSERT(actualStart <= UINT32_MAX, "if actualStart + count <= UINT32_MAX, then actualStart <= " "UINT32_MAX"); if (returnValueIsUsed) { /* Steps 11-13. */ arr = CopyDenseArrayElements(cx, obj.as(), uint32_t(actualStart), count); if (!arr) { return false; } } } else { /* Step 11. */ arr = NewDenseFullyAllocatedArray(cx, count); if (!arr) { return false; } /* Steps 12-13. */ if (!CopyArrayElements(cx, obj, actualStart, count, arr.as())) { return false; } } } else { /* Step 11. */ if (!ArraySpeciesCreate(cx, obj, actualDeleteCount, &arr)) { return false; } /* Steps 12-13. */ RootedValue fromValue(cx); for (uint64_t k = 0; k < actualDeleteCount; k++) { if (!CheckForInterrupt(cx)) { return false; } /* Steps 13.b, 13.c.i. */ bool hole; if (!HasAndGetElement(cx, obj, actualStart + k, &hole, &fromValue)) { return false; } /* Step 13.c. */ if (!hole) { /* Step 13.c.ii. */ if (!DefineArrayElement(cx, arr, k, fromValue)) { return false; } } } /* Step 14. */ if (!SetLengthProperty(cx, arr, actualDeleteCount)) { return false; } } /* Step 15. */ uint64_t finalLength = len - actualDeleteCount + itemCount; if (itemCount < actualDeleteCount) { /* Step 16: the array is being shrunk. */ uint64_t sourceIndex = actualStart + actualDeleteCount; uint64_t targetIndex = actualStart + itemCount; if (CanOptimizeForDenseStorage(obj, len)) { MOZ_ASSERT(sourceIndex <= len && targetIndex <= len && len <= UINT32_MAX, "sourceIndex and targetIndex are uint32 array indices"); MOZ_ASSERT(finalLength < len, "finalLength is strictly less than len"); MOZ_ASSERT(obj->is()); /* Step 16.b. */ Handle arr = obj.as(); if (targetIndex != 0 || !arr->tryShiftDenseElements(sourceIndex)) { arr->moveDenseElements(uint32_t(targetIndex), uint32_t(sourceIndex), uint32_t(len - sourceIndex)); } /* Steps 20. */ SetInitializedLength(cx, arr, finalLength); } else { /* * This is all very slow if the length is very large. We don't yet * have the ability to iterate in sorted order, so we just do the * pessimistic thing and let CheckForInterrupt handle the * fallout. */ /* Step 16. */ RootedValue fromValue(cx); for (uint64_t from = sourceIndex, to = targetIndex; from < len; from++, to++) { /* Steps 15.b.i-ii (implicit). */ if (!CheckForInterrupt(cx)) { return false; } /* Steps 16.b.iii-v */ bool hole; if (!HasAndGetElement(cx, obj, from, &hole, &fromValue)) { return false; } if (hole) { if (!DeletePropertyOrThrow(cx, obj, to)) { return false; } } else { if (!SetArrayElement(cx, obj, to, fromValue)) { return false; } } } /* Step 16d. */ if (!DeletePropertiesOrThrow(cx, obj, len, finalLength)) { return false; } } } else if (itemCount > actualDeleteCount) { MOZ_ASSERT(actualDeleteCount <= UINT32_MAX); uint32_t deleteCount = uint32_t(actualDeleteCount); /* Step 17. */ // Fast path for when we can simply extend and move the dense elements. auto extendElements = [len, itemCount, deleteCount](JSContext* cx, HandleObject obj) { if (!obj->is()) { return DenseElementResult::Incomplete; } if (len > UINT32_MAX) { return DenseElementResult::Incomplete; } // Ensure there are no getters/setters or other extra indexed properties. if (ObjectMayHaveExtraIndexedProperties(obj)) { return DenseElementResult::Incomplete; } // Watch out for arrays with non-writable length or non-extensible arrays. // In these cases `splice` may have to throw an exception so we let the // slow path handle it. We also have to ensure we maintain the // |capacity <= initializedLength| invariant for such objects. See // NativeObject::shrinkCapacityToInitializedLength. Handle arr = obj.as(); if (!arr->lengthIsWritable() || !arr->isExtensible()) { return DenseElementResult::Incomplete; } // Also use the slow path if there might be an active for-in iterator so // that we don't have to worry about suppressing deleted properties. if (arr->denseElementsMaybeInIteration()) { return DenseElementResult::Incomplete; } return arr->ensureDenseElements(cx, uint32_t(len), itemCount - deleteCount); }; DenseElementResult res = extendElements(cx, obj); if (res == DenseElementResult::Failure) { return false; } if (res == DenseElementResult::Success) { MOZ_ASSERT(finalLength <= UINT32_MAX); MOZ_ASSERT((actualStart + actualDeleteCount) <= len && len <= UINT32_MAX, "start and deleteCount are uint32 array indices"); MOZ_ASSERT(actualStart + itemCount <= UINT32_MAX, "can't overflow because |len - actualDeleteCount + itemCount " "<= UINT32_MAX| " "and |actualStart <= len - actualDeleteCount| are both true"); uint32_t start = uint32_t(actualStart); uint32_t length = uint32_t(len); Handle arr = obj.as(); arr->moveDenseElements(start + itemCount, start + deleteCount, length - (start + deleteCount)); /* Step 20. */ SetInitializedLength(cx, arr, finalLength); } else { MOZ_ASSERT(res == DenseElementResult::Incomplete); RootedValue fromValue(cx); for (uint64_t k = len - actualDeleteCount; k > actualStart; k--) { if (!CheckForInterrupt(cx)) { return false; } /* Step 17.b.i. */ uint64_t from = k + actualDeleteCount - 1; /* Step 17.b.ii. */ uint64_t to = k + itemCount - 1; /* Steps 17.b.iii, 17.b.iv.1. */ bool hole; if (!HasAndGetElement(cx, obj, from, &hole, &fromValue)) { return false; } /* Steps 17.b.iv. */ if (hole) { /* Step 17.b.v.1. */ if (!DeletePropertyOrThrow(cx, obj, to)) { return false; } } else { /* Step 17.b.iv.2. */ if (!SetArrayElement(cx, obj, to, fromValue)) { return false; } } } } } Value* items = args.array() + 2; /* Steps 18-19. */ if (!SetArrayElements(cx, obj, actualStart, itemCount, items)) { return false; } /* Step 20. */ if (!SetLengthProperty(cx, obj, finalLength)) { return false; } /* Step 21. */ if (returnValueIsUsed) { args.rval().setObject(*arr); } return true; } /* ES 2016 draft Mar 25, 2016 22.1.3.26. */ static bool array_splice(JSContext* cx, unsigned argc, Value* vp) { return array_splice_impl(cx, argc, vp, true); } static bool array_splice_noRetVal(JSContext* cx, unsigned argc, Value* vp) { return array_splice_impl(cx, argc, vp, false); } static void CopyDenseElementsFillHoles(ArrayObject* arr, NativeObject* nobj, uint32_t length) { // Ensure |arr| is an empty array with sufficient capacity. MOZ_ASSERT(arr->getDenseInitializedLength() == 0); MOZ_ASSERT(arr->getDenseCapacity() >= length); MOZ_ASSERT(length > 0); uint32_t count = std::min(nobj->getDenseInitializedLength(), length); if (count > 0) { if (nobj->denseElementsArePacked()) { // Copy all dense elements when no holes are present. arr->initDenseElements(nobj, 0, count); } else { arr->setDenseInitializedLength(count); // Handle each element separately to filter out holes. for (uint32_t i = 0; i < count; i++) { Value val = nobj->getDenseElement(i); if (val.isMagic(JS_ELEMENTS_HOLE)) { val = UndefinedValue(); } arr->initDenseElement(i, val); } } } // Fill trailing holes with undefined. if (count < length) { arr->setDenseInitializedLength(length); for (uint32_t i = count; i < length; i++) { arr->initDenseElement(i, UndefinedValue()); } } // Ensure |length| elements have been copied and no holes are present. MOZ_ASSERT(arr->getDenseInitializedLength() == length); MOZ_ASSERT(arr->denseElementsArePacked()); } // https://github.com/tc39/proposal-change-array-by-copy // Array.prototype.toSpliced() static bool array_toSpliced(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "toSpliced"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. Let O be ? ToObject(this value). RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. Let len be ? LengthOfArrayLike(O). uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Steps 3-6. // |actualStart| is the index after which elements will be deleted and/or // new elements will be added uint64_t actualStart; if (!GetActualStart(cx, args.get(0), len, &actualStart)) { return false; } MOZ_ASSERT(actualStart <= len); // Step 7. Let insertCount be the number of elements in items. uint32_t insertCount = GetItemCount(args); // Steps 8-10. // actualDeleteCount is the number of elements being deleted uint64_t actualDeleteCount; if (!GetActualDeleteCount(cx, args, obj, len, actualStart, insertCount, &actualDeleteCount)) { return false; } MOZ_ASSERT(actualStart + actualDeleteCount <= len); // Step 11. Let newLen be len + insertCount - actualDeleteCount. uint64_t newLen = len + insertCount - actualDeleteCount; // Step 12 handled by GetActualDeleteCount(). MOZ_ASSERT(newLen < DOUBLE_INTEGRAL_PRECISION_LIMIT); MOZ_ASSERT(actualStart <= newLen, "if |actualStart + actualDeleteCount <= len| and " "|newLen = len + insertCount - actualDeleteCount|, then " "|actualStart <= newLen|"); // ArrayCreate, step 1. if (newLen > UINT32_MAX) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } // Step 13. Let A be ? ArrayCreate(𝔽(newLen)). Rooted arr(cx, NewDensePartlyAllocatedArray(cx, uint32_t(newLen))); if (!arr) { return false; } // Steps 14-19 optimized for dense elements. if (CanOptimizeForDenseStorage(obj, len)) { MOZ_ASSERT(len <= UINT32_MAX); MOZ_ASSERT(actualDeleteCount <= UINT32_MAX, "if |actualStart + actualDeleteCount <= len| and " "|len <= UINT32_MAX|, then |actualDeleteCount <= UINT32_MAX|"); uint32_t length = uint32_t(len); uint32_t newLength = uint32_t(newLen); uint32_t start = uint32_t(actualStart); uint32_t deleteCount = uint32_t(actualDeleteCount); auto nobj = obj.as(); ArrayObject* arr = NewDenseFullyAllocatedArray(cx, newLength); if (!arr) { return false; } arr->setLength(newLength); // Below code doesn't handle the case when the storage has to grow, // therefore the capacity must fit for at least |newLength| elements. MOZ_ASSERT(arr->getDenseCapacity() >= newLength); if (deleteCount == 0 && insertCount == 0) { // Copy the array when we don't have to remove or insert any elements. if (newLength > 0) { CopyDenseElementsFillHoles(arr, nobj, newLength); } } else { // Copy nobj[0..start] to arr[0..start]. if (start > 0) { CopyDenseElementsFillHoles(arr, nobj, start); } // Insert |items| into arr[start..(start + insertCount)]. if (insertCount > 0) { auto items = HandleValueArray::subarray(args, 2, insertCount); // Prefer |initDenseElements| because it's faster. if (arr->getDenseInitializedLength() == 0) { arr->initDenseElements(items.begin(), items.length()); } else { arr->ensureDenseInitializedLength(start, items.length()); arr->copyDenseElements(start, items.begin(), items.length()); } } uint32_t fromIndex = start + deleteCount; uint32_t toIndex = start + insertCount; MOZ_ASSERT((length - fromIndex) == (newLength - toIndex), "Copies all remaining elements to the end"); // Copy nobj[(start + deleteCount)..length] to // arr[(start + insertCount)..newLength]. if (fromIndex < length) { uint32_t end = std::min(length, nobj->getDenseInitializedLength()); if (fromIndex < end) { uint32_t count = end - fromIndex; if (nobj->denseElementsArePacked()) { // Copy all dense elements when no holes are present. const Value* src = nobj->getDenseElements() + fromIndex; arr->ensureDenseInitializedLength(toIndex, count); arr->copyDenseElements(toIndex, src, count); fromIndex += count; toIndex += count; } else { arr->setDenseInitializedLength(toIndex + count); // Handle each element separately to filter out holes. for (uint32_t i = 0; i < count; i++) { Value val = nobj->getDenseElement(fromIndex++); if (val.isMagic(JS_ELEMENTS_HOLE)) { val = UndefinedValue(); } arr->initDenseElement(toIndex++, val); } } } arr->setDenseInitializedLength(newLength); // Fill trailing holes with undefined. while (fromIndex < length) { arr->initDenseElement(toIndex++, UndefinedValue()); fromIndex++; } } MOZ_ASSERT(fromIndex == length); MOZ_ASSERT(toIndex == newLength); } // Ensure the result array is packed and has the correct length. MOZ_ASSERT(IsPackedArray(arr)); MOZ_ASSERT(arr->length() == newLength); args.rval().setObject(*arr); return true; } // Copy everything before start // Step 14. Let i be 0. uint32_t i = 0; // Step 15. Let r be actualStart + actualDeleteCount. uint64_t r = actualStart + actualDeleteCount; // Step 16. Repeat while i < actualStart, RootedValue iValue(cx); while (i < uint32_t(actualStart)) { if (!CheckForInterrupt(cx)) { return false; } // Skip Step 16.a. Let Pi be ! ToString(𝔽(i)). // Step 16.b. Let iValue be ? Get(O, Pi). if (!GetArrayElement(cx, obj, i, &iValue)) { return false; } // Step 16.c. Perform ! CreateDataPropertyOrThrow(A, Pi, iValue). if (!DefineArrayElement(cx, arr, i, iValue)) { return false; } // Step 16.d. Set i to i + 1. i++; } // Result array now contains all elements before start. // Copy new items if (insertCount > 0) { HandleValueArray items = HandleValueArray::subarray(args, 2, insertCount); // Fast-path to copy all items in one go. DenseElementResult result = arr->setOrExtendDenseElements(cx, i, items.begin(), items.length()); if (result == DenseElementResult::Failure) { return false; } if (result == DenseElementResult::Success) { i += items.length(); } else { MOZ_ASSERT(result == DenseElementResult::Incomplete); // Step 17. For each element E of items, do for (size_t j = 0; j < items.length(); j++) { if (!CheckForInterrupt(cx)) { return false; } // Skip Step 17.a. Let Pi be ! ToString(𝔽(i)). // Step 17.b. Perform ! CreateDataPropertyOrThrow(A, Pi, E). if (!DefineArrayElement(cx, arr, i, items[j])) { return false; } // Step 17.c. Set i to i + 1. i++; } } } // Copy items after new items // Step 18. Repeat, while i < newLen, RootedValue fromValue(cx); while (i < uint32_t(newLen)) { if (!CheckForInterrupt(cx)) { return false; } // Skip Step 18.a. Let Pi be ! ToString(𝔽(i)). // Skip Step 18.b. Let from be ! ToString(𝔽(r)). // Step 18.c. Let fromValue be ? Get(O, from). */ if (!GetArrayElement(cx, obj, r, &fromValue)) { return false; } // Step 18.d. Perform ! CreateDataPropertyOrThrow(A, Pi, fromValue). if (!DefineArrayElement(cx, arr, i, fromValue)) { return false; } // Step 18.e. Set i to i + 1. i++; // Step 18.f. Set r to r + 1. r++; } // Step 19. Return A. args.rval().setObject(*arr); return true; } // https://github.com/tc39/proposal-change-array-by-copy // Array.prototype.with() static bool array_with(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "with"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. Let O be ? ToObject(this value). RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. Let len be ? LengthOfArrayLike(O). uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 3. Let relativeIndex be ? ToIntegerOrInfinity(index). double relativeIndex; if (!ToInteger(cx, args.get(0), &relativeIndex)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_INDEX); return false; } // Step 4. If relativeIndex >= 0, let actualIndex be relativeIndex. double actualIndex = relativeIndex; if (actualIndex < 0) { // Step 5. Else, let actualIndex be len + relativeIndex. actualIndex = double(len) + actualIndex; } // Step 6. If actualIndex >= len or actualIndex < 0, throw a RangeError // exception. if (actualIndex < 0 || actualIndex >= double(len)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_INDEX); return false; } // ArrayCreate, step 1. if (len > UINT32_MAX) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } uint32_t length = uint32_t(len); MOZ_ASSERT(length > 0); MOZ_ASSERT(0 <= actualIndex && actualIndex < UINT32_MAX); // Steps 7-10 optimized for dense elements. if (CanOptimizeForDenseStorage(obj, length)) { auto nobj = obj.as(); ArrayObject* arr = NewDenseFullyAllocatedArray(cx, length); if (!arr) { return false; } arr->setLength(length); CopyDenseElementsFillHoles(arr, nobj, length); // Replace the value at |actualIndex|. arr->setDenseElement(uint32_t(actualIndex), args.get(1)); // Ensure the result array is packed and has the correct length. MOZ_ASSERT(IsPackedArray(arr)); MOZ_ASSERT(arr->length() == length); args.rval().setObject(*arr); return true; } // Step 7. Let A be ? ArrayCreate(𝔽(len)). RootedObject arr(cx, NewDensePartlyAllocatedArray(cx, length)); if (!arr) { return false; } // Steps 8-9. Let k be 0; Repeat, while k < len, RootedValue fromValue(cx); for (uint32_t k = 0; k < length; k++) { if (!CheckForInterrupt(cx)) { return false; } // Skip Step 9.a. Let Pk be ! ToString(𝔽(k)). // Step 9.b. If k is actualIndex, let fromValue be value. if (k == uint32_t(actualIndex)) { fromValue = args.get(1); } else { // Step 9.c. Else, let fromValue be ? Get(O, 𝔽(k)). if (!GetArrayElement(cx, obj, k, &fromValue)) { return false; } } // Step 9.d. Perform ! CreateDataPropertyOrThrow(A, 𝔽(k), fromValue). if (!DefineArrayElement(cx, arr, k, fromValue)) { return false; } } // Step 10. Return A. args.rval().setObject(*arr); return true; } struct SortComparatorIndexes { bool operator()(uint32_t a, uint32_t b, bool* lessOrEqualp) { *lessOrEqualp = (a <= b); return true; } }; // Returns all indexed properties in the range [begin, end) found on |obj| or // its proto chain. This function does not handle proxies, objects with // resolve/lookupProperty hooks or indexed getters, as those can introduce // new properties. In those cases, *success is set to |false|. static bool GetIndexedPropertiesInRange(JSContext* cx, HandleObject obj, uint64_t begin, uint64_t end, Vector& indexes, bool* success) { *success = false; // TODO: Add IdIsIndex with support for large indices. if (end > UINT32_MAX) { return true; } MOZ_ASSERT(begin <= UINT32_MAX); // First, look for proxies or class hooks that can introduce extra // properties. JSObject* pobj = obj; do { if (!pobj->is() || pobj->getClass()->getResolve() || pobj->getOpsLookupProperty()) { return true; } } while ((pobj = pobj->staticPrototype())); // Collect indexed property names. pobj = obj; do { // Append dense elements. NativeObject* nativeObj = &pobj->as(); uint32_t initLen = nativeObj->getDenseInitializedLength(); for (uint32_t i = begin; i < initLen && i < end; i++) { if (nativeObj->getDenseElement(i).isMagic(JS_ELEMENTS_HOLE)) { continue; } if (!indexes.append(i)) { return false; } } // Append typed array elements. if (nativeObj->is()) { size_t len = nativeObj->as().length(); for (uint32_t i = begin; i < len && i < end; i++) { if (!indexes.append(i)) { return false; } } } // Append sparse elements. if (nativeObj->isIndexed()) { ShapePropertyIter iter(nativeObj->shape()); for (; !iter.done(); iter++) { jsid id = iter->key(); uint32_t i; if (!IdIsIndex(id, &i)) { continue; } if (!(begin <= i && i < end)) { continue; } // Watch out for getters, they can add new properties. if (!iter->isDataProperty()) { return true; } if (!indexes.append(i)) { return false; } } } } while ((pobj = pobj->staticPrototype())); // Sort the indexes. Vector tmp(cx); size_t n = indexes.length(); if (!tmp.resize(n)) { return false; } if (!MergeSort(indexes.begin(), n, tmp.begin(), SortComparatorIndexes())) { return false; } // Remove duplicates. if (!indexes.empty()) { uint32_t last = 0; for (size_t i = 1, len = indexes.length(); i < len; i++) { uint32_t elem = indexes[i]; if (indexes[last] != elem) { last++; indexes[last] = elem; } } if (!indexes.resize(last + 1)) { return false; } } *success = true; return true; } static bool SliceSparse(JSContext* cx, HandleObject obj, uint64_t begin, uint64_t end, Handle result) { MOZ_ASSERT(begin <= end); Vector indexes(cx); bool success; if (!GetIndexedPropertiesInRange(cx, obj, begin, end, indexes, &success)) { return false; } if (!success) { return CopyArrayElements(cx, obj, begin, end - begin, result); } MOZ_ASSERT(end <= UINT32_MAX, "indices larger than UINT32_MAX should be rejected by " "GetIndexedPropertiesInRange"); RootedValue value(cx); for (uint32_t index : indexes) { MOZ_ASSERT(begin <= index && index < end); bool hole; if (!HasAndGetElement(cx, obj, index, &hole, &value)) { return false; } if (!hole && !DefineDataElement(cx, result, index - uint32_t(begin), value)) { return false; } } return true; } static JSObject* SliceArguments(JSContext* cx, Handle argsobj, uint32_t begin, uint32_t count) { MOZ_ASSERT(!argsobj->hasOverriddenLength() && !argsobj->hasOverriddenElement()); MOZ_ASSERT(begin + count <= argsobj->initialLength()); ArrayObject* result = NewDenseFullyAllocatedArray(cx, count); if (!result) { return nullptr; } result->setDenseInitializedLength(count); for (uint32_t index = 0; index < count; index++) { const Value& v = argsobj->element(begin + index); result->initDenseElement(index, v); } return result; } template static inline ArrayLength NormalizeSliceTerm(T value, ArrayLength length) { if (value < 0) { value += length; if (value < 0) { return 0; } } else if (double(value) > double(length)) { return length; } return ArrayLength(value); } static bool ArraySliceOrdinary(JSContext* cx, HandleObject obj, uint64_t begin, uint64_t end, MutableHandleValue rval) { if (begin > end) { begin = end; } if ((end - begin) > UINT32_MAX) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } uint32_t count = uint32_t(end - begin); if (CanOptimizeForDenseStorage(obj, end)) { MOZ_ASSERT(begin <= UINT32_MAX, "if end <= UINT32_MAX, then begin <= UINT32_MAX"); JSObject* narr = CopyDenseArrayElements(cx, obj.as(), uint32_t(begin), count); if (!narr) { return false; } rval.setObject(*narr); return true; } if (obj->is()) { Handle argsobj = obj.as(); if (!argsobj->hasOverriddenLength() && !argsobj->hasOverriddenElement()) { MOZ_ASSERT(begin <= UINT32_MAX, "begin is limited by |argsobj|'s length"); JSObject* narr = SliceArguments(cx, argsobj, uint32_t(begin), count); if (!narr) { return false; } rval.setObject(*narr); return true; } } Rooted narr(cx, NewDensePartlyAllocatedArray(cx, count)); if (!narr) { return false; } if (end <= UINT32_MAX) { if (js::GetElementsOp op = obj->getOpsGetElements()) { ElementAdder adder(cx, narr, count, ElementAdder::CheckHasElemPreserveHoles); if (!op(cx, obj, uint32_t(begin), uint32_t(end), &adder)) { return false; } rval.setObject(*narr); return true; } } if (obj->is() && obj->as().isIndexed() && count > 1000) { if (!SliceSparse(cx, obj, begin, end, narr)) { return false; } } else { if (!CopyArrayElements(cx, obj, begin, count, narr)) { return false; } } rval.setObject(*narr); return true; } /* ES 2016 draft Mar 25, 2016 22.1.3.23. */ static bool array_slice(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "slice"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } /* Step 2. */ uint64_t length; if (!GetLengthPropertyInlined(cx, obj, &length)) { return false; } uint64_t k = 0; uint64_t final = length; if (args.length() > 0) { double d; /* Step 3. */ if (!ToInteger(cx, args[0], &d)) { return false; } /* Step 4. */ k = NormalizeSliceTerm(d, length); if (args.hasDefined(1)) { /* Step 5. */ if (!ToInteger(cx, args[1], &d)) { return false; } /* Step 6. */ final = NormalizeSliceTerm(d, length); } } if (IsArraySpecies(cx, obj)) { /* Steps 7-12: Optimized for ordinary array. */ return ArraySliceOrdinary(cx, obj, k, final, args.rval()); } /* Step 7. */ uint64_t count = final > k ? final - k : 0; /* Step 8. */ RootedObject arr(cx); if (!ArraySpeciesCreate(cx, obj, count, &arr)) { return false; } /* Step 9. */ uint64_t n = 0; /* Step 10. */ RootedValue kValue(cx); while (k < final) { if (!CheckForInterrupt(cx)) { return false; } /* Steps 10.a-b, and 10.c.i. */ bool kNotPresent; if (!HasAndGetElement(cx, obj, k, &kNotPresent, &kValue)) { return false; } /* Step 10.c. */ if (!kNotPresent) { /* Steps 10.c.ii. */ if (!DefineArrayElement(cx, arr, n, kValue)) { return false; } } /* Step 10.d. */ k++; /* Step 10.e. */ n++; } /* Step 11. */ if (!SetLengthProperty(cx, arr, n)) { return false; } /* Step 12. */ args.rval().setObject(*arr); return true; } static bool ArraySliceDenseKernel(JSContext* cx, ArrayObject* arr, int32_t beginArg, int32_t endArg, ArrayObject* result) { uint32_t length = arr->length(); uint32_t begin = NormalizeSliceTerm(beginArg, length); uint32_t end = NormalizeSliceTerm(endArg, length); if (begin > end) { begin = end; } uint32_t count = end - begin; size_t initlen = arr->getDenseInitializedLength(); if (initlen > begin) { uint32_t newlength = std::min(initlen - begin, count); if (newlength > 0) { if (!result->ensureElements(cx, newlength)) { return false; } result->initDenseElements(arr, begin, newlength); } } MOZ_ASSERT(count >= result->length()); result->setLength(count); return true; } JSObject* js::ArraySliceDense(JSContext* cx, HandleObject obj, int32_t begin, int32_t end, HandleObject result) { MOZ_ASSERT(IsPackedArray(obj)); if (result && IsArraySpecies(cx, obj)) { if (!ArraySliceDenseKernel(cx, &obj->as(), begin, end, &result->as())) { return nullptr; } return result; } // Slower path if the JIT wasn't able to allocate an object inline. JS::RootedValueArray<4> argv(cx); argv[0].setUndefined(); argv[1].setObject(*obj); argv[2].setInt32(begin); argv[3].setInt32(end); if (!array_slice(cx, 2, argv.begin())) { return nullptr; } return &argv[0].toObject(); } JSObject* js::ArgumentsSliceDense(JSContext* cx, HandleObject obj, int32_t begin, int32_t end, HandleObject result) { MOZ_ASSERT(obj->is()); MOZ_ASSERT(IsArraySpecies(cx, obj)); Handle argsobj = obj.as(); MOZ_ASSERT(!argsobj->hasOverriddenLength()); MOZ_ASSERT(!argsobj->hasOverriddenElement()); uint32_t length = argsobj->initialLength(); uint32_t actualBegin = NormalizeSliceTerm(begin, length); uint32_t actualEnd = NormalizeSliceTerm(end, length); if (actualBegin > actualEnd) { actualBegin = actualEnd; } uint32_t count = actualEnd - actualBegin; if (result) { Handle resArray = result.as(); MOZ_ASSERT(resArray->getDenseInitializedLength() == 0); MOZ_ASSERT(resArray->length() == 0); if (count > 0) { if (!resArray->ensureElements(cx, count)) { return nullptr; } resArray->setDenseInitializedLength(count); resArray->setLength(count); for (uint32_t index = 0; index < count; index++) { const Value& v = argsobj->element(actualBegin + index); resArray->initDenseElement(index, v); } } return resArray; } // Slower path if the JIT wasn't able to allocate an object inline. return SliceArguments(cx, argsobj, actualBegin, count); } static bool array_isArray(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array", "isArray"); CallArgs args = CallArgsFromVp(argc, vp); bool isArray = false; if (args.get(0).isObject()) { RootedObject obj(cx, &args[0].toObject()); if (!IsArray(cx, obj, &isArray)) { return false; } } args.rval().setBoolean(isArray); return true; } static bool ArrayFromCallArgs(JSContext* cx, CallArgs& args, HandleObject proto = nullptr) { ArrayObject* obj = NewDenseCopiedArrayWithProto(cx, args.length(), args.array(), proto); if (!obj) { return false; } args.rval().setObject(*obj); return true; } static bool array_of(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array", "of"); CallArgs args = CallArgsFromVp(argc, vp); bool isArrayConstructor = IsArrayConstructor(args.thisv()) && args.thisv().toObject().nonCCWRealm() == cx->realm(); if (isArrayConstructor || !IsConstructor(args.thisv())) { // isArrayConstructor will usually be true in practice. This is the most // common path. return ArrayFromCallArgs(cx, args); } // Step 4. RootedObject obj(cx); { FixedConstructArgs<1> cargs(cx); cargs[0].setNumber(args.length()); if (!Construct(cx, args.thisv(), cargs, args.thisv(), &obj)) { return false; } } // Step 8. for (unsigned k = 0; k < args.length(); k++) { if (!DefineDataElement(cx, obj, k, args[k])) { return false; } } // Steps 9-10. if (!SetLengthProperty(cx, obj, args.length())) { return false; } // Step 11. args.rval().setObject(*obj); return true; } static const JSJitInfo array_splice_info = { {(JSJitGetterOp)array_splice_noRetVal}, {0}, /* unused */ {0}, /* unused */ JSJitInfo::IgnoresReturnValueNative, JSJitInfo::AliasEverything, JSVAL_TYPE_UNDEFINED, }; enum class SearchKind { // Specializes SearchElementDense for Array.prototype.indexOf/lastIndexOf. // This means hole values are ignored and StrictlyEqual semantics are used. IndexOf, // Specializes SearchElementDense for Array.prototype.includes. // This means hole values are treated as |undefined| and SameValueZero // semantics are used. Includes, }; template static bool SearchElementDense(JSContext* cx, HandleValue val, Iter iterator, MutableHandleValue rval) { // We assume here and in the iterator lambdas that nothing can trigger GC or // move dense elements. AutoCheckCannotGC nogc; // Fast path for string values. if (val.isString()) { JSLinearString* str = val.toString()->ensureLinear(cx); if (!str) { return false; } const uint32_t strLen = str->length(); auto cmp = [str, strLen](JSContext* cx, const Value& element, bool* equal) { if (!element.isString() || element.toString()->length() != strLen) { *equal = false; return true; } JSLinearString* s = element.toString()->ensureLinear(cx); if (!s) { return false; } *equal = EqualStrings(str, s); return true; }; return iterator(cx, cmp, rval); } // Fast path for numbers. if (val.isNumber()) { double dval = val.toNumber(); // For |includes|, two NaN values are considered equal, so we use a // different implementation for NaN. if (Kind == SearchKind::Includes && std::isnan(dval)) { auto cmp = [](JSContext*, const Value& element, bool* equal) { *equal = (element.isDouble() && std::isnan(element.toDouble())); return true; }; return iterator(cx, cmp, rval); } auto cmp = [dval](JSContext*, const Value& element, bool* equal) { *equal = (element.isNumber() && element.toNumber() == dval); return true; }; return iterator(cx, cmp, rval); } // Fast path for values where we can use a simple bitwise comparison. if (CanUseBitwiseCompareForStrictlyEqual(val)) { // For |includes| we need to treat hole values as |undefined| so we use a // different path if searching for |undefined|. if (Kind == SearchKind::Includes && val.isUndefined()) { auto cmp = [](JSContext*, const Value& element, bool* equal) { *equal = (element.isUndefined() || element.isMagic(JS_ELEMENTS_HOLE)); return true; }; return iterator(cx, cmp, rval); } uint64_t bits = val.asRawBits(); auto cmp = [bits](JSContext*, const Value& element, bool* equal) { *equal = (bits == element.asRawBits()); return true; }; return iterator(cx, cmp, rval); } MOZ_ASSERT(val.isBigInt() || IF_RECORD_TUPLE(val.isExtendedPrimitive(), false)); // Generic implementation for the remaining types. RootedValue elementRoot(cx); auto cmp = [val, &elementRoot](JSContext* cx, const Value& element, bool* equal) { if (MOZ_UNLIKELY(element.isMagic(JS_ELEMENTS_HOLE))) { // |includes| treats holes as |undefined|, but |undefined| is already // handled above. For |indexOf| we have to ignore holes. *equal = false; return true; } // Note: |includes| uses SameValueZero, but that checks for NaN and then // calls StrictlyEqual. Since we already handled NaN above, we can call // StrictlyEqual directly. MOZ_ASSERT(!val.isNumber()); elementRoot = element; return StrictlyEqual(cx, val, elementRoot, equal); }; return iterator(cx, cmp, rval); } // ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 // 22.1.3.14 Array.prototype.indexOf ( searchElement [ , fromIndex ] ) bool js::array_indexOf(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "indexOf"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 3. if (len == 0) { args.rval().setInt32(-1); return true; } // Steps 4-8. uint64_t k = 0; if (args.length() > 1) { double n; if (!ToInteger(cx, args[1], &n)) { return false; } // Step 6. if (n >= double(len)) { args.rval().setInt32(-1); return true; } // Steps 7-8. if (n >= 0) { k = uint64_t(n); } else { double d = double(len) + n; if (d >= 0) { k = uint64_t(d); } } } MOZ_ASSERT(k < len); HandleValue searchElement = args.get(0); // Steps 9 and 10 optimized for dense elements. if (CanOptimizeForDenseStorage(obj, len)) { MOZ_ASSERT(len <= UINT32_MAX); NativeObject* nobj = &obj->as(); uint32_t start = uint32_t(k); uint32_t length = std::min(nobj->getDenseInitializedLength(), uint32_t(len)); const Value* elements = nobj->getDenseElements(); if (CanUseBitwiseCompareForStrictlyEqual(searchElement) && length > start) { const uint64_t* elementsAsBits = reinterpret_cast(elements); const uint64_t* res = SIMD::memchr64( elementsAsBits + start, searchElement.asRawBits(), length - start); if (res) { args.rval().setInt32(static_cast(res - elementsAsBits)); } else { args.rval().setInt32(-1); } return true; } auto iterator = [elements, start, length](JSContext* cx, auto cmp, MutableHandleValue rval) { static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX, "code assumes dense index fits in Int32Value"); for (uint32_t i = start; i < length; i++) { bool equal; if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { return false; } if (equal) { rval.setInt32(int32_t(i)); return true; } } rval.setInt32(-1); return true; }; return SearchElementDense(cx, searchElement, iterator, args.rval()); } // Step 9. RootedValue v(cx); for (; k < len; k++) { if (!CheckForInterrupt(cx)) { return false; } bool hole; if (!HasAndGetElement(cx, obj, k, &hole, &v)) { return false; } if (hole) { continue; } bool equal; if (!StrictlyEqual(cx, v, searchElement, &equal)) { return false; } if (equal) { args.rval().setNumber(k); return true; } } // Step 10. args.rval().setInt32(-1); return true; } // ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 // 22.1.3.17 Array.prototype.lastIndexOf ( searchElement [ , fromIndex ] ) bool js::array_lastIndexOf(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "lastIndexOf"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 3. if (len == 0) { args.rval().setInt32(-1); return true; } // Steps 4-6. uint64_t k = len - 1; if (args.length() > 1) { double n; if (!ToInteger(cx, args[1], &n)) { return false; } // Steps 5-6. if (n < 0) { double d = double(len) + n; if (d < 0) { args.rval().setInt32(-1); return true; } k = uint64_t(d); } else if (n < double(k)) { k = uint64_t(n); } } MOZ_ASSERT(k < len); HandleValue searchElement = args.get(0); // Steps 7 and 8 optimized for dense elements. if (CanOptimizeForDenseStorage(obj, k + 1)) { MOZ_ASSERT(k <= UINT32_MAX); NativeObject* nobj = &obj->as(); uint32_t initLen = nobj->getDenseInitializedLength(); if (initLen == 0) { args.rval().setInt32(-1); return true; } uint32_t end = std::min(uint32_t(k), initLen - 1); const Value* elements = nobj->getDenseElements(); auto iterator = [elements, end](JSContext* cx, auto cmp, MutableHandleValue rval) { static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX, "code assumes dense index fits in int32_t"); for (int32_t i = int32_t(end); i >= 0; i--) { bool equal; if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { return false; } if (equal) { rval.setInt32(int32_t(i)); return true; } } rval.setInt32(-1); return true; }; return SearchElementDense(cx, searchElement, iterator, args.rval()); } // Step 7. RootedValue v(cx); for (int64_t i = int64_t(k); i >= 0; i--) { if (!CheckForInterrupt(cx)) { return false; } bool hole; if (!HasAndGetElement(cx, obj, uint64_t(i), &hole, &v)) { return false; } if (hole) { continue; } bool equal; if (!StrictlyEqual(cx, v, searchElement, &equal)) { return false; } if (equal) { args.rval().setNumber(uint64_t(i)); return true; } } // Step 8. args.rval().setInt32(-1); return true; } // ES2020 draft rev dc1e21c454bd316810be1c0e7af0131a2d7f38e9 // 22.1.3.13 Array.prototype.includes ( searchElement [ , fromIndex ] ) bool js::array_includes(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "includes"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } // Step 2. uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 3. if (len == 0) { args.rval().setBoolean(false); return true; } // Steps 4-7. uint64_t k = 0; if (args.length() > 1) { double n; if (!ToInteger(cx, args[1], &n)) { return false; } if (n >= double(len)) { args.rval().setBoolean(false); return true; } // Steps 6-7. if (n >= 0) { k = uint64_t(n); } else { double d = double(len) + n; if (d >= 0) { k = uint64_t(d); } } } MOZ_ASSERT(k < len); HandleValue searchElement = args.get(0); // Steps 8 and 9 optimized for dense elements. if (CanOptimizeForDenseStorage(obj, len)) { MOZ_ASSERT(len <= UINT32_MAX); NativeObject* nobj = &obj->as(); uint32_t start = uint32_t(k); uint32_t length = std::min(nobj->getDenseInitializedLength(), uint32_t(len)); const Value* elements = nobj->getDenseElements(); // Trailing holes are treated as |undefined|. if (uint32_t(len) > length && searchElement.isUndefined()) { // |undefined| is strictly equal only to |undefined|. args.rval().setBoolean(true); return true; } // For |includes| we need to treat hole values as |undefined| so we use a // different path if searching for |undefined|. if (CanUseBitwiseCompareForStrictlyEqual(searchElement) && !searchElement.isUndefined() && length > start) { if (SIMD::memchr64(reinterpret_cast(elements) + start, searchElement.asRawBits(), length - start)) { args.rval().setBoolean(true); } else { args.rval().setBoolean(false); } return true; } auto iterator = [elements, start, length](JSContext* cx, auto cmp, MutableHandleValue rval) { for (uint32_t i = start; i < length; i++) { bool equal; if (MOZ_UNLIKELY(!cmp(cx, elements[i], &equal))) { return false; } if (equal) { rval.setBoolean(true); return true; } } rval.setBoolean(false); return true; }; return SearchElementDense(cx, searchElement, iterator, args.rval()); } // Step 8. RootedValue v(cx); for (; k < len; k++) { if (!CheckForInterrupt(cx)) { return false; } if (!GetArrayElement(cx, obj, k, &v)) { return false; } bool equal; if (!SameValueZero(cx, v, searchElement, &equal)) { return false; } if (equal) { args.rval().setBoolean(true); return true; } } // Step 9. args.rval().setBoolean(false); return true; } // ES2024 draft 23.1.3.2.1 IsConcatSpreadable static bool IsConcatSpreadable(JSContext* cx, HandleValue v, bool* spreadable) { // Step 1. if (!v.isObject()) { *spreadable = false; return true; } // Step 2. JS::Symbol* sym = cx->wellKnownSymbols().isConcatSpreadable; JSObject* holder; if (MOZ_UNLIKELY( MaybeHasInterestingSymbolProperty(cx, &v.toObject(), sym, &holder))) { RootedValue res(cx); RootedObject obj(cx, holder); Rooted key(cx, PropertyKey::Symbol(sym)); if (!GetProperty(cx, obj, v, key, &res)) { return false; } // Step 3. if (!res.isUndefined()) { *spreadable = ToBoolean(res); return true; } } // Step 4. if (MOZ_LIKELY(v.toObject().is())) { *spreadable = true; return true; } RootedObject obj(cx, &v.toObject()); bool isArray; if (!JS::IsArray(cx, obj, &isArray)) { return false; } *spreadable = isArray; return true; } // Returns true if the object may have an @@isConcatSpreadable property. static bool MaybeHasIsConcatSpreadable(JSContext* cx, JSObject* obj) { JS::Symbol* sym = cx->wellKnownSymbols().isConcatSpreadable; JSObject* holder; return MaybeHasInterestingSymbolProperty(cx, obj, sym, &holder); } static bool TryOptimizePackedArrayConcat(JSContext* cx, CallArgs& args, Handle obj, bool* optimized) { // Fast path for the following cases: // // (1) packedArray.concat(): copy the array's elements. // (2) packedArray.concat(packedArray): concatenate two packed arrays. // (3) packedArray.concat(value): copy and append a single non-array value. // // These cases account for almost all calls to Array.prototype.concat in // Speedometer 3. *optimized = false; if (args.length() > 1) { return true; } // The `this` object must be a packed array without @@isConcatSpreadable. // @@isConcatSpreadable is uncommon and requires a property lookup and more // complicated code, so we let the slow path handle it. if (!IsPackedArray(obj)) { return true; } if (MaybeHasIsConcatSpreadable(cx, obj)) { return true; } Handle thisArr = obj.as(); uint32_t thisLen = thisArr->length(); if (args.length() == 0) { // Case (1). Copy the packed array. ArrayObject* arr = NewDenseFullyAllocatedArray(cx, thisLen); if (!arr) { return false; } arr->initDenseElements(thisArr->getDenseElements(), thisLen); args.rval().setObject(*arr); *optimized = true; return true; } MOZ_ASSERT(args.length() == 1); // If the argument is an object, it must not have an @@isConcatSpreadable // property. if (args[0].isObject() && MaybeHasIsConcatSpreadable(cx, &args[0].toObject())) { return true; } MOZ_ASSERT_IF(args[0].isObject(), args[0].toObject().is()); // Case (3). Copy and append a single value if the argument is not an array. if (!args[0].isObject() || !args[0].toObject().is()) { ArrayObject* arr = NewDenseFullyAllocatedArray(cx, thisLen + 1); if (!arr) { return false; } arr->initDenseElements(thisArr->getDenseElements(), thisLen); arr->ensureDenseInitializedLength(thisLen, 1); arr->initDenseElement(thisLen, args[0]); args.rval().setObject(*arr); *optimized = true; return true; } // Case (2). Concatenate two packed arrays. if (!IsPackedArray(&args[0].toObject())) { return true; } uint32_t argLen = args[0].toObject().as().length(); // Compute the array length. This can't overflow because both arrays are // packed. static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT < INT32_MAX); MOZ_ASSERT(thisLen <= NativeObject::MAX_DENSE_ELEMENTS_COUNT); MOZ_ASSERT(argLen <= NativeObject::MAX_DENSE_ELEMENTS_COUNT); uint32_t totalLen = thisLen + argLen; ArrayObject* arr = NewDenseFullyAllocatedArray(cx, totalLen); if (!arr) { return false; } arr->initDenseElements(thisArr->getDenseElements(), thisLen); ArrayObject* argArr = &args[0].toObject().as(); arr->ensureDenseInitializedLength(thisLen, argLen); arr->initDenseElementRange(thisLen, argArr, argLen); args.rval().setObject(*arr); *optimized = true; return true; } static bool array_concat(JSContext* cx, unsigned argc, Value* vp) { AutoJSMethodProfilerEntry pseudoFrame(cx, "Array.prototype", "concat"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1. RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) { return false; } bool isArraySpecies = IsArraySpecies(cx, obj); // Fast path for the most common cases. if (isArraySpecies) { bool optimized; if (!TryOptimizePackedArrayConcat(cx, args, obj, &optimized)) { return false; } if (optimized) { return true; } } // Step 2. RootedObject arr(cx); if (isArraySpecies) { arr = NewDenseEmptyArray(cx); if (!arr) { return false; } } else { if (!ArraySpeciesCreate(cx, obj, 0, &arr)) { return false; } } // Step 3. uint64_t n = 0; // Step 4 (handled implicitly with nextArg and CallArgs). uint32_t nextArg = 0; // Step 5. RootedValue v(cx, ObjectValue(*obj)); while (true) { // Step 5.a. bool spreadable; if (!IsConcatSpreadable(cx, v, &spreadable)) { return false; } // Step 5.b. if (spreadable) { // Step 5.b.i. obj = &v.toObject(); uint64_t len; if (!GetLengthPropertyInlined(cx, obj, &len)) { return false; } // Step 5.b.ii. if (n + len > uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT) - 1) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TOO_LONG_ARRAY); return false; } // Step 5.b.iii. uint64_t k = 0; // Step 5.b.iv. // Try a fast path for copying dense elements directly. bool optimized = false; if (len > 0 && isArraySpecies && CanOptimizeForDenseStorage(obj, len) && n + len <= NativeObject::MAX_DENSE_ELEMENTS_COUNT) { NativeObject* nobj = &obj->as(); ArrayObject* resArr = &arr->as(); uint32_t count = std::min(uint32_t(len), nobj->getDenseInitializedLength()); DenseElementResult res = resArr->ensureDenseElements(cx, n, count); if (res == DenseElementResult::Failure) { return false; } if (res == DenseElementResult::Success) { resArr->initDenseElementRange(n, nobj, count); n += len; optimized = true; } else { MOZ_ASSERT(res == DenseElementResult::Incomplete); } } if (!optimized) { // Step 5.b.iv. while (k < len) { if (!CheckForInterrupt(cx)) { return false; } // Step 5.b.iv.2. bool hole; if (!HasAndGetElement(cx, obj, k, &hole, &v)) { return false; } if (!hole) { // Step 5.b.iv.3. if (!DefineArrayElement(cx, arr, n, v)) { return false; } } // Step 5.b.iv.4. n++; // Step 5.b.iv.5. k++; } } } else { // Step 5.c.ii. if (n >= uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT) - 1) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TOO_LONG_ARRAY); return false; } // Step 5.c.iii. if (!DefineArrayElement(cx, arr, n, v)) { return false; } // Step 5.c.iv. n++; } // Move on to the next argument. if (nextArg == args.length()) { break; } v = args[nextArg]; nextArg++; } // Step 6. if (!SetLengthProperty(cx, arr, n)) { return false; } // Step 7. args.rval().setObject(*arr); return true; } static const JSFunctionSpec array_methods[] = { JS_FN(js_toSource_str, array_toSource, 0, 0), JS_SELF_HOSTED_FN(js_toString_str, "ArrayToString", 0, 0), JS_FN(js_toLocaleString_str, array_toLocaleString, 0, 0), /* Perl-ish methods. */ JS_INLINABLE_FN("join", array_join, 1, 0, ArrayJoin), JS_FN("reverse", array_reverse, 0, 0), JS_SELF_HOSTED_FN("sort", "ArraySort", 1, 0), JS_INLINABLE_FN("push", array_push, 1, 0, ArrayPush), JS_INLINABLE_FN("pop", array_pop, 0, 0, ArrayPop), JS_INLINABLE_FN("shift", array_shift, 0, 0, ArrayShift), JS_FN("unshift", array_unshift, 1, 0), JS_FNINFO("splice", array_splice, &array_splice_info, 2, 0), /* Pythonic sequence methods. */ JS_FN("concat", array_concat, 1, 0), JS_INLINABLE_FN("slice", array_slice, 2, 0, ArraySlice), JS_FN("lastIndexOf", array_lastIndexOf, 1, 0), JS_FN("indexOf", array_indexOf, 1, 0), JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1, 0), JS_SELF_HOSTED_FN("map", "ArrayMap", 1, 0), JS_SELF_HOSTED_FN("filter", "ArrayFilter", 1, 0), #ifdef NIGHTLY_BUILD JS_SELF_HOSTED_FN("group", "ArrayGroup", 1, 0), JS_SELF_HOSTED_FN("groupToMap", "ArrayGroupToMap", 1, 0), #endif JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1, 0), JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1, 0), JS_SELF_HOSTED_FN("some", "ArraySome", 1, 0), JS_SELF_HOSTED_FN("every", "ArrayEvery", 1, 0), /* ES6 additions */ JS_SELF_HOSTED_FN("find", "ArrayFind", 1, 0), JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1, 0), JS_SELF_HOSTED_FN("copyWithin", "ArrayCopyWithin", 3, 0), JS_SELF_HOSTED_FN("fill", "ArrayFill", 3, 0), JS_SELF_HOSTED_SYM_FN(iterator, "$ArrayValues", 0, 0), JS_SELF_HOSTED_FN("entries", "ArrayEntries", 0, 0), JS_SELF_HOSTED_FN("keys", "ArrayKeys", 0, 0), JS_SELF_HOSTED_FN("values", "$ArrayValues", 0, 0), /* ES7 additions */ JS_FN("includes", array_includes, 1, 0), /* ES2020 */ JS_SELF_HOSTED_FN("flatMap", "ArrayFlatMap", 1, 0), JS_SELF_HOSTED_FN("flat", "ArrayFlat", 0, 0), /* Proposal */ JS_SELF_HOSTED_FN("at", "ArrayAt", 1, 0), JS_SELF_HOSTED_FN("findLast", "ArrayFindLast", 1, 0), JS_SELF_HOSTED_FN("findLastIndex", "ArrayFindLastIndex", 1, 0), JS_SELF_HOSTED_FN("toReversed", "ArrayToReversed", 0, 0), JS_SELF_HOSTED_FN("toSorted", "ArrayToSorted", 1, 0), JS_FN("toSpliced", array_toSpliced, 2, 0), JS_FN("with", array_with, 2, 0), JS_FS_END}; static const JSFunctionSpec array_static_methods[] = { JS_INLINABLE_FN("isArray", array_isArray, 1, 0, ArrayIsArray), JS_SELF_HOSTED_FN("from", "ArrayFrom", 3, 0), JS_SELF_HOSTED_FN("fromAsync", "ArrayFromAsync", 3, 0), JS_FN("of", array_of, 0, 0), JS_FS_END}; const JSPropertySpec array_static_props[] = { JS_SELF_HOSTED_SYM_GET(species, "$ArraySpecies", 0), JS_PS_END}; static inline bool ArrayConstructorImpl(JSContext* cx, CallArgs& args, bool isConstructor) { RootedObject proto(cx); if (isConstructor) { if (!GetPrototypeFromBuiltinConstructor(cx, args, JSProto_Array, &proto)) { return false; } } if (args.length() != 1 || !args[0].isNumber()) { return ArrayFromCallArgs(cx, args, proto); } uint32_t length; if (args[0].isInt32()) { int32_t i = args[0].toInt32(); if (i < 0) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } length = uint32_t(i); } else { double d = args[0].toDouble(); length = ToUint32(d); if (d != double(length)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } } ArrayObject* obj = NewDensePartlyAllocatedArrayWithProto(cx, length, proto); if (!obj) { return false; } args.rval().setObject(*obj); return true; } /* ES5 15.4.2 */ bool js::ArrayConstructor(JSContext* cx, unsigned argc, Value* vp) { AutoJSConstructorProfilerEntry pseudoFrame(cx, "Array"); CallArgs args = CallArgsFromVp(argc, vp); return ArrayConstructorImpl(cx, args, /* isConstructor = */ true); } bool js::array_construct(JSContext* cx, unsigned argc, Value* vp) { AutoJSConstructorProfilerEntry pseudoFrame(cx, "Array"); CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(!args.isConstructing()); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isNumber()); return ArrayConstructorImpl(cx, args, /* isConstructor = */ false); } ArrayObject* js::ArrayConstructorOneArg(JSContext* cx, Handle templateObject, int32_t lengthInt) { // JIT code can call this with a template object from a different realm when // calling another realm's Array constructor. Maybe ar; if (cx->realm() != templateObject->realm()) { MOZ_ASSERT(cx->compartment() == templateObject->compartment()); ar.emplace(cx, templateObject); } if (lengthInt < 0) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return nullptr; } uint32_t length = uint32_t(lengthInt); ArrayObject* res = NewDensePartlyAllocatedArray(cx, length); MOZ_ASSERT_IF(res, res->realm() == templateObject->realm()); return res; } /* * Array allocation functions. */ static inline bool EnsureNewArrayElements(JSContext* cx, ArrayObject* obj, uint32_t length) { /* * If ensureElements creates dynamically allocated slots, then having * fixedSlots is a waste. */ DebugOnly cap = obj->getDenseCapacity(); if (!obj->ensureElements(cx, length)) { return false; } MOZ_ASSERT_IF(cap, !obj->hasDynamicElements()); return true; } template static MOZ_ALWAYS_INLINE ArrayObject* NewArrayWithShape( JSContext* cx, Handle shape, uint32_t length, NewObjectKind newKind, gc::AllocSite* site = nullptr) { // The shape must already have the |length| property defined on it. MOZ_ASSERT(shape->propMapLength() == 1); MOZ_ASSERT(shape->lastProperty().key() == NameToId(cx->names().length)); gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_)); allocKind = ForegroundToBackgroundAllocKind(allocKind); MOZ_ASSERT(shape->slotSpan() == 0); constexpr uint32_t slotSpan = 0; AutoSetNewObjectMetadata metadata(cx); ArrayObject* arr = ArrayObject::create( cx, allocKind, GetInitialHeap(newKind, &ArrayObject::class_, site), shape, length, slotSpan, metadata); if (!arr) { return nullptr; } if (maxLength > 0 && !EnsureNewArrayElements(cx, arr, std::min(maxLength, length))) { return nullptr; } probes::CreateObject(cx, arr); return arr; } static SharedShape* GetArrayShapeWithProto(JSContext* cx, HandleObject proto) { // Get a shape with zero fixed slots, because arrays store the ObjectElements // header inline. Rooted shape( cx, SharedShape::getInitialShape(cx, &ArrayObject::class_, cx->realm(), TaggedProto(proto), /* nfixed = */ 0)); if (!shape) { return nullptr; } // Add the |length| property and use the new shape as initial shape for new // arrays. if (shape->propMapLength() == 0) { shape = AddLengthProperty(cx, shape); if (!shape) { return nullptr; } SharedShape::insertInitialShape(cx, shape); } else { MOZ_ASSERT(shape->propMapLength() == 1); MOZ_ASSERT(shape->lastProperty().key() == NameToId(cx->names().length)); } return shape; } SharedShape* GlobalObject::createArrayShapeWithDefaultProto(JSContext* cx) { MOZ_ASSERT(!cx->global()->data().arrayShapeWithDefaultProto); RootedObject proto(cx, GlobalObject::getOrCreateArrayPrototype(cx, cx->global())); if (!proto) { return nullptr; } SharedShape* shape = GetArrayShapeWithProto(cx, proto); if (!shape) { return nullptr; } cx->global()->data().arrayShapeWithDefaultProto.init(shape); return shape; } template static MOZ_ALWAYS_INLINE ArrayObject* NewArray(JSContext* cx, uint32_t length, NewObjectKind newKind, gc::AllocSite* site = nullptr) { Rooted shape(cx, GlobalObject::getArrayShapeWithDefaultProto(cx)); if (!shape) { return nullptr; } return NewArrayWithShape(cx, shape, length, newKind, site); } template static MOZ_ALWAYS_INLINE ArrayObject* NewArrayWithProto(JSContext* cx, uint32_t length, HandleObject proto, NewObjectKind newKind) { Rooted shape(cx); if (!proto || proto == cx->global()->maybeGetArrayPrototype()) { shape = GlobalObject::getArrayShapeWithDefaultProto(cx); } else { shape = GetArrayShapeWithProto(cx, proto); } if (!shape) { return nullptr; } return NewArrayWithShape(cx, shape, length, newKind, nullptr); } static JSObject* CreateArrayPrototype(JSContext* cx, JSProtoKey key) { MOZ_ASSERT(key == JSProto_Array); RootedObject proto(cx, &cx->global()->getObjectPrototype()); return NewArrayWithProto<0>(cx, 0, proto, TenuredObject); } static bool array_proto_finish(JSContext* cx, JS::HandleObject ctor, JS::HandleObject proto) { // Add Array.prototype[@@unscopables]. ECMA-262 draft (2016 Mar 19) 22.1.3.32. RootedObject unscopables(cx, NewPlainObjectWithProto(cx, nullptr, TenuredObject)); if (!unscopables) { return false; } RootedValue value(cx, BooleanValue(true)); if (!DefineDataProperty(cx, unscopables, cx->names().at, value) || !DefineDataProperty(cx, unscopables, cx->names().copyWithin, value) || !DefineDataProperty(cx, unscopables, cx->names().entries, value) || !DefineDataProperty(cx, unscopables, cx->names().fill, value) || !DefineDataProperty(cx, unscopables, cx->names().find, value) || !DefineDataProperty(cx, unscopables, cx->names().findIndex, value) || !DefineDataProperty(cx, unscopables, cx->names().findLast, value) || !DefineDataProperty(cx, unscopables, cx->names().findLastIndex, value) || !DefineDataProperty(cx, unscopables, cx->names().flat, value) || !DefineDataProperty(cx, unscopables, cx->names().flatMap, value) || !DefineDataProperty(cx, unscopables, cx->names().includes, value) || !DefineDataProperty(cx, unscopables, cx->names().keys, value) || !DefineDataProperty(cx, unscopables, cx->names().values, value)) { return false; } #ifdef NIGHTLY_BUILD if (cx->realm()->creationOptions().getArrayGroupingEnabled()) { if (!DefineDataProperty(cx, unscopables, cx->names().group, value) || !DefineDataProperty(cx, unscopables, cx->names().groupToMap, value)) { return false; } } #endif // FIXME: Once bug 1826643 is fixed, the names should be moved into the first // "or" clause in this method so that they will be alphabetized. if (cx->realm()->creationOptions().getChangeArrayByCopyEnabled()) { /* The reason that "with" is not included in the unscopableList is * because it is already a reserved word. */ if (!DefineDataProperty(cx, unscopables, cx->names().toReversed, value) || !DefineDataProperty(cx, unscopables, cx->names().toSorted, value) || !DefineDataProperty(cx, unscopables, cx->names().toSpliced, value)) { return false; } } RootedId id(cx, PropertyKey::Symbol(cx->wellKnownSymbols().unscopables)); value.setObject(*unscopables); return DefineDataProperty(cx, proto, id, value, JSPROP_READONLY); } static const JSClassOps ArrayObjectClassOps = { array_addProperty, // addProperty nullptr, // delProperty nullptr, // enumerate nullptr, // newEnumerate nullptr, // resolve nullptr, // mayResolve nullptr, // finalize nullptr, // call nullptr, // construct nullptr, // trace }; static const ClassSpec ArrayObjectClassSpec = { GenericCreateConstructor, CreateArrayPrototype, array_static_methods, array_static_props, array_methods, nullptr, array_proto_finish}; const JSClass ArrayObject::class_ = { "Array", JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_DELAY_METADATA_BUILDER, &ArrayObjectClassOps, &ArrayObjectClassSpec}; ArrayObject* js::NewDenseEmptyArray(JSContext* cx) { return NewArray<0>(cx, 0, GenericObject); } ArrayObject* js::NewTenuredDenseEmptyArray(JSContext* cx) { return NewArray<0>(cx, 0, TenuredObject); } ArrayObject* js::NewDenseFullyAllocatedArray( JSContext* cx, uint32_t length, NewObjectKind newKind /* = GenericObject */, gc::AllocSite* site /* = nullptr */) { return NewArray(cx, length, newKind, site); } ArrayObject* js::NewDensePartlyAllocatedArray( JSContext* cx, uint32_t length, NewObjectKind newKind /* = GenericObject */) { return NewArray(cx, length, newKind); } ArrayObject* js::NewDensePartlyAllocatedArrayWithProto(JSContext* cx, uint32_t length, HandleObject proto) { return NewArrayWithProto( cx, length, proto, GenericObject); } ArrayObject* js::NewDenseUnallocatedArray( JSContext* cx, uint32_t length, NewObjectKind newKind /* = GenericObject */) { return NewArray<0>(cx, length, newKind); } // values must point at already-rooted Value objects ArrayObject* js::NewDenseCopiedArray( JSContext* cx, uint32_t length, const Value* values, NewObjectKind newKind /* = GenericObject */) { ArrayObject* arr = NewArray(cx, length, newKind); if (!arr) { return nullptr; } arr->initDenseElements(values, length); return arr; } ArrayObject* js::NewDenseCopiedArrayWithProto(JSContext* cx, uint32_t length, const Value* values, HandleObject proto) { ArrayObject* arr = NewArrayWithProto(cx, length, proto, GenericObject); if (!arr) { return nullptr; } arr->initDenseElements(values, length); return arr; } ArrayObject* js::NewDenseFullyAllocatedArrayWithTemplate( JSContext* cx, uint32_t length, ArrayObject* templateObject) { AutoSetNewObjectMetadata metadata(cx); gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_)); allocKind = ForegroundToBackgroundAllocKind(allocKind); Rooted shape(cx, templateObject->sharedShape()); gc::Heap heap = GetInitialHeap(GenericObject, &ArrayObject::class_); ArrayObject* arr = ArrayObject::create(cx, allocKind, heap, shape, length, shape->slotSpan(), metadata); if (!arr) { return nullptr; } if (!EnsureNewArrayElements(cx, arr, length)) { return nullptr; } probes::CreateObject(cx, arr); return arr; } // TODO(no-TI): clean up. ArrayObject* js::NewArrayWithShape(JSContext* cx, uint32_t length, Handle shape) { // Ion can call this with a shape from a different realm when calling // another realm's Array constructor. Maybe ar; if (cx->realm() != shape->realm()) { MOZ_ASSERT(cx->compartment() == shape->compartment()); ar.emplace(cx, shape); } return NewDenseFullyAllocatedArray(cx, length); } #ifdef DEBUG bool js::ArrayInfo(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx); for (unsigned i = 0; i < args.length(); i++) { HandleValue arg = args[i]; UniqueChars bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, nullptr); if (!bytes) { return false; } if (arg.isPrimitive() || !(obj = arg.toObjectOrNull())->is()) { fprintf(stderr, "%s: not array\n", bytes.get()); continue; } fprintf(stderr, "%s: (len %u", bytes.get(), obj->as().length()); fprintf(stderr, ", capacity %u", obj->as().getDenseCapacity()); fputs(")\n", stderr); } args.rval().setUndefined(); return true; } #endif void js::ArraySpeciesLookup::initialize(JSContext* cx) { MOZ_ASSERT(state_ == State::Uninitialized); // Get the canonical Array.prototype. NativeObject* arrayProto = cx->global()->maybeGetArrayPrototype(); // Leave the cache uninitialized if the Array class itself is not yet // initialized. if (!arrayProto) { return; } // Get the canonical Array constructor. The Array constructor must be // initialized if Array.prototype is initialized. JSObject& arrayCtorObject = cx->global()->getConstructor(JSProto_Array); JSFunction* arrayCtor = &arrayCtorObject.as(); // Shortcut returns below means Array[@@species] will never be // optimizable, set to disabled now, and clear it later when we succeed. state_ = State::Disabled; // Look up Array.prototype[@@iterator] and ensure it's a data property. Maybe ctorProp = arrayProto->lookup(cx, NameToId(cx->names().constructor)); if (ctorProp.isNothing() || !ctorProp->isDataProperty()) { return; } // Get the referred value, and ensure it holds the canonical Array // constructor. JSFunction* ctorFun; if (!IsFunctionObject(arrayProto->getSlot(ctorProp->slot()), &ctorFun)) { return; } if (ctorFun != arrayCtor) { return; } // Look up the '@@species' value on Array Maybe speciesProp = arrayCtor->lookup( cx, PropertyKey::Symbol(cx->wellKnownSymbols().species)); if (speciesProp.isNothing() || !arrayCtor->hasGetter(*speciesProp)) { return; } // Get the referred value, ensure it holds the canonical Array[@@species] // function. uint32_t speciesGetterSlot = speciesProp->slot(); JSObject* speciesGetter = arrayCtor->getGetter(speciesGetterSlot); if (!speciesGetter || !speciesGetter->is()) { return; } JSFunction* speciesFun = &speciesGetter->as(); if (!IsSelfHostedFunctionWithName(speciesFun, cx->names().ArraySpecies)) { return; } // Store raw pointers below. This is okay to do here, because all objects // are in the tenured heap. MOZ_ASSERT(!IsInsideNursery(arrayProto)); MOZ_ASSERT(!IsInsideNursery(arrayCtor)); MOZ_ASSERT(!IsInsideNursery(arrayCtor->shape())); MOZ_ASSERT(!IsInsideNursery(speciesFun)); MOZ_ASSERT(!IsInsideNursery(arrayProto->shape())); state_ = State::Initialized; arrayProto_ = arrayProto; arrayConstructor_ = arrayCtor; arrayConstructorShape_ = arrayCtor->shape(); arraySpeciesGetterSlot_ = speciesGetterSlot; canonicalSpeciesFunc_ = speciesFun; arrayProtoShape_ = arrayProto->shape(); arrayProtoConstructorSlot_ = ctorProp->slot(); } void js::ArraySpeciesLookup::reset() { AlwaysPoison(this, JS_RESET_VALUE_PATTERN, sizeof(*this), MemCheckKind::MakeUndefined); state_ = State::Uninitialized; } bool js::ArraySpeciesLookup::isArrayStateStillSane() { MOZ_ASSERT(state_ == State::Initialized); // Ensure that Array.prototype still has the expected shape. if (arrayProto_->shape() != arrayProtoShape_) { return false; } // Ensure that Array.prototype.constructor contains the canonical Array // constructor function. if (arrayProto_->getSlot(arrayProtoConstructorSlot_) != ObjectValue(*arrayConstructor_)) { return false; } // Ensure that Array still has the expected shape. if (arrayConstructor_->shape() != arrayConstructorShape_) { return false; } // Ensure the species getter contains the canonical @@species function. JSObject* getter = arrayConstructor_->getGetter(arraySpeciesGetterSlot_); return getter == canonicalSpeciesFunc_; } bool js::ArraySpeciesLookup::tryOptimizeArray(JSContext* cx, ArrayObject* array) { if (state_ == State::Uninitialized) { // If the cache is not initialized, initialize it. initialize(cx); } else if (state_ == State::Initialized && !isArrayStateStillSane()) { // Otherwise, if the array state is no longer sane, reinitialize. reset(); initialize(cx); } // If the cache is disabled or still uninitialized, don't bother trying to // optimize. if (state_ != State::Initialized) { return false; } // By the time we get here, we should have a sane array state. MOZ_ASSERT(isArrayStateStillSane()); // Ensure |array|'s prototype is the actual Array.prototype. if (array->staticPrototype() != arrayProto_) { return false; } // Ensure the array does not define an own "constructor" property which may // shadow `Array.prototype.constructor`. // Most arrays don't define any additional own properties beside their // "length" property. If "length" is the last property, it must be the only // property, because it's non-configurable. MOZ_ASSERT(array->shape()->propMapLength() > 0); PropertyKey lengthKey = NameToId(cx->names().length); if (MOZ_LIKELY(array->getLastProperty().key() == lengthKey)) { MOZ_ASSERT(array->shape()->propMapLength() == 1, "Expected one property"); return true; } // Fail if the array has an own "constructor" property. uint32_t index; if (array->shape()->lookup(cx, NameToId(cx->names().constructor), &index)) { return false; } return true; } JS_PUBLIC_API JSObject* JS::NewArrayObject(JSContext* cx, const HandleValueArray& contents) { MOZ_ASSERT(!cx->zone()->isAtomsZone()); AssertHeapIsIdle(); CHECK_THREAD(cx); cx->check(contents); return NewDenseCopiedArray(cx, contents.length(), contents.begin()); } JS_PUBLIC_API JSObject* JS::NewArrayObject(JSContext* cx, size_t length) { MOZ_ASSERT(!cx->zone()->isAtomsZone()); AssertHeapIsIdle(); CHECK_THREAD(cx); return NewDenseFullyAllocatedArray(cx, length); } JS_PUBLIC_API bool JS::IsArrayObject(JSContext* cx, Handle obj, bool* isArray) { return IsGivenTypeObject(cx, obj, ESClass::Array, isArray); } JS_PUBLIC_API bool JS::IsArrayObject(JSContext* cx, Handle value, bool* isArray) { if (!value.isObject()) { *isArray = false; return true; } Rooted obj(cx, &value.toObject()); return IsArrayObject(cx, obj, isArray); } JS_PUBLIC_API bool JS::GetArrayLength(JSContext* cx, Handle obj, uint32_t* lengthp) { AssertHeapIsIdle(); CHECK_THREAD(cx); cx->check(obj); uint64_t len = 0; if (!GetLengthProperty(cx, obj, &len)) { return false; } if (len > UINT32_MAX) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } *lengthp = uint32_t(len); return true; } JS_PUBLIC_API bool JS::SetArrayLength(JSContext* cx, Handle obj, uint32_t length) { AssertHeapIsIdle(); CHECK_THREAD(cx); cx->check(obj); return SetLengthProperty(cx, obj, length); } ArrayObject* js::NewArrayWithNullProto(JSContext* cx) { Rooted shape(cx, GetArrayShapeWithProto(cx, nullptr)); if (!shape) { return nullptr; } uint32_t length = 0; return ::NewArrayWithShape<0>(cx, shape, length, GenericObject); }