// Copyright 2009 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_REGEXP_STACK_H_ #define V8_REGEXP_REGEXP_STACK_H_ #include "irregexp/RegExpShim.h" namespace v8 { namespace internal { class RegExpStack; // Maintains a per-v8thread stack area that can be used by irregexp // implementation for its backtracking stack. class V8_NODISCARD RegExpStackScope final { public: // Create and delete an instance to control the life-time of a growing stack. // Initializes the stack memory area if necessary. explicit RegExpStackScope(Isolate* isolate); ~RegExpStackScope(); // Releases the stack if it has grown. RegExpStackScope(const RegExpStackScope&) = delete; RegExpStackScope& operator=(const RegExpStackScope&) = delete; RegExpStack* stack() const { return regexp_stack_; } private: RegExpStack* const regexp_stack_; const ptrdiff_t old_sp_top_delta_; }; class RegExpStack final { public: RegExpStack(); ~RegExpStack(); RegExpStack(const RegExpStack&) = delete; RegExpStack& operator=(const RegExpStack&) = delete; // Number of allocated locations on the stack below the limit. No sequence of // pushes must be longer than this without doing a stack-limit check. static constexpr int kStackLimitSlack = 32; Address memory_top() const { DCHECK_NE(0, thread_local_.memory_size_); DCHECK_EQ(thread_local_.memory_top_, thread_local_.memory_ + thread_local_.memory_size_); return reinterpret_cast
(thread_local_.memory_top_); } Address stack_pointer() const { return reinterpret_cast
(thread_local_.stack_pointer_); } size_t memory_size() const { return thread_local_.memory_size_; } // If the stack pointer gets below the limit, we should react and // either grow the stack or report an out-of-stack exception. // There is only a limited number of locations below the stack limit, // so users of the stack should check the stack limit during any // sequence of pushes longer that this. Address* limit_address_address() { return &thread_local_.limit_; } // Ensures that there is a memory area with at least the specified size. // If passing zero, the default/minimum size buffer is allocated. Address EnsureCapacity(size_t size); // Thread local archiving. static constexpr int ArchiveSpacePerThread() { return static_cast(kThreadLocalSize); } char* ArchiveStack(char* to); char* RestoreStack(char* from); void FreeThreadResources() { thread_local_.ResetToStaticStack(this); } // Maximal size of allocated stack area. static constexpr size_t kMaximumStackSize = 64 * MB; private: // Artificial limit used when the thread-local state has been destroyed. static const Address kMemoryTop = static_cast
(static_cast(-1)); // Minimal size of dynamically-allocated stack area. static constexpr size_t kMinimumDynamicStackSize = 1 * KB; // In addition to dynamically-allocated, variable-sized stacks, we also have // a statically allocated and sized area that is used whenever no dynamic // stack is allocated. This guarantees that a stack is always available and // we can skip availability-checks later on. // It's double the slack size to ensure that we have a bit of breathing room // before NativeRegExpMacroAssembler::GrowStack must be called. static constexpr size_t kStaticStackSize = 2 * kStackLimitSlack * kSystemPointerSize; byte static_stack_[kStaticStackSize] = {0}; static_assert(kStaticStackSize <= kMaximumStackSize); // Structure holding the allocated memory, size and limit. Thread switching // archives and restores this struct. struct ThreadLocal { explicit ThreadLocal(RegExpStack* regexp_stack) { ResetToStaticStack(regexp_stack); } // If memory_size_ > 0 then // - memory_, memory_top_, stack_pointer_ must be non-nullptr // - memory_top_ = memory_ + memory_size_ // - memory_ <= stack_pointer_ <= memory_top_ byte* memory_ = nullptr; byte* memory_top_ = nullptr; size_t memory_size_ = 0; byte* stack_pointer_ = nullptr; Address limit_ = kNullAddress; bool owns_memory_ = false; // Whether memory_ is owned and must be freed. void ResetToStaticStack(RegExpStack* regexp_stack); void ResetToStaticStackIfEmpty(RegExpStack* regexp_stack) { if (stack_pointer_ == memory_top_) ResetToStaticStack(regexp_stack); } void FreeAndInvalidate(); }; static constexpr size_t kThreadLocalSize = sizeof(ThreadLocal); Address memory_top_address_address() { return reinterpret_cast
(&thread_local_.memory_top_); } Address stack_pointer_address() { return reinterpret_cast
(&thread_local_.stack_pointer_); } // A position-independent representation of the stack pointer. ptrdiff_t sp_top_delta() const { ptrdiff_t result = reinterpret_cast(thread_local_.stack_pointer_) - reinterpret_cast(thread_local_.memory_top_); DCHECK_LE(result, 0); return result; } // Resets the buffer if it has grown beyond the default/minimum size and is // empty. void ResetIfEmpty() { thread_local_.ResetToStaticStackIfEmpty(this); } // Whether the ThreadLocal storage has been invalidated. bool IsValid() const { return thread_local_.memory_ != nullptr; } ThreadLocal thread_local_; friend class ExternalReference; friend class RegExpStackScope; }; } // namespace internal } // namespace v8 #endif // V8_REGEXP_REGEXP_STACK_H_