/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_arm64_LIR_arm64_h #define jit_arm64_LIR_arm64_h namespace js { namespace jit { class LUnboxBase : public LInstructionHelper<1, 1, 0> { public: LUnboxBase(LNode::Opcode opcode, const LAllocation& input) : LInstructionHelper(opcode) { setOperand(0, input); } static const size_t Input = 0; MUnbox* mir() const { return mir_->toUnbox(); } }; class LUnbox : public LUnboxBase { public: LIR_HEADER(Unbox); explicit LUnbox(const LAllocation& input) : LUnboxBase(classOpcode, input) {} const char* extraName() const { return StringFromMIRType(mir()->type()); } }; class LUnboxFloatingPoint : public LUnboxBase { MIRType type_; public: LIR_HEADER(UnboxFloatingPoint); LUnboxFloatingPoint(const LAllocation& input, MIRType type) : LUnboxBase(classOpcode, input), type_(type) {} MIRType type() const { return type_; } const char* extraName() const { return StringFromMIRType(type_); } }; // Convert a 32-bit unsigned integer to a double. class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToDouble) explicit LWasmUint32ToDouble(const LAllocation& input) : LInstructionHelper(classOpcode) { setOperand(0, input); } }; // Convert a 32-bit unsigned integer to a float32. class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToFloat32) explicit LWasmUint32ToFloat32(const LAllocation& input) : LInstructionHelper(classOpcode) { setOperand(0, input); } }; class LDivI : public LBinaryMath<1> { public: LIR_HEADER(DivI); LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } MDiv* mir() const { return mir_->toDiv(); } }; class LDivPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; const bool negativeDivisor_; public: LIR_HEADER(DivPowTwoI) LDivPowTwoI(const LAllocation& lhs, int32_t shift, bool negativeDivisor) : LInstructionHelper(classOpcode), shift_(shift), negativeDivisor_(negativeDivisor) { setOperand(0, lhs); } const LAllocation* numerator() { return getOperand(0); } int32_t shift() { return shift_; } bool negativeDivisor() { return negativeDivisor_; } MDiv* mir() const { return mir_->toDiv(); } }; class LDivConstantI : public LInstructionHelper<1, 1, 1> { const int32_t denominator_; public: LIR_HEADER(DivConstantI) LDivConstantI(const LAllocation& lhs, int32_t denominator, const LDefinition& temp) : LInstructionHelper(classOpcode), denominator_(denominator) { setOperand(0, lhs); setTemp(0, temp); } const LAllocation* numerator() { return getOperand(0); } const LDefinition* temp() { return getTemp(0); } int32_t denominator() const { return denominator_; } MDiv* mir() const { return mir_->toDiv(); } bool canBeNegativeDividend() const { return mir()->canBeNegativeDividend(); } }; class LUDivConstantI : public LInstructionHelper<1, 1, 1> { const int32_t denominator_; public: LIR_HEADER(UDivConstantI) LUDivConstantI(const LAllocation& lhs, int32_t denominator, const LDefinition& temp) : LInstructionHelper(classOpcode), denominator_(denominator) { setOperand(0, lhs); setTemp(0, temp); } const LAllocation* numerator() { return getOperand(0); } const LDefinition* temp() { return getTemp(0); } int32_t denominator() const { return denominator_; } MDiv* mir() const { return mir_->toDiv(); } }; class LModI : public LBinaryMath<0> { public: LIR_HEADER(ModI); LModI(const LAllocation& lhs, const LAllocation& rhs) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); } MMod* mir() const { return mir_->toMod(); } }; class LModPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; public: LIR_HEADER(ModPowTwoI); int32_t shift() { return shift_; } LModPowTwoI(const LAllocation& lhs, int32_t shift) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); } MMod* mir() const { return mir_->toMod(); } }; class LModMaskI : public LInstructionHelper<1, 1, 2> { const int32_t shift_; public: LIR_HEADER(ModMaskI); LModMaskI(const LAllocation& lhs, const LDefinition& temp1, const LDefinition& temp2, int32_t shift) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); setTemp(0, temp1); setTemp(1, temp2); } int32_t shift() const { return shift_; } MMod* mir() const { return mir_->toMod(); } }; // Takes a tableswitch with an integer to decide class LTableSwitch : public LInstructionHelper<0, 1, 2> { public: LIR_HEADER(TableSwitch); LTableSwitch(const LAllocation& in, const LDefinition& inputCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setOperand(0, in); setTemp(0, inputCopy); setTemp(1, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } const LAllocation* index() { return getOperand(0); } const LDefinition* tempInt() { return getTemp(0); } // This is added to share the same CodeGenerator prefixes. const LDefinition* tempPointer() { return getTemp(1); } }; // Takes a tableswitch with an integer to decide class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> { public: LIR_HEADER(TableSwitchV); LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy, const LDefinition& floatCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setBoxOperand(InputValue, input); setTemp(0, inputCopy); setTemp(1, floatCopy); setTemp(2, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } static const size_t InputValue = 0; const LDefinition* tempInt() { return getTemp(0); } const LDefinition* tempFloat() { return getTemp(1); } const LDefinition* tempPointer() { return getTemp(2); } }; class LMulI : public LBinaryMath<0> { public: LIR_HEADER(MulI); LMulI() : LBinaryMath(classOpcode) {} MMul* mir() { return mir_->toMul(); } }; class LUDiv : public LBinaryMath<1> { public: LIR_HEADER(UDiv); LUDiv(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& remainder) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, remainder); } const LDefinition* remainder() { return getTemp(0); } MDiv* mir() { return mir_->toDiv(); } }; class LUMod : public LBinaryMath<0> { public: LIR_HEADER(UMod); LUMod(const LAllocation& lhs, const LAllocation& rhs) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); } MMod* mir() { return mir_->toMod(); } }; class LInt64ToFloatingPoint : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(Int64ToFloatingPoint); explicit LInt64ToFloatingPoint(const LInt64Allocation& in) : LInstructionHelper(classOpcode) { setInt64Operand(0, in); } MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); } }; class LWasmTruncateToInt64 : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmTruncateToInt64); explicit LWasmTruncateToInt64(const LAllocation& in) : LInstructionHelper(classOpcode) { setOperand(0, in); } MWasmTruncateToInt64* mir() const { return mir_->toWasmTruncateToInt64(); } }; class LDivOrModI64 : public LBinaryMath<0> { public: LIR_HEADER(DivOrModI64) LDivOrModI64(const LAllocation& lhs, const LAllocation& rhs) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } bool canBeNegativeOverflow() const { if (mir_->isMod()) { return mir_->toMod()->canBeNegativeDividend(); } return mir_->toDiv()->canBeNegativeOverflow(); } wasm::BytecodeOffset bytecodeOffset() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LUDivOrModI64 : public LBinaryMath<0> { public: LIR_HEADER(UDivOrModI64); LUDivOrModI64(const LAllocation& lhs, const LAllocation& rhs) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); } const char* extraName() const { return mir()->isTruncated() ? "Truncated" : nullptr; } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } wasm::BytecodeOffset bytecodeOffset() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; } // namespace jit } // namespace js #endif /* jit_arm64_LIR_arm64_h */