/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_loong64_Assembler_loong64_h #define jit_loong64_Assembler_loong64_h #include "mozilla/Sprintf.h" #include #include "jit/CompactBuffer.h" #include "jit/JitCode.h" #include "jit/JitSpewer.h" #include "jit/loong64/Architecture-loong64.h" #include "jit/shared/Assembler-shared.h" #include "jit/shared/Disassembler-shared.h" #include "jit/shared/IonAssemblerBuffer.h" #include "wasm/WasmTypeDecls.h" namespace js { namespace jit { static constexpr Register zero{Registers::zero}; static constexpr Register ra{Registers::ra}; static constexpr Register tp{Registers::tp}; static constexpr Register sp{Registers::sp}; static constexpr Register a0{Registers::a0}; static constexpr Register a1{Registers::a1}; static constexpr Register a2{Registers::a2}; static constexpr Register a3{Registers::a3}; static constexpr Register a4{Registers::a4}; static constexpr Register a5{Registers::a5}; static constexpr Register a6{Registers::a6}; static constexpr Register a7{Registers::a7}; static constexpr Register t0{Registers::t0}; static constexpr Register t1{Registers::t1}; static constexpr Register t2{Registers::t2}; static constexpr Register t3{Registers::t3}; static constexpr Register t4{Registers::t4}; static constexpr Register t5{Registers::t5}; static constexpr Register t6{Registers::t6}; static constexpr Register t7{Registers::t7}; static constexpr Register t8{Registers::t8}; static constexpr Register rx{Registers::rx}; static constexpr Register fp{Registers::fp}; static constexpr Register s0{Registers::s0}; static constexpr Register s1{Registers::s1}; static constexpr Register s2{Registers::s2}; static constexpr Register s3{Registers::s3}; static constexpr Register s4{Registers::s4}; static constexpr Register s5{Registers::s5}; static constexpr Register s6{Registers::s6}; static constexpr Register s7{Registers::s7}; static constexpr Register s8{Registers::s8}; static constexpr FloatRegister f0{FloatRegisters::f0, FloatRegisters::Double}; static constexpr FloatRegister f1{FloatRegisters::f1, FloatRegisters::Double}; static constexpr FloatRegister f2{FloatRegisters::f2, FloatRegisters::Double}; static constexpr FloatRegister f3{FloatRegisters::f3, FloatRegisters::Double}; static constexpr FloatRegister f4{FloatRegisters::f4, FloatRegisters::Double}; static constexpr FloatRegister f5{FloatRegisters::f5, FloatRegisters::Double}; static constexpr FloatRegister f6{FloatRegisters::f6, FloatRegisters::Double}; static constexpr FloatRegister f7{FloatRegisters::f7, FloatRegisters::Double}; static constexpr FloatRegister f8{FloatRegisters::f8, FloatRegisters::Double}; static constexpr FloatRegister f9{FloatRegisters::f9, FloatRegisters::Double}; static constexpr FloatRegister f10{FloatRegisters::f10, FloatRegisters::Double}; static constexpr FloatRegister f11{FloatRegisters::f11, FloatRegisters::Double}; static constexpr FloatRegister f12{FloatRegisters::f12, FloatRegisters::Double}; static constexpr FloatRegister f13{FloatRegisters::f13, FloatRegisters::Double}; static constexpr FloatRegister f14{FloatRegisters::f14, FloatRegisters::Double}; static constexpr FloatRegister f15{FloatRegisters::f15, FloatRegisters::Double}; static constexpr FloatRegister f16{FloatRegisters::f16, FloatRegisters::Double}; static constexpr FloatRegister f17{FloatRegisters::f17, FloatRegisters::Double}; static constexpr FloatRegister f18{FloatRegisters::f18, FloatRegisters::Double}; static constexpr FloatRegister f19{FloatRegisters::f19, FloatRegisters::Double}; static constexpr FloatRegister f20{FloatRegisters::f20, FloatRegisters::Double}; static constexpr FloatRegister f21{FloatRegisters::f21, FloatRegisters::Double}; static constexpr FloatRegister f22{FloatRegisters::f22, FloatRegisters::Double}; static constexpr FloatRegister f23{FloatRegisters::f23, FloatRegisters::Double}; static constexpr FloatRegister f24{FloatRegisters::f24, FloatRegisters::Double}; static constexpr FloatRegister f25{FloatRegisters::f25, FloatRegisters::Double}; static constexpr FloatRegister f26{FloatRegisters::f26, FloatRegisters::Double}; static constexpr FloatRegister f27{FloatRegisters::f27, FloatRegisters::Double}; static constexpr FloatRegister f28{FloatRegisters::f28, FloatRegisters::Double}; static constexpr FloatRegister f29{FloatRegisters::f29, FloatRegisters::Double}; static constexpr FloatRegister f30{FloatRegisters::f30, FloatRegisters::Double}; static constexpr FloatRegister f31{FloatRegisters::f31, FloatRegisters::Double}; static constexpr Register InvalidReg{Registers::Invalid}; static constexpr FloatRegister InvalidFloatReg; static constexpr Register StackPointer = sp; static constexpr Register FramePointer = fp; static constexpr Register ReturnReg = a0; static constexpr Register64 ReturnReg64(ReturnReg); static constexpr FloatRegister ReturnFloat32Reg{FloatRegisters::f0, FloatRegisters::Single}; static constexpr FloatRegister ReturnDoubleReg = f0; static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg; static constexpr Register ScratchRegister = t7; static constexpr Register SecondScratchReg = t8; // Helper classes for ScratchRegister usage. Asserts that only one piece // of code thinks it has exclusive ownership of each scratch register. struct ScratchRegisterScope : public AutoRegisterScope { explicit ScratchRegisterScope(MacroAssembler& masm) : AutoRegisterScope(masm, ScratchRegister) {} }; struct SecondScratchRegisterScope : public AutoRegisterScope { explicit SecondScratchRegisterScope(MacroAssembler& masm) : AutoRegisterScope(masm, SecondScratchReg) {} }; static constexpr FloatRegister ScratchFloat32Reg{FloatRegisters::f23, FloatRegisters::Single}; static constexpr FloatRegister ScratchDoubleReg = f23; static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg; struct ScratchFloat32Scope : public AutoFloatRegisterScope { explicit ScratchFloat32Scope(MacroAssembler& masm) : AutoFloatRegisterScope(masm, ScratchFloat32Reg) {} }; struct ScratchDoubleScope : public AutoFloatRegisterScope { explicit ScratchDoubleScope(MacroAssembler& masm) : AutoFloatRegisterScope(masm, ScratchDoubleReg) {} }; // Use arg reg from EnterJIT function as OsrFrameReg. static constexpr Register OsrFrameReg = a3; static constexpr Register PreBarrierReg = a1; static constexpr Register InterpreterPCReg = t0; static constexpr Register CallTempReg0 = t0; static constexpr Register CallTempReg1 = t1; static constexpr Register CallTempReg2 = t2; static constexpr Register CallTempReg3 = t3; static constexpr Register CallTempReg4 = t4; static constexpr Register CallTempReg5 = t5; static constexpr Register CallTempNonArgRegs[] = {t0, t1, t2, t3}; static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); static constexpr Register IntArgReg0 = a0; static constexpr Register IntArgReg1 = a1; static constexpr Register IntArgReg2 = a2; static constexpr Register IntArgReg3 = a3; static constexpr Register IntArgReg4 = a4; static constexpr Register IntArgReg5 = a5; static constexpr Register IntArgReg6 = a6; static constexpr Register IntArgReg7 = a7; static constexpr Register HeapReg = s7; // Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use // JSReturnOperand). static constexpr Register RegExpMatcherRegExpReg = CallTempReg0; static constexpr Register RegExpMatcherStringReg = CallTempReg1; static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2; // Registers used by RegExpExecTest stub (do not use ReturnReg). static constexpr Register RegExpExecTestRegExpReg = CallTempReg0; static constexpr Register RegExpExecTestStringReg = CallTempReg1; // Registers used by RegExpSearcher stub (do not use ReturnReg). static constexpr Register RegExpSearcherRegExpReg = CallTempReg0; static constexpr Register RegExpSearcherStringReg = CallTempReg1; static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2; static constexpr Register JSReturnReg_Type = a3; static constexpr Register JSReturnReg_Data = a2; static constexpr Register JSReturnReg = a2; static constexpr ValueOperand JSReturnOperand = ValueOperand(JSReturnReg); // These registers may be volatile or nonvolatile. static constexpr Register ABINonArgReg0 = t0; static constexpr Register ABINonArgReg1 = t1; static constexpr Register ABINonArgReg2 = t2; static constexpr Register ABINonArgReg3 = t3; // These registers may be volatile or nonvolatile. // Note: these three registers are all guaranteed to be different static constexpr Register ABINonArgReturnReg0 = t0; static constexpr Register ABINonArgReturnReg1 = t1; static constexpr Register ABINonVolatileReg = s0; // This register is guaranteed to be clobberable during the prologue and // epilogue of an ABI call which must preserve both ABI argument, return // and non-volatile registers. static constexpr Register ABINonArgReturnVolatileReg = ra; // This register may be volatile or nonvolatile. // Avoid f23 which is the scratch register. static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::f21, FloatRegisters::Double}; // Instance pointer argument register for WebAssembly functions. This must not // alias any other register used for passing function arguments or return // values. Preserved by WebAssembly functions. Must be nonvolatile. static constexpr Register InstanceReg = s4; // Registers used for wasm table calls. These registers must be disjoint // from the ABI argument registers, InstanceReg and each other. static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmTableCallSigReg = ABINonArgReg2; static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; // Registers used for ref calls. static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmCallRefReg = ABINonArgReg3; // Register used as a scratch along the return path in the fast js -> wasm stub // code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg. // It must be a volatile register. static constexpr Register WasmJitEntryReturnScratch = t1; static constexpr uint32_t ABIStackAlignment = 16; static constexpr uint32_t CodeAlignment = 16; static constexpr uint32_t JitStackAlignment = 16; static constexpr uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value); static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1, "Stack alignment should be a non-zero multiple of sizeof(Value)"); // TODO(loong64): this is just a filler to prevent a build failure. The // LoongArch SIMD alignment requirements still need to be explored. static constexpr uint32_t SimdMemoryAlignment = 16; static_assert(CodeAlignment % SimdMemoryAlignment == 0, "Code alignment should be larger than any of the alignments " "which are used for " "the constant sections of the code buffer. Thus it should be " "larger than the " "alignment for SIMD constants."); static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment; static const uint32_t WasmTrapInstructionLength = 4; // See comments in wasm::GenerateFunctionPrologue. The difference between these // is the size of the largest callable prologue on the platform. static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; static constexpr Scale ScalePointer = TimesEight; // TODO(loong64): Add LoongArch instruction types description. // LoongArch instruction encoding constants. static const uint32_t RJShift = 5; static const uint32_t RJBits = 5; static const uint32_t RKShift = 10; static const uint32_t RKBits = 5; static const uint32_t RDShift = 0; static const uint32_t RDBits = 5; static const uint32_t FJShift = 5; static const uint32_t FJBits = 5; static const uint32_t FKShift = 10; static const uint32_t FKBits = 5; static const uint32_t FDShift = 0; static const uint32_t FDBits = 5; static const uint32_t FAShift = 15; static const uint32_t FABits = 5; static const uint32_t CJShift = 5; static const uint32_t CJBits = 3; static const uint32_t CDShift = 0; static const uint32_t CDBits = 3; static const uint32_t CAShift = 15; static const uint32_t CABits = 3; static const uint32_t CONDShift = 15; static const uint32_t CONDBits = 5; static const uint32_t SAShift = 15; static const uint32_t SA2Bits = 2; static const uint32_t SA3Bits = 3; static const uint32_t LSBWShift = 10; static const uint32_t LSBWBits = 5; static const uint32_t LSBDShift = 10; static const uint32_t LSBDBits = 6; static const uint32_t MSBWShift = 16; static const uint32_t MSBWBits = 5; static const uint32_t MSBDShift = 16; static const uint32_t MSBDBits = 6; static const uint32_t Imm5Shift = 10; static const uint32_t Imm5Bits = 5; static const uint32_t Imm6Shift = 10; static const uint32_t Imm6Bits = 6; static const uint32_t Imm12Shift = 10; static const uint32_t Imm12Bits = 12; static const uint32_t Imm14Shift = 10; static const uint32_t Imm14Bits = 14; static const uint32_t Imm15Shift = 0; static const uint32_t Imm15Bits = 15; static const uint32_t Imm16Shift = 10; static const uint32_t Imm16Bits = 16; static const uint32_t Imm20Shift = 5; static const uint32_t Imm20Bits = 20; static const uint32_t Imm21Shift = 0; static const uint32_t Imm21Bits = 21; static const uint32_t Imm26Shift = 0; static const uint32_t Imm26Bits = 26; static const uint32_t CODEShift = 0; static const uint32_t CODEBits = 15; // LoongArch instruction field bit masks. static const uint32_t RJMask = (1 << RJBits) - 1; static const uint32_t RKMask = (1 << RKBits) - 1; static const uint32_t RDMask = (1 << RDBits) - 1; static const uint32_t SA2Mask = (1 << SA2Bits) - 1; static const uint32_t SA3Mask = (1 << SA3Bits) - 1; static const uint32_t CONDMask = (1 << CONDBits) - 1; static const uint32_t LSBWMask = (1 << LSBWBits) - 1; static const uint32_t LSBDMask = (1 << LSBDBits) - 1; static const uint32_t MSBWMask = (1 << MSBWBits) - 1; static const uint32_t MSBDMask = (1 << MSBDBits) - 1; static const uint32_t CODEMask = (1 << CODEBits) - 1; static const uint32_t Imm5Mask = (1 << Imm5Bits) - 1; static const uint32_t Imm6Mask = (1 << Imm6Bits) - 1; static const uint32_t Imm12Mask = (1 << Imm12Bits) - 1; static const uint32_t Imm14Mask = (1 << Imm14Bits) - 1; static const uint32_t Imm15Mask = (1 << Imm15Bits) - 1; static const uint32_t Imm16Mask = (1 << Imm16Bits) - 1; static const uint32_t Imm20Mask = (1 << Imm20Bits) - 1; static const uint32_t Imm21Mask = (1 << Imm21Bits) - 1; static const uint32_t Imm26Mask = (1 << Imm26Bits) - 1; static const uint32_t BOffImm16Mask = ((1 << Imm16Bits) - 1) << Imm16Shift; static const uint32_t BOffImm21Mask = ((1 << Imm21Bits) - 1) << Imm21Shift; static const uint32_t BOffImm26Mask = ((1 << Imm26Bits) - 1) << Imm26Shift; static const uint32_t RegMask = Registers::Total - 1; // TODO(loong64) Change to syscall? static const uint32_t MAX_BREAK_CODE = 1024 - 1; static const uint32_t WASM_TRAP = 6; // BRK_OVERFLOW // TODO(loong64) Change to LoongArch instruction type. class Instruction; class InstReg; class InstImm; class InstJump; uint32_t RJ(Register r); uint32_t RK(Register r); uint32_t RD(Register r); uint32_t FJ(FloatRegister r); uint32_t FK(FloatRegister r); uint32_t FD(FloatRegister r); uint32_t FA(FloatRegister r); uint32_t SA2(uint32_t value); uint32_t SA2(FloatRegister r); uint32_t SA3(uint32_t value); uint32_t SA3(FloatRegister r); Register toRK(Instruction& i); Register toRJ(Instruction& i); Register toRD(Instruction& i); Register toR(Instruction& i); // LoongArch enums for instruction fields enum OpcodeField { op_beqz = 0x10U << 26, op_bnez = 0x11U << 26, op_bcz = 0x12U << 26, // bceqz & bcnez op_jirl = 0x13U << 26, op_b = 0x14U << 26, op_bl = 0x15U << 26, op_beq = 0x16U << 26, op_bne = 0x17U << 26, op_blt = 0x18U << 26, op_bge = 0x19U << 26, op_bltu = 0x1aU << 26, op_bgeu = 0x1bU << 26, op_addu16i_d = 0x4U << 26, op_lu12i_w = 0xaU << 25, op_lu32i_d = 0xbU << 25, op_pcaddi = 0xcU << 25, op_pcalau12i = 0xdU << 25, op_pcaddu12i = 0xeU << 25, op_pcaddu18i = 0xfU << 25, op_ll_w = 0x20U << 24, op_sc_w = 0x21U << 24, op_ll_d = 0x22U << 24, op_sc_d = 0x23U << 24, op_ldptr_w = 0x24U << 24, op_stptr_w = 0x25U << 24, op_ldptr_d = 0x26U << 24, op_stptr_d = 0x27U << 24, op_bstrins_d = 0x2U << 22, op_bstrpick_d = 0x3U << 22, op_slti = 0x8U << 22, op_sltui = 0x9U << 22, op_addi_w = 0xaU << 22, op_addi_d = 0xbU << 22, op_lu52i_d = 0xcU << 22, op_andi = 0xdU << 22, op_ori = 0xeU << 22, op_xori = 0xfU << 22, op_ld_b = 0xa0U << 22, op_ld_h = 0xa1U << 22, op_ld_w = 0xa2U << 22, op_ld_d = 0xa3U << 22, op_st_b = 0xa4U << 22, op_st_h = 0xa5U << 22, op_st_w = 0xa6U << 22, op_st_d = 0xa7U << 22, op_ld_bu = 0xa8U << 22, op_ld_hu = 0xa9U << 22, op_ld_wu = 0xaaU << 22, op_preld = 0xabU << 22, op_fld_s = 0xacU << 22, op_fst_s = 0xadU << 22, op_fld_d = 0xaeU << 22, op_fst_d = 0xafU << 22, op_bstr_w = 0x3U << 21, // BSTRINS_W & BSTRPICK_W op_fmadd_s = 0x81U << 20, op_fmadd_d = 0x82U << 20, op_fmsub_s = 0x85U << 20, op_fmsub_d = 0x86U << 20, op_fnmadd_s = 0x89U << 20, op_fnmadd_d = 0x8aU << 20, op_fnmsub_s = 0x8dU << 20, op_fnmsub_d = 0x8eU << 20, op_fcmp_cond_s = 0xc1U << 20, op_fcmp_cond_d = 0xc2U << 20, op_bytepick_d = 0x3U << 18, op_fsel = 0x340U << 18, op_bytepick_w = 0x4U << 17, op_alsl_w = 0x2U << 17, op_alsl_wu = 0x3U << 17, op_alsl_d = 0x16U << 17, op_slli_d = 0x41U << 16, op_srli_d = 0x45U << 16, op_srai_d = 0x49U << 16, op_slli_w = 0x81U << 15, op_srli_w = 0x89U << 15, op_srai_w = 0x91U << 15, op_add_w = 0x20U << 15, op_add_d = 0x21U << 15, op_sub_w = 0x22U << 15, op_sub_d = 0x23U << 15, op_slt = 0x24U << 15, op_sltu = 0x25U << 15, op_maskeqz = 0x26U << 15, op_masknez = 0x27U << 15, op_nor = 0x28U << 15, op_and = 0x29U << 15, op_or = 0x2aU << 15, op_xor = 0x2bU << 15, op_orn = 0x2cU << 15, op_andn = 0x2dU << 15, op_sll_w = 0x2eU << 15, op_srl_w = 0x2fU << 15, op_sra_w = 0x30U << 15, op_sll_d = 0x31U << 15, op_srl_d = 0x32U << 15, op_sra_d = 0x33U << 15, op_rotr_w = 0x36U << 15, op_rotr_d = 0x37U << 15, op_rotri_w = 0x99U << 15, op_rotri_d = 0x4DU << 16, op_mul_w = 0x38U << 15, op_mulh_w = 0x39U << 15, op_mulh_wu = 0x3aU << 15, op_mul_d = 0x3bU << 15, op_mulh_d = 0x3cU << 15, op_mulh_du = 0x3dU << 15, op_mulw_d_w = 0x3eU << 15, op_mulw_d_wu = 0x3fU << 15, op_div_w = 0x40U << 15, op_mod_w = 0x41U << 15, op_div_wu = 0x42U << 15, op_mod_wu = 0x43U << 15, op_div_d = 0x44U << 15, op_mod_d = 0x45U << 15, op_div_du = 0x46U << 15, op_mod_du = 0x47U << 15, op_break = 0x54U << 15, op_syscall = 0x56U << 15, op_fadd_s = 0x201U << 15, op_fadd_d = 0x202U << 15, op_fsub_s = 0x205U << 15, op_fsub_d = 0x206U << 15, op_fmul_s = 0x209U << 15, op_fmul_d = 0x20aU << 15, op_fdiv_s = 0x20dU << 15, op_fdiv_d = 0x20eU << 15, op_fmax_s = 0x211U << 15, op_fmax_d = 0x212U << 15, op_fmin_s = 0x215U << 15, op_fmin_d = 0x216U << 15, op_fmaxa_s = 0x219U << 15, op_fmaxa_d = 0x21aU << 15, op_fmina_s = 0x21dU << 15, op_fmina_d = 0x21eU << 15, op_fcopysign_s = 0x225U << 15, op_fcopysign_d = 0x226U << 15, op_ldx_b = 0x7000U << 15, op_ldx_h = 0x7008U << 15, op_ldx_w = 0x7010U << 15, op_ldx_d = 0x7018U << 15, op_stx_b = 0x7020U << 15, op_stx_h = 0x7028U << 15, op_stx_w = 0x7030U << 15, op_stx_d = 0x7038U << 15, op_ldx_bu = 0x7040U << 15, op_ldx_hu = 0x7048U << 15, op_ldx_wu = 0x7050U << 15, op_fldx_s = 0x7060U << 15, op_fldx_d = 0x7068U << 15, op_fstx_s = 0x7070U << 15, op_fstx_d = 0x7078U << 15, op_amswap_w = 0x70c0U << 15, op_amswap_d = 0x70c1U << 15, op_amadd_w = 0x70c2U << 15, op_amadd_d = 0x70c3U << 15, op_amand_w = 0x70c4U << 15, op_amand_d = 0x70c5U << 15, op_amor_w = 0x70c6U << 15, op_amor_d = 0x70c7U << 15, op_amxor_w = 0x70c8U << 15, op_amxor_d = 0x70c9U << 15, op_ammax_w = 0x70caU << 15, op_ammax_d = 0x70cbU << 15, op_ammin_w = 0x70ccU << 15, op_ammin_d = 0x70cdU << 15, op_ammax_wu = 0x70ceU << 15, op_ammax_du = 0x70cfU << 15, op_ammin_wu = 0x70d0U << 15, op_ammin_du = 0x70d1U << 15, op_amswap_db_w = 0x70d2U << 15, op_amswap_db_d = 0x70d3U << 15, op_amadd_db_w = 0x70d4U << 15, op_amadd_db_d = 0x70d5U << 15, op_amand_db_w = 0x70d6U << 15, op_amand_db_d = 0x70d7U << 15, op_amor_db_w = 0x70d8U << 15, op_amor_db_d = 0x70d9U << 15, op_amxor_db_w = 0x70daU << 15, op_amxor_db_d = 0x70dbU << 15, op_ammax_db_w = 0x70dcU << 15, op_ammax_db_d = 0x70ddU << 15, op_ammin_db_w = 0x70deU << 15, op_ammin_db_d = 0x70dfU << 15, op_ammax_db_wu = 0x70e0U << 15, op_ammax_db_du = 0x70e1U << 15, op_ammin_db_wu = 0x70e2U << 15, op_ammin_db_du = 0x70e3U << 15, op_dbar = 0x70e4U << 15, op_ibar = 0x70e5U << 15, op_clo_w = 0x4U << 10, op_clz_w = 0x5U << 10, op_cto_w = 0x6U << 10, op_ctz_w = 0x7U << 10, op_clo_d = 0x8U << 10, op_clz_d = 0x9U << 10, op_cto_d = 0xaU << 10, op_ctz_d = 0xbU << 10, op_revb_2h = 0xcU << 10, op_revb_4h = 0xdU << 10, op_revb_2w = 0xeU << 10, op_revb_d = 0xfU << 10, op_revh_2w = 0x10U << 10, op_revh_d = 0x11U << 10, op_bitrev_4b = 0x12U << 10, op_bitrev_8b = 0x13U << 10, op_bitrev_w = 0x14U << 10, op_bitrev_d = 0x15U << 10, op_ext_w_h = 0x16U << 10, op_ext_w_b = 0x17U << 10, op_fabs_s = 0x4501U << 10, op_fabs_d = 0x4502U << 10, op_fneg_s = 0x4505U << 10, op_fneg_d = 0x4506U << 10, op_fsqrt_s = 0x4511U << 10, op_fsqrt_d = 0x4512U << 10, op_fmov_s = 0x4525U << 10, op_fmov_d = 0x4526U << 10, op_movgr2fr_w = 0x4529U << 10, op_movgr2fr_d = 0x452aU << 10, op_movgr2frh_w = 0x452bU << 10, op_movfr2gr_s = 0x452dU << 10, op_movfr2gr_d = 0x452eU << 10, op_movfrh2gr_s = 0x452fU << 10, op_movgr2fcsr = 0x4530U << 10, op_movfcsr2gr = 0x4532U << 10, op_movfr2cf = 0x4534U << 10, op_movgr2cf = 0x4536U << 10, op_fcvt_s_d = 0x4646U << 10, op_fcvt_d_s = 0x4649U << 10, op_ftintrm_w_s = 0x4681U << 10, op_ftintrm_w_d = 0x4682U << 10, op_ftintrm_l_s = 0x4689U << 10, op_ftintrm_l_d = 0x468aU << 10, op_ftintrp_w_s = 0x4691U << 10, op_ftintrp_w_d = 0x4692U << 10, op_ftintrp_l_s = 0x4699U << 10, op_ftintrp_l_d = 0x469aU << 10, op_ftintrz_w_s = 0x46a1U << 10, op_ftintrz_w_d = 0x46a2U << 10, op_ftintrz_l_s = 0x46a9U << 10, op_ftintrz_l_d = 0x46aaU << 10, op_ftintrne_w_s = 0x46b1U << 10, op_ftintrne_w_d = 0x46b2U << 10, op_ftintrne_l_s = 0x46b9U << 10, op_ftintrne_l_d = 0x46baU << 10, op_ftint_w_s = 0x46c1U << 10, op_ftint_w_d = 0x46c2U << 10, op_ftint_l_s = 0x46c9U << 10, op_ftint_l_d = 0x46caU << 10, op_ffint_s_w = 0x4744U << 10, op_ffint_s_l = 0x4746U << 10, op_ffint_d_w = 0x4748U << 10, op_ffint_d_l = 0x474aU << 10, op_frint_s = 0x4791U << 10, op_frint_d = 0x4792U << 10, op_movcf2fr = 0x114d4U << 8, op_movcf2gr = 0x114dcU << 8, }; class Operand; // A BOffImm16 is a 16 bit immediate that is used for branches. class BOffImm16 { uint32_t data; public: uint32_t encode() { MOZ_ASSERT(!isInvalid()); return data; } int32_t decode() { MOZ_ASSERT(!isInvalid()); return (int32_t(data << 18) >> 16); } explicit BOffImm16(int offset) : data((offset) >> 2 & Imm16Mask) { MOZ_ASSERT((offset & 0x3) == 0); MOZ_ASSERT(IsInRange(offset)); } static bool IsInRange(int offset) { if ((offset) < int(unsigned(INT16_MIN) << 2)) { return false; } if ((offset) > (INT16_MAX << 2)) { return false; } return true; } static const uint32_t INVALID = 0x00020000; BOffImm16() : data(INVALID) {} bool isInvalid() { return data == INVALID; } Instruction* getDest(Instruction* src) const; BOffImm16(InstImm inst); }; // A JOffImm26 is a 26 bit immediate that is used for unconditional jumps. class JOffImm26 { uint32_t data; public: uint32_t encode() { MOZ_ASSERT(!isInvalid()); return data; } int32_t decode() { MOZ_ASSERT(!isInvalid()); return (int32_t(data << 8) >> 6); } explicit JOffImm26(int offset) : data((offset) >> 2 & Imm26Mask) { MOZ_ASSERT((offset & 0x3) == 0); MOZ_ASSERT(IsInRange(offset)); } static bool IsInRange(int offset) { if ((offset) < -536870912) { return false; } if ((offset) > 536870908) { return false; } return true; } static const uint32_t INVALID = 0x20000000; JOffImm26() : data(INVALID) {} bool isInvalid() { return data == INVALID; } Instruction* getDest(Instruction* src); }; class Imm16 { uint16_t value; public: Imm16(); Imm16(uint32_t imm) : value(imm) {} uint32_t encode() { return value; } int32_t decodeSigned() { return value; } uint32_t decodeUnsigned() { return value; } static bool IsInSignedRange(int32_t imm) { return imm >= INT16_MIN && imm <= INT16_MAX; } static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT16_MAX; } }; class Imm8 { uint8_t value; public: Imm8(); Imm8(uint32_t imm) : value(imm) {} uint32_t encode(uint32_t shift) { return value << shift; } int32_t decodeSigned() { return value; } uint32_t decodeUnsigned() { return value; } static bool IsInSignedRange(int32_t imm) { return imm >= INT8_MIN && imm <= INT8_MAX; } static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT8_MAX; } static Imm8 Lower(Imm16 imm) { return Imm8(imm.decodeSigned() & 0xff); } static Imm8 Upper(Imm16 imm) { return Imm8((imm.decodeSigned() >> 8) & 0xff); } }; class Operand { public: enum Tag { REG, FREG, MEM }; private: Tag tag : 3; uint32_t reg : 5; int32_t offset; public: Operand(Register reg_) : tag(REG), reg(reg_.code()) {} Operand(FloatRegister freg) : tag(FREG), reg(freg.code()) {} Operand(Register base, Imm32 off) : tag(MEM), reg(base.code()), offset(off.value) {} Operand(Register base, int32_t off) : tag(MEM), reg(base.code()), offset(off) {} Operand(const Address& addr) : tag(MEM), reg(addr.base.code()), offset(addr.offset) {} Tag getTag() const { return tag; } Register toReg() const { MOZ_ASSERT(tag == REG); return Register::FromCode(reg); } FloatRegister toFReg() const { MOZ_ASSERT(tag == FREG); return FloatRegister::FromCode(reg); } void toAddr(Register* r, Imm32* dest) const { MOZ_ASSERT(tag == MEM); *r = Register::FromCode(reg); *dest = Imm32(offset); } Address toAddress() const { MOZ_ASSERT(tag == MEM); return Address(Register::FromCode(reg), offset); } int32_t disp() const { MOZ_ASSERT(tag == MEM); return offset; } int32_t base() const { MOZ_ASSERT(tag == MEM); return reg; } Register baseReg() const { MOZ_ASSERT(tag == MEM); return Register::FromCode(reg); } }; // int check. inline bool is_intN(int32_t x, unsigned n) { MOZ_ASSERT((0 < n) && (n < 64)); int32_t limit = static_cast(1) << (n - 1); return (-limit <= x) && (x < limit); } inline bool is_uintN(int32_t x, unsigned n) { MOZ_ASSERT((0 < n) && (n < (sizeof(x) * 8))); return !(x >> n); } inline Imm32 Imm64::firstHalf() const { return low(); } inline Imm32 Imm64::secondHalf() const { return hi(); } static constexpr int32_t SliceSize = 1024; typedef js::jit::AssemblerBuffer LOONGBuffer; class LOONGBufferWithExecutableCopy : public LOONGBuffer { public: void executableCopy(uint8_t* buffer) { if (this->oom()) { return; } for (Slice* cur = head; cur != nullptr; cur = cur->getNext()) { memcpy(buffer, &cur->instructions, cur->length()); buffer += cur->length(); } } bool appendRawCode(const uint8_t* code, size_t numBytes) { if (this->oom()) { return false; } while (numBytes > SliceSize) { this->putBytes(SliceSize, code); numBytes -= SliceSize; code += SliceSize; } this->putBytes(numBytes, code); return !this->oom(); } }; class AssemblerLOONG64 : public AssemblerShared { public: // TODO(loong64): Should we remove these conditions here? enum Condition { Equal, NotEqual, Above, AboveOrEqual, Below, BelowOrEqual, GreaterThan, GreaterThanOrEqual, GreaterThanOrEqual_Signed, GreaterThanOrEqual_NotSigned, LessThan, LessThan_Signed, LessThan_NotSigned, LessThanOrEqual, Overflow, CarrySet, CarryClear, Signed, NotSigned, Zero, NonZero, Always, }; enum DoubleCondition { DoubleOrdered, DoubleEqual, DoubleNotEqual, DoubleGreaterThan, DoubleGreaterThanOrEqual, DoubleLessThan, DoubleLessThanOrEqual, DoubleUnordered, DoubleEqualOrUnordered, DoubleNotEqualOrUnordered, DoubleGreaterThanOrUnordered, DoubleGreaterThanOrEqualOrUnordered, DoubleLessThanOrUnordered, DoubleLessThanOrEqualOrUnordered }; enum FPUCondition { kNoFPUCondition = -1, CAF = 0x00, SAF = 0x01, CLT = 0x02, SLT = 0x03, CEQ = 0x04, SEQ = 0x05, CLE = 0x06, SLE = 0x07, CUN = 0x08, SUN = 0x09, CULT = 0x0a, SULT = 0x0b, CUEQ = 0x0c, SUEQ = 0x0d, CULE = 0x0e, SULE = 0x0f, CNE = 0x10, SNE = 0x11, COR = 0x14, SOR = 0x15, CUNE = 0x18, SUNE = 0x19, }; enum FPConditionBit { FCC0 = 0, FCC1, FFC2, FCC3, FCC4, FCC5, FCC6, FCC7 }; enum FPControl { FCSR = 0 }; enum FCSRBit { CauseI = 24, CauseU, CauseO, CauseZ, CauseV }; enum FloatFormat { SingleFloat, DoubleFloat }; enum JumpOrCall { BranchIsJump, BranchIsCall }; enum FloatTestKind { TestForTrue, TestForFalse }; // :( this should be protected, but since CodeGenerator // wants to use it, It needs to go out here :( BufferOffset nextOffset() { return m_buffer.nextOffset(); } protected: Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); } // structure for fixing up pc-relative loads/jumps when a the machine code // gets moved (executable copy, gc, etc.) struct RelativePatch { // the offset within the code buffer where the value is loaded that // we want to fix-up BufferOffset offset; void* target; RelocationKind kind; RelativePatch(BufferOffset offset, void* target, RelocationKind kind) : offset(offset), target(target), kind(kind) {} }; js::Vector jumps_; CompactBufferWriter jumpRelocations_; CompactBufferWriter dataRelocations_; LOONGBufferWithExecutableCopy m_buffer; #ifdef JS_JITSPEW Sprinter* printer; #endif public: AssemblerLOONG64() : m_buffer(), #ifdef JS_JITSPEW printer(nullptr), #endif isFinished(false) { } static Condition InvertCondition(Condition cond); static DoubleCondition InvertCondition(DoubleCondition cond); // This is changing the condition codes for cmp a, b to the same codes for cmp // b, a. static Condition InvertCmpCondition(Condition cond); // As opposed to x86/x64 version, the data relocation has to be executed // before to recover the pointer, and not after. void writeDataRelocation(ImmGCPtr ptr) { // Raw GC pointer relocations and Value relocations both end up in // TraceOneDataRelocation. if (ptr.value) { if (gc::IsInsideNursery(ptr.value)) { embedsNurseryPointers_ = true; } dataRelocations_.writeUnsigned(nextOffset().getOffset()); } } void assertNoGCThings() const { #ifdef DEBUG MOZ_ASSERT(dataRelocations_.length() == 0); for (auto& j : jumps_) { MOZ_ASSERT(j.kind == RelocationKind::HARDCODED); } #endif } public: void setUnlimitedBuffer() { m_buffer.setUnlimited(); } bool oom() const; void setPrinter(Sprinter* sp) { #ifdef JS_JITSPEW printer = sp; #endif } #ifdef JS_JITSPEW inline void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) { if (MOZ_UNLIKELY(printer || JitSpewEnabled(JitSpew_Codegen))) { va_list va; va_start(va, fmt); spew(fmt, va); va_end(va); } } void decodeBranchInstAndSpew(InstImm branch); #else MOZ_ALWAYS_INLINE void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {} #endif #ifdef JS_JITSPEW MOZ_COLD void spew(const char* fmt, va_list va) MOZ_FORMAT_PRINTF(2, 0) { // Buffer to hold the formatted string. Note that this may contain // '%' characters, so do not pass it directly to printf functions. char buf[200]; int i = VsprintfLiteral(buf, fmt, va); if (i > -1) { if (printer) { printer->printf("%s\n", buf); } js::jit::JitSpew(js::jit::JitSpew_Codegen, "%s", buf); } } #endif Register getStackPointer() const { return StackPointer; } protected: bool isFinished; public: void finish(); bool appendRawCode(const uint8_t* code, size_t numBytes); bool reserve(size_t size); bool swapBuffer(wasm::Bytes& bytes); void executableCopy(void* buffer); void copyJumpRelocationTable(uint8_t* dest); void copyDataRelocationTable(uint8_t* dest); // Size of the instruction stream, in bytes. size_t size() const; // Size of the jump relocation table, in bytes. size_t jumpRelocationTableBytes() const; size_t dataRelocationTableBytes() const; // Size of the data table, in bytes. size_t bytesNeeded() const; // Write a blob of binary into the instruction stream *OR* // into a destination address. If dest is nullptr (the default), then the // instruction gets written into the instruction stream. If dest is not null // it is interpreted as a pointer to the location that we want the // instruction to be written. BufferOffset writeInst(uint32_t x, uint32_t* dest = nullptr); // A static variant for the cases where we don't want to have an assembler // object at all. Normally, you would use the dummy (nullptr) object. static void WriteInstStatic(uint32_t x, uint32_t* dest); public: BufferOffset haltingAlign(int alignment); BufferOffset nopAlign(int alignment); BufferOffset as_nop() { return as_andi(zero, zero, 0); } // Branch and jump instructions BufferOffset as_b(JOffImm26 off); BufferOffset as_bl(JOffImm26 off); BufferOffset as_jirl(Register rd, Register rj, BOffImm16 off); InstImm getBranchCode(JumpOrCall jumpOrCall); // b, bl InstImm getBranchCode(Register rd, Register rj, Condition c); // beq, bne, bge, bgeu, blt, bltu InstImm getBranchCode(Register rj, Condition c); // beqz, bnez InstImm getBranchCode(FPConditionBit cj); // bceqz, bcnez // Arithmetic instructions BufferOffset as_add_w(Register rd, Register rj, Register rk); BufferOffset as_add_d(Register rd, Register rj, Register rk); BufferOffset as_sub_w(Register rd, Register rj, Register rk); BufferOffset as_sub_d(Register rd, Register rj, Register rk); BufferOffset as_addi_w(Register rd, Register rj, int32_t si12); BufferOffset as_addi_d(Register rd, Register rj, int32_t si12); BufferOffset as_addu16i_d(Register rd, Register rj, int32_t si16); BufferOffset as_alsl_w(Register rd, Register rj, Register rk, uint32_t sa2); BufferOffset as_alsl_wu(Register rd, Register rj, Register rk, uint32_t sa2); BufferOffset as_alsl_d(Register rd, Register rj, Register rk, uint32_t sa2); BufferOffset as_lu12i_w(Register rd, int32_t si20); BufferOffset as_lu32i_d(Register rd, int32_t si20); BufferOffset as_lu52i_d(Register rd, Register rj, int32_t si12); BufferOffset as_slt(Register rd, Register rj, Register rk); BufferOffset as_sltu(Register rd, Register rj, Register rk); BufferOffset as_slti(Register rd, Register rj, int32_t si12); BufferOffset as_sltui(Register rd, Register rj, int32_t si12); BufferOffset as_pcaddi(Register rd, int32_t si20); BufferOffset as_pcaddu12i(Register rd, int32_t si20); BufferOffset as_pcaddu18i(Register rd, int32_t si20); BufferOffset as_pcalau12i(Register rd, int32_t si20); BufferOffset as_mul_w(Register rd, Register rj, Register rk); BufferOffset as_mulh_w(Register rd, Register rj, Register rk); BufferOffset as_mulh_wu(Register rd, Register rj, Register rk); BufferOffset as_mul_d(Register rd, Register rj, Register rk); BufferOffset as_mulh_d(Register rd, Register rj, Register rk); BufferOffset as_mulh_du(Register rd, Register rj, Register rk); BufferOffset as_mulw_d_w(Register rd, Register rj, Register rk); BufferOffset as_mulw_d_wu(Register rd, Register rj, Register rk); BufferOffset as_div_w(Register rd, Register rj, Register rk); BufferOffset as_mod_w(Register rd, Register rj, Register rk); BufferOffset as_div_wu(Register rd, Register rj, Register rk); BufferOffset as_mod_wu(Register rd, Register rj, Register rk); BufferOffset as_div_d(Register rd, Register rj, Register rk); BufferOffset as_mod_d(Register rd, Register rj, Register rk); BufferOffset as_div_du(Register rd, Register rj, Register rk); BufferOffset as_mod_du(Register rd, Register rj, Register rk); // Logical instructions BufferOffset as_and(Register rd, Register rj, Register rk); BufferOffset as_or(Register rd, Register rj, Register rk); BufferOffset as_xor(Register rd, Register rj, Register rk); BufferOffset as_nor(Register rd, Register rj, Register rk); BufferOffset as_andn(Register rd, Register rj, Register rk); BufferOffset as_orn(Register rd, Register rj, Register rk); BufferOffset as_andi(Register rd, Register rj, int32_t ui12); BufferOffset as_ori(Register rd, Register rj, int32_t ui12); BufferOffset as_xori(Register rd, Register rj, int32_t ui12); // Shift instructions BufferOffset as_sll_w(Register rd, Register rj, Register rk); BufferOffset as_srl_w(Register rd, Register rj, Register rk); BufferOffset as_sra_w(Register rd, Register rj, Register rk); BufferOffset as_rotr_w(Register rd, Register rj, Register rk); BufferOffset as_slli_w(Register rd, Register rj, int32_t ui5); BufferOffset as_srli_w(Register rd, Register rj, int32_t ui5); BufferOffset as_srai_w(Register rd, Register rj, int32_t ui5); BufferOffset as_rotri_w(Register rd, Register rj, int32_t ui5); BufferOffset as_sll_d(Register rd, Register rj, Register rk); BufferOffset as_srl_d(Register rd, Register rj, Register rk); BufferOffset as_sra_d(Register rd, Register rj, Register rk); BufferOffset as_rotr_d(Register rd, Register rj, Register rk); BufferOffset as_slli_d(Register rd, Register rj, int32_t ui6); BufferOffset as_srli_d(Register rd, Register rj, int32_t ui6); BufferOffset as_srai_d(Register rd, Register rj, int32_t ui6); BufferOffset as_rotri_d(Register rd, Register rj, int32_t ui6); // Bit operation instrucitons BufferOffset as_ext_w_b(Register rd, Register rj); BufferOffset as_ext_w_h(Register rd, Register rj); BufferOffset as_clo_w(Register rd, Register rj); BufferOffset as_clz_w(Register rd, Register rj); BufferOffset as_cto_w(Register rd, Register rj); BufferOffset as_ctz_w(Register rd, Register rj); BufferOffset as_clo_d(Register rd, Register rj); BufferOffset as_clz_d(Register rd, Register rj); BufferOffset as_cto_d(Register rd, Register rj); BufferOffset as_ctz_d(Register rd, Register rj); BufferOffset as_bytepick_w(Register rd, Register rj, Register rk, int32_t sa2); BufferOffset as_bytepick_d(Register rd, Register rj, Register rk, int32_t sa3); BufferOffset as_revb_2h(Register rd, Register rj); BufferOffset as_revb_4h(Register rd, Register rj); BufferOffset as_revb_2w(Register rd, Register rj); BufferOffset as_revb_d(Register rd, Register rj); BufferOffset as_revh_2w(Register rd, Register rj); BufferOffset as_revh_d(Register rd, Register rj); BufferOffset as_bitrev_4b(Register rd, Register rj); BufferOffset as_bitrev_8b(Register rd, Register rj); BufferOffset as_bitrev_w(Register rd, Register rj); BufferOffset as_bitrev_d(Register rd, Register rj); BufferOffset as_bstrins_w(Register rd, Register rj, int32_t msbw, int32_t lsbw); BufferOffset as_bstrins_d(Register rd, Register rj, int32_t msbd, int32_t lsbd); BufferOffset as_bstrpick_w(Register rd, Register rj, int32_t msbw, int32_t lsbw); BufferOffset as_bstrpick_d(Register rd, Register rj, int32_t msbd, int32_t lsbd); BufferOffset as_maskeqz(Register rd, Register rj, Register rk); BufferOffset as_masknez(Register rd, Register rj, Register rk); // Load and store instructions BufferOffset as_ld_b(Register rd, Register rj, int32_t si12); BufferOffset as_ld_h(Register rd, Register rj, int32_t si12); BufferOffset as_ld_w(Register rd, Register rj, int32_t si12); BufferOffset as_ld_d(Register rd, Register rj, int32_t si12); BufferOffset as_ld_bu(Register rd, Register rj, int32_t si12); BufferOffset as_ld_hu(Register rd, Register rj, int32_t si12); BufferOffset as_ld_wu(Register rd, Register rj, int32_t si12); BufferOffset as_st_b(Register rd, Register rj, int32_t si12); BufferOffset as_st_h(Register rd, Register rj, int32_t si12); BufferOffset as_st_w(Register rd, Register rj, int32_t si12); BufferOffset as_st_d(Register rd, Register rj, int32_t si12); BufferOffset as_ldx_b(Register rd, Register rj, Register rk); BufferOffset as_ldx_h(Register rd, Register rj, Register rk); BufferOffset as_ldx_w(Register rd, Register rj, Register rk); BufferOffset as_ldx_d(Register rd, Register rj, Register rk); BufferOffset as_ldx_bu(Register rd, Register rj, Register rk); BufferOffset as_ldx_hu(Register rd, Register rj, Register rk); BufferOffset as_ldx_wu(Register rd, Register rj, Register rk); BufferOffset as_stx_b(Register rd, Register rj, Register rk); BufferOffset as_stx_h(Register rd, Register rj, Register rk); BufferOffset as_stx_w(Register rd, Register rj, Register rk); BufferOffset as_stx_d(Register rd, Register rj, Register rk); BufferOffset as_ldptr_w(Register rd, Register rj, int32_t si14); BufferOffset as_ldptr_d(Register rd, Register rj, int32_t si14); BufferOffset as_stptr_w(Register rd, Register rj, int32_t si14); BufferOffset as_stptr_d(Register rd, Register rj, int32_t si14); BufferOffset as_preld(int32_t hint, Register rj, int32_t si12); // Atomic instructions BufferOffset as_amswap_w(Register rd, Register rj, Register rk); BufferOffset as_amswap_d(Register rd, Register rj, Register rk); BufferOffset as_amadd_w(Register rd, Register rj, Register rk); BufferOffset as_amadd_d(Register rd, Register rj, Register rk); BufferOffset as_amand_w(Register rd, Register rj, Register rk); BufferOffset as_amand_d(Register rd, Register rj, Register rk); BufferOffset as_amor_w(Register rd, Register rj, Register rk); BufferOffset as_amor_d(Register rd, Register rj, Register rk); BufferOffset as_amxor_w(Register rd, Register rj, Register rk); BufferOffset as_amxor_d(Register rd, Register rj, Register rk); BufferOffset as_ammax_w(Register rd, Register rj, Register rk); BufferOffset as_ammax_d(Register rd, Register rj, Register rk); BufferOffset as_ammin_w(Register rd, Register rj, Register rk); BufferOffset as_ammin_d(Register rd, Register rj, Register rk); BufferOffset as_ammax_wu(Register rd, Register rj, Register rk); BufferOffset as_ammax_du(Register rd, Register rj, Register rk); BufferOffset as_ammin_wu(Register rd, Register rj, Register rk); BufferOffset as_ammin_du(Register rd, Register rj, Register rk); BufferOffset as_amswap_db_w(Register rd, Register rj, Register rk); BufferOffset as_amswap_db_d(Register rd, Register rj, Register rk); BufferOffset as_amadd_db_w(Register rd, Register rj, Register rk); BufferOffset as_amadd_db_d(Register rd, Register rj, Register rk); BufferOffset as_amand_db_w(Register rd, Register rj, Register rk); BufferOffset as_amand_db_d(Register rd, Register rj, Register rk); BufferOffset as_amor_db_w(Register rd, Register rj, Register rk); BufferOffset as_amor_db_d(Register rd, Register rj, Register rk); BufferOffset as_amxor_db_w(Register rd, Register rj, Register rk); BufferOffset as_amxor_db_d(Register rd, Register rj, Register rk); BufferOffset as_ammax_db_w(Register rd, Register rj, Register rk); BufferOffset as_ammax_db_d(Register rd, Register rj, Register rk); BufferOffset as_ammin_db_w(Register rd, Register rj, Register rk); BufferOffset as_ammin_db_d(Register rd, Register rj, Register rk); BufferOffset as_ammax_db_wu(Register rd, Register rj, Register rk); BufferOffset as_ammax_db_du(Register rd, Register rj, Register rk); BufferOffset as_ammin_db_wu(Register rd, Register rj, Register rk); BufferOffset as_ammin_db_du(Register rd, Register rj, Register rk); BufferOffset as_ll_w(Register rd, Register rj, int32_t si14); BufferOffset as_ll_d(Register rd, Register rj, int32_t si14); BufferOffset as_sc_w(Register rd, Register rj, int32_t si14); BufferOffset as_sc_d(Register rd, Register rj, int32_t si14); // Barrier instructions BufferOffset as_dbar(int32_t hint); BufferOffset as_ibar(int32_t hint); // FP Arithmetic instructions BufferOffset as_fadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmul_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmul_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fdiv_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fdiv_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fnmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fnmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fnmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fnmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk, FloatRegister fa); BufferOffset as_fmax_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmax_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmin_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmin_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmaxa_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmaxa_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmina_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fmina_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fabs_s(FloatRegister fd, FloatRegister fj); BufferOffset as_fabs_d(FloatRegister fd, FloatRegister fj); BufferOffset as_fneg_s(FloatRegister fd, FloatRegister fj); BufferOffset as_fneg_d(FloatRegister fd, FloatRegister fj); BufferOffset as_fsqrt_s(FloatRegister fd, FloatRegister fj); BufferOffset as_fsqrt_d(FloatRegister fd, FloatRegister fj); BufferOffset as_fcopysign_s(FloatRegister fd, FloatRegister fj, FloatRegister fk); BufferOffset as_fcopysign_d(FloatRegister fd, FloatRegister fj, FloatRegister fk); // FP compare instructions (fcmp.cond.s fcmp.cond.d) BufferOffset as_fcmp_cor(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_ceq(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cne(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cle(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_clt(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cun(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cueq(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cune(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cule(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); BufferOffset as_fcmp_cult(FloatFormat fmt, FloatRegister fj, FloatRegister fk, FPConditionBit cd); // FP conversion instructions BufferOffset as_fcvt_s_d(FloatRegister fd, FloatRegister fj); BufferOffset as_fcvt_d_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ffint_s_w(FloatRegister fd, FloatRegister fj); BufferOffset as_ffint_s_l(FloatRegister fd, FloatRegister fj); BufferOffset as_ffint_d_w(FloatRegister fd, FloatRegister fj); BufferOffset as_ffint_d_l(FloatRegister fd, FloatRegister fj); BufferOffset as_ftint_w_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftint_w_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftint_l_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftint_l_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrm_w_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrm_w_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrm_l_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrm_l_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrp_w_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrp_w_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrp_l_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrp_l_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrz_w_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrz_w_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrz_l_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrz_l_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrne_w_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrne_w_d(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrne_l_s(FloatRegister fd, FloatRegister fj); BufferOffset as_ftintrne_l_d(FloatRegister fd, FloatRegister fj); BufferOffset as_frint_s(FloatRegister fd, FloatRegister fj); BufferOffset as_frint_d(FloatRegister fd, FloatRegister fj); // FP mov instructions BufferOffset as_fmov_s(FloatRegister fd, FloatRegister fj); BufferOffset as_fmov_d(FloatRegister fd, FloatRegister fj); BufferOffset as_fsel(FloatRegister fd, FloatRegister fj, FloatRegister fk, FPConditionBit ca); BufferOffset as_movgr2fr_w(FloatRegister fd, Register rj); BufferOffset as_movgr2fr_d(FloatRegister fd, Register rj); BufferOffset as_movgr2frh_w(FloatRegister fd, Register rj); BufferOffset as_movfr2gr_s(Register rd, FloatRegister fj); BufferOffset as_movfr2gr_d(Register rd, FloatRegister fj); BufferOffset as_movfrh2gr_s(Register rd, FloatRegister fj); BufferOffset as_movgr2fcsr(Register rj); BufferOffset as_movfcsr2gr(Register rd); BufferOffset as_movfr2cf(FPConditionBit cd, FloatRegister fj); BufferOffset as_movcf2fr(FloatRegister fd, FPConditionBit cj); BufferOffset as_movgr2cf(FPConditionBit cd, Register rj); BufferOffset as_movcf2gr(Register rd, FPConditionBit cj); // FP load/store instructions BufferOffset as_fld_s(FloatRegister fd, Register rj, int32_t si12); BufferOffset as_fld_d(FloatRegister fd, Register rj, int32_t si12); BufferOffset as_fst_s(FloatRegister fd, Register rj, int32_t si12); BufferOffset as_fst_d(FloatRegister fd, Register rj, int32_t si12); BufferOffset as_fldx_s(FloatRegister fd, Register rj, Register rk); BufferOffset as_fldx_d(FloatRegister fd, Register rj, Register rk); BufferOffset as_fstx_s(FloatRegister fd, Register rj, Register rk); BufferOffset as_fstx_d(FloatRegister fd, Register rj, Register rk); // label operations void bind(Label* label, BufferOffset boff = BufferOffset()); virtual void bind(InstImm* inst, uintptr_t branch, uintptr_t target) = 0; void bind(CodeLabel* label) { label->target()->bind(currentOffset()); } uint32_t currentOffset() { return nextOffset().getOffset(); } void retarget(Label* label, Label* target); void call(Label* label); void call(void* target); void as_break(uint32_t code); public: static bool SupportsFloatingPoint() { #if defined(__loongarch_hard_float) || defined(JS_SIMULATOR_LOONG64) return true; #else return false; #endif } static bool SupportsUnalignedAccesses() { return true; } static bool SupportsFastUnalignedFPAccesses() { return true; } static bool HasRoundInstruction(RoundingMode mode) { return false; } protected: InstImm invertBranch(InstImm branch, BOffImm16 skipOffset); void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) { enoughMemory_ &= jumps_.append(RelativePatch(src, target.value, kind)); if (kind == RelocationKind::JITCODE) { jumpRelocations_.writeUnsigned(src.getOffset()); } } void addLongJump(BufferOffset src, BufferOffset dst) { CodeLabel cl; cl.patchAt()->bind(src.getOffset()); cl.target()->bind(dst.getOffset()); cl.setLinkMode(CodeLabel::JumpImmediate); addCodeLabel(std::move(cl)); } public: void flushBuffer() {} void comment(const char* msg) { spew("; %s", msg); } static uint32_t NopSize() { return 4; } static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm); static uint8_t* NextInstruction(uint8_t* instruction, uint32_t* count = nullptr); static void ToggleToJmp(CodeLocationLabel inst_); static void ToggleToCmp(CodeLocationLabel inst_); void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end, const Disassembler::HeapAccess& heapAccess) { // Implement this if we implement a disassembler. } }; // AssemblerLOONG64 // andi r0, r0, 0 const uint32_t NopInst = 0x03400000; // An Instruction is a structure for both encoding and decoding any and all // LoongArch instructions. class Instruction { public: uint32_t data; protected: // Standard constructor Instruction(uint32_t data_) : data(data_) {} // You should never create an instruction directly. You should create a // more specific instruction which will eventually call one of these // constructors for you. public: uint32_t encode() const { return data; } void makeNop() { data = NopInst; } void setData(uint32_t data) { this->data = data; } const Instruction& operator=(const Instruction& src) { data = src.data; return *this; } // Extract the one particular bit. uint32_t extractBit(uint32_t bit) { return (encode() >> bit) & 1; } // Extract a bit field out of the instruction uint32_t extractBitField(uint32_t hi, uint32_t lo) { return (encode() >> lo) & ((2 << (hi - lo)) - 1); } // Get the next instruction in the instruction stream. // This does neat things like ignoreconstant pools and their guards. Instruction* next(); // Sometimes, an api wants a uint32_t (or a pointer to it) rather than // an instruction. raw() just coerces this into a pointer to a uint32_t const uint32_t* raw() const { return &data; } uint32_t size() const { return 4; } }; // Instruction // make sure that it is the right size static_assert(sizeof(Instruction) == 4, "Size of Instruction class has to be 4 bytes."); class InstNOP : public Instruction { public: InstNOP() : Instruction(NopInst) {} }; // Class for register type instructions. class InstReg : public Instruction { public: InstReg(OpcodeField op, Register rj, Register rd) : Instruction(op | RJ(rj) | RD(rd)) {} InstReg(OpcodeField op, Register rk, Register rj, Register rd) : Instruction(op | RK(rk) | RJ(rj) | RD(rd)) {} InstReg(OpcodeField op, uint32_t sa, Register rk, Register rj, Register rd, uint32_t sa_bit) : Instruction(sa_bit == 2 ? op | SA2(sa) | RK(rk) | RJ(rj) | RD(rd) : op | SA3(sa) | RK(rk) | RJ(rj) | RD(rd)) { MOZ_ASSERT(sa_bit == 2 || sa_bit == 3); } InstReg(OpcodeField op, Register rj, Register rd, bool HasRd) : Instruction(HasRd ? op | RJ(rj) | RD(rd) : op | RK(rj) | RJ(rd)) {} // For floating-point InstReg(OpcodeField op, Register rj, FloatRegister fd) : Instruction(op | RJ(rj) | FD(fd)) {} InstReg(OpcodeField op, FloatRegister fj, FloatRegister fd) : Instruction(op | FJ(fj) | FD(fd)) {} InstReg(OpcodeField op, FloatRegister fk, FloatRegister fj, FloatRegister fd) : Instruction(op | FK(fk) | FJ(fj) | FD(fd)) {} InstReg(OpcodeField op, Register rk, Register rj, FloatRegister fd) : Instruction(op | RK(rk) | RJ(rj) | FD(fd)) {} InstReg(OpcodeField op, FloatRegister fa, FloatRegister fk, FloatRegister fj, FloatRegister fd) : Instruction(op | FA(fa) | FK(fk) | FJ(fj) | FD(fd)) {} InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit ca, FloatRegister fk, FloatRegister fj, FloatRegister fd) : Instruction(op | ca << CAShift | FK(fk) | FJ(fj) | FD(fd)) { MOZ_ASSERT(op == op_fsel); } InstReg(OpcodeField op, FloatRegister fj, Register rd) : Instruction(op | FJ(fj) | RD(rd)) { MOZ_ASSERT((op == op_movfr2gr_s) || (op == op_movfr2gr_d) || (op == op_movfrh2gr_s)); } InstReg(OpcodeField op, Register rj, uint32_t fd) : Instruction(op | RJ(rj) | fd) { MOZ_ASSERT(op == op_movgr2fcsr); } InstReg(OpcodeField op, uint32_t fj, Register rd) : Instruction(op | (fj << FJShift) | RD(rd)) { MOZ_ASSERT(op == op_movfcsr2gr); } InstReg(OpcodeField op, FloatRegister fj, AssemblerLOONG64::FPConditionBit cd) : Instruction(op | FJ(fj) | cd) { MOZ_ASSERT(op == op_movfr2cf); } InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, FloatRegister fd) : Instruction(op | (cj << CJShift) | FD(fd)) { MOZ_ASSERT(op == op_movcf2fr); } InstReg(OpcodeField op, Register rj, AssemblerLOONG64::FPConditionBit cd) : Instruction(op | RJ(rj) | cd) { MOZ_ASSERT(op == op_movgr2cf); } InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, Register rd) : Instruction(op | (cj << CJShift) | RD(rd)) { MOZ_ASSERT(op == op_movcf2gr); } InstReg(OpcodeField op, int32_t cond, FloatRegister fk, FloatRegister fj, AssemblerLOONG64::FPConditionBit cd) : Instruction(op | (cond & CONDMask) << CONDShift | FK(fk) | FJ(fj) | (cd & RDMask)) { MOZ_ASSERT(is_uintN(cond, 5)); } uint32_t extractRK() { return extractBitField(RKShift + RKBits - 1, RKShift); } uint32_t extractRJ() { return extractBitField(RJShift + RJBits - 1, RJShift); } uint32_t extractRD() { return extractBitField(RDShift + RDBits - 1, RDShift); } uint32_t extractSA2() { return extractBitField(SAShift + SA2Bits - 1, SAShift); } uint32_t extractSA3() { return extractBitField(SAShift + SA3Bits - 1, SAShift); } }; // Class for branch, load and store instructions with immediate offset. class InstImm : public Instruction { public: void extractImm16(BOffImm16* dest); uint32_t genImm(int32_t value, uint32_t value_bits) { uint32_t imm = value & Imm5Mask; if (value_bits == 6) { imm = value & Imm6Mask; } else if (value_bits == 12) { imm = value & Imm12Mask; } else if (value_bits == 14) { imm = value & Imm14Mask; } return imm; } InstImm(OpcodeField op, int32_t value, Register rj, Register rd, uint32_t value_bits) : Instruction(op | genImm(value, value_bits) << RKShift | RJ(rj) | RD(rd)) { MOZ_ASSERT(value_bits == 5 || value_bits == 6 || value_bits == 12 || value_bits == 14); } InstImm(OpcodeField op, BOffImm16 off, Register rj, Register rd) : Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) | RD(rd)) {} InstImm(OpcodeField op, int32_t si21, Register rj, bool NotHasRd) : Instruction(NotHasRd ? op | (si21 & Imm16Mask) << RKShift | RJ(rj) | (si21 & Imm21Mask) >> 16 : op | (si21 & Imm20Mask) << Imm20Shift | RD(rj)) { if (NotHasRd) { MOZ_ASSERT(op == op_beqz || op == op_bnez); MOZ_ASSERT(is_intN(si21, 21)); } else { MOZ_ASSERT(op == op_lu12i_w || op == op_lu32i_d || op == op_pcaddi || op == op_pcaddu12i || op == op_pcaddu18i || op == op_pcalau12i); // si20 MOZ_ASSERT(is_intN(si21, 20) || is_uintN(si21, 20)); } } InstImm(OpcodeField op, int32_t si21, AssemblerLOONG64::FPConditionBit cj, bool isNotEqual) : Instruction(isNotEqual ? op | (si21 & Imm16Mask) << RKShift | (cj + 8) << CJShift | (si21 & Imm21Mask) >> 16 : op | (si21 & Imm16Mask) << RKShift | cj << CJShift | (si21 & Imm21Mask) >> 16) { MOZ_ASSERT(is_intN(si21, 21)); MOZ_ASSERT(op == op_bcz); MOZ_ASSERT(cj >= 0 && cj <= 7); } InstImm(OpcodeField op, Imm16 off, Register rj, Register rd) : Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) | RD(rd)) {} InstImm(OpcodeField op, int32_t bit15) : Instruction(op | (bit15 & Imm15Mask)) { MOZ_ASSERT(is_uintN(bit15, 15)); } InstImm(OpcodeField op, int32_t bit26, bool jump) : Instruction(op | (bit26 & Imm16Mask) << Imm16Shift | (bit26 & Imm26Mask) >> 16) { MOZ_ASSERT(is_intN(bit26, 26)); } InstImm(OpcodeField op, int32_t si12, Register rj, int32_t hint) : Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) | (hint & RDMask)) { MOZ_ASSERT(op == op_preld); } InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd, uint32_t sb_bits) : Instruction((sb_bits == 5) ? op | (msb & MSBWMask) << MSBWShift | (lsb & LSBWMask) << LSBWShift | RJ(rj) | RD(rd) : op | (msb & MSBDMask) << MSBDShift | (lsb & LSBDMask) << LSBDShift | RJ(rj) | RD(rd)) { MOZ_ASSERT(sb_bits == 5 || sb_bits == 6); MOZ_ASSERT(op == op_bstr_w || op == op_bstrins_d || op == op_bstrpick_d); } InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd) : Instruction(op | (msb & MSBWMask) << MSBWShift | ((lsb + 0x20) & LSBDMask) << LSBWShift | RJ(rj) | RD(rd)) { MOZ_ASSERT(op == op_bstr_w); } // For floating-point loads and stores. InstImm(OpcodeField op, int32_t si12, Register rj, FloatRegister fd) : Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) | FD(fd)) { MOZ_ASSERT(is_intN(si12, 12)); } void setOpcode(OpcodeField op, uint32_t opBits) { // opBits not greater than 24. MOZ_ASSERT(opBits < 25); uint32_t OpcodeShift = 32 - opBits; uint32_t OpcodeMask = ((1 << opBits) - 1) << OpcodeShift; data = (data & ~OpcodeMask) | op; } uint32_t extractRK() { return extractBitField(RKShift + RKBits - 1, RKShift); } uint32_t extractRJ() { return extractBitField(RJShift + RJBits - 1, RJShift); } void setRJ(uint32_t rj) { data = (data & ~RJMask) | (rj << RJShift); } uint32_t extractRD() { return extractBitField(RDShift + RDBits - 1, RDShift); } uint32_t extractImm16Value() { return extractBitField(Imm16Shift + Imm16Bits - 1, Imm16Shift); } void setBOffImm16(BOffImm16 off) { // Reset immediate field and replace it data = (data & ~BOffImm16Mask) | (off.encode() << Imm16Shift); } void setImm21(int32_t off) { // Reset immediate field and replace it uint32_t low16 = (off >> 2) & Imm16Mask; int32_t high5 = (off >> 18) & Imm5Mask; uint32_t fcc_info = (data >> 5) & 0x1F; data = (data & ~BOffImm26Mask) | (low16 << Imm16Shift) | high5 | (fcc_info << 5); } }; // Class for Jump type instructions. class InstJump : public Instruction { public: InstJump(OpcodeField op, JOffImm26 off) : Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | (off.encode() & Imm26Mask) >> 16) { MOZ_ASSERT(op == op_b || op == op_bl); } void setJOffImm26(JOffImm26 off) { // Reset immediate field and replace it data = (data & ~BOffImm26Mask) | ((off.encode() & Imm16Mask) << Imm16Shift) | ((off.encode() >> 16) & 0x3ff); } uint32_t extractImm26Value() { return extractBitField(Imm26Shift + Imm26Bits - 1, Imm26Shift); } }; class ABIArgGenerator { public: ABIArgGenerator() : intRegIndex_(0), floatRegIndex_(0), stackOffset_(0), current_() {} ABIArg next(MIRType argType); ABIArg& current() { return current_; } uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } protected: unsigned intRegIndex_; unsigned floatRegIndex_; uint32_t stackOffset_; ABIArg current_; }; class Assembler : public AssemblerLOONG64 { public: Assembler() : AssemblerLOONG64() {} static uintptr_t GetPointer(uint8_t*); using AssemblerLOONG64::bind; static void Bind(uint8_t* rawCode, const CodeLabel& label); void processCodeLabels(uint8_t* rawCode); static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); static void TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); void bind(InstImm* inst, uintptr_t branch, uintptr_t target); // Copy the assembly code to the given buffer, and perform any pending // relocations relying on the target address. void executableCopy(uint8_t* buffer); static uint32_t PatchWrite_NearCallSize(); static uint64_t ExtractLoad64Value(Instruction* inst0); static void UpdateLoad64Value(Instruction* inst0, uint64_t value); static void WriteLoad64Instructions(Instruction* inst0, Register reg, uint64_t value); static void PatchWrite_NearCall(CodeLocationLabel start, CodeLocationLabel toCall); static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue, ImmPtr expectedValue); static void PatchDataWithValueCheck(CodeLocationLabel label, PatchedImmPtr newValue, PatchedImmPtr expectedValue); static uint64_t ExtractInstructionImmediate(uint8_t* code); static void ToggleCall(CodeLocationLabel inst_, bool enabled); }; // Assembler static const uint32_t NumIntArgRegs = 8; static const uint32_t NumFloatArgRegs = 8; static inline bool GetIntArgReg(uint32_t usedIntArgs, Register* out) { if (usedIntArgs < NumIntArgRegs) { *out = Register::FromCode(a0.code() + usedIntArgs); return true; } return false; } static inline bool GetFloatArgReg(uint32_t usedFloatArgs, FloatRegister* out) { if (usedFloatArgs < NumFloatArgRegs) { *out = FloatRegister::FromCode(f0.code() + usedFloatArgs); return true; } return false; } // Get a register in which we plan to put a quantity that will be used as an // integer argument. This differs from GetIntArgReg in that if we have no more // actual argument registers to use we will fall back on using whatever // CallTempReg* don't overlap the argument registers, and only fail once those // run out too. static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out) { // NOTE: We can't properly determine which regs are used if there are // float arguments. If this is needed, we will have to guess. MOZ_ASSERT(usedFloatArgs == 0); if (GetIntArgReg(usedIntArgs, out)) { return true; } // Unfortunately, we have to assume things about the point at which // GetIntArgReg returns false, because we need to know how many registers it // can allocate. usedIntArgs -= NumIntArgRegs; if (usedIntArgs >= NumCallTempNonArgRegs) { return false; } *out = CallTempNonArgRegs[usedIntArgs]; return true; } } // namespace jit } // namespace js #endif /* jit_loong64_Assembler_loong64_h */