/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/mips32/Lowering-mips32.h" #include "jit/Lowering.h" #include "jit/mips32/Assembler-mips32.h" #include "jit/MIR.h" #include "jit/shared/Lowering-shared-inl.h" using namespace js; using namespace js::jit; LBoxAllocation LIRGeneratorMIPS::useBoxFixed(MDefinition* mir, Register reg1, Register reg2, bool useAtStart) { MOZ_ASSERT(mir->type() == MIRType::Value); MOZ_ASSERT(reg1 != reg2); ensureDefined(mir); return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); } void LIRGenerator::visitBox(MBox* box) { MDefinition* inner = box->getOperand(0); // If the box wrapped a double, it needs a new register. if (IsFloatingPointType(inner->type())) { defineBox(new (alloc()) LBoxFloatingPoint( useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()), box); return; } if (box->canEmitAtUses()) { emitAtUses(box); return; } if (inner->isConstant()) { defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box); return; } LBox* lir = new (alloc()) LBox(use(inner), inner->type()); // Otherwise, we should not define a new register for the payload portion // of the output, so bypass defineBox(). uint32_t vreg = getVirtualRegister(); // Note that because we're using BogusTemp(), we do not change the type of // the definition. We also do not define the first output as "TYPE", // because it has no corresponding payload at (vreg + 1). Also note that // although we copy the input's original type for the payload half of the // definition, this is only for clarity. BogusTemp() definitions are // ignored. lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); lir->setDef(1, LDefinition::BogusTemp()); box->setVirtualRegister(vreg); add(lir); } void LIRGenerator::visitUnbox(MUnbox* unbox) { MDefinition* inner = unbox->getOperand(0); // An unbox on mips reads in a type tag (either in memory or a register) and // a payload. Unlike most instructions consuming a box, we ask for the type // second, so that the result can re-use the first input. MOZ_ASSERT(inner->type() == MIRType::Value); ensureDefined(inner); if (IsFloatingPointType(unbox->type())) { LUnboxFloatingPoint* lir = new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); if (unbox->fallible()) { assignSnapshot(lir, unbox->bailoutKind()); } define(lir, unbox); return; } // Swap the order we use the box pieces so we can re-use the payload // register. LUnbox* lir = new (alloc()) LUnbox; lir->setOperand(0, usePayloadInRegisterAtStart(inner)); lir->setOperand(1, useType(inner, LUse::REGISTER)); if (unbox->fallible()) { assignSnapshot(lir, unbox->bailoutKind()); } // Types and payloads form two separate intervals. If the type becomes dead // before the payload, it could be used as a Value without the type being // recoverable. Unbox's purpose is to eagerly kill the definition of a type // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. // Instead, we create a new virtual register. defineReuseInput(lir, unbox, 0); } void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { MOZ_ASSERT(opd->type() == MIRType::Value); LReturn* ins = new (alloc()) LReturn(isGenerator); ins->setOperand(0, LUse(JSReturnReg_Type)); ins->setOperand(1, LUse(JSReturnReg_Data)); fillBoxUses(ins, 0, opd); add(ins); } void LIRGeneratorMIPS::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); type->setOperand( inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); } void LIRGeneratorMIPS::defineInt64Phi(MPhi* phi, size_t lirIndex) { LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); uint32_t lowVreg = getVirtualRegister(); phi->setVirtualRegister(lowVreg); uint32_t highVreg = getVirtualRegister(); MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); annotate(high); annotate(low); } void LIRGeneratorMIPS::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); low->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); high->setOperand( inputPosition, LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); } void LIRGeneratorMIPS::lowerTruncateDToInt32(MTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double); define(new (alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); } void LIRGeneratorMIPS::lowerTruncateFToInt32(MTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Float32); define(new (alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); } void LIRGeneratorMIPS::lowerDivI64(MDiv* div) { if (div->isUnsigned()) { lowerUDivI64(div); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64( useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs())); defineReturn(lir, div); } void LIRGeneratorMIPS::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { MOZ_CRASH("We don't use runtime div for this architecture"); } void LIRGeneratorMIPS::lowerModI64(MMod* mod) { if (mod->isUnsigned()) { lowerUModI64(mod); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64( useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs())); defineReturn(lir, mod); } void LIRGeneratorMIPS::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { MOZ_CRASH("We don't use runtime mod for this architecture"); } void LIRGeneratorMIPS::lowerUDivI64(MDiv* div) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64( useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs())); defineReturn(lir, div); } void LIRGeneratorMIPS::lowerUModI64(MMod* mod) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64( useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs())); defineReturn(lir, mod); } void LIRGeneratorMIPS::lowerBigIntDiv(MBigIntDiv* ins) { auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorMIPS::lowerBigIntMod(MBigIntMod* ins) { auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); defineReturn(new (alloc()) LWasmTruncateToInt64(useRegisterAtStart(opd)), ins); } void LIRGeneratorMIPS::lowerWasmBuiltinTruncateToInt64( MWasmBuiltinTruncateToInt64* ins) { MOZ_CRASH("We don't use it for this architecture"); } void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Int64); MOZ_ASSERT(IsFloatingPointType(ins->type())); defineReturn( new (alloc()) LInt64ToFloatingPoint(useInt64RegisterAtStart(opd)), ins); } void LIRGeneratorMIPS::lowerBuiltinInt64ToFloatingPoint( MBuiltinInt64ToFloatingPoint* ins) { MOZ_CRASH("We don't use it for this architecture"); }