// Copyright 2022 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef jit_riscv64_constant_Base_constant_riscv__h_ #define jit_riscv64_constant_Base_constant_riscv__h_ namespace js { namespace jit { // On RISC-V Simulator breakpoints can have different codes: // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, // the simulator will run through them and print the registers. // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() // instructions (see Assembler::stop()). // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the // debugger. const uint32_t kMaxTracepointCode = 63; const uint32_t kMaxWatchpointCode = 31; const uint32_t kMaxStopCode = 127; const uint32_t kWasmTrapCode = 6; static_assert(kMaxWatchpointCode < kMaxStopCode); static_assert(kMaxTracepointCode < kMaxStopCode); // Debug parameters. // // For example: // // __ Debug(TRACE_ENABLE | LOG_TRACE); // starts tracing: set v8_flags.trace-sim is true. // __ Debug(TRACE_ENABLE | LOG_REGS); // PrintAllregs. // __ Debug(TRACE_DISABLE | LOG_TRACE); // stops tracing: set v8_flags.trace-sim is false. const uint32_t kDebuggerTracingDirectivesMask = 0b111 << 3; enum DebugParameters : uint32_t { NO_PARAM = 1 << 5, BREAK = 1 << 0, LOG_TRACE = 1 << 1, LOG_REGS = 1 << 2, LOG_ALL = LOG_TRACE, // Trace control. TRACE_ENABLE = 1 << 3 | NO_PARAM, TRACE_DISABLE = 1 << 4 | NO_PARAM, }; // On RISCV all instructions are 32 bits, except for RVC. using Instr = int32_t; using ShortInstr = int16_t; typedef unsigned char byte; // ----- Fields offset and length. // RISCV constants const int kBaseOpcodeShift = 0; const int kBaseOpcodeBits = 7; const int kFunct7Shift = 25; const int kFunct7Bits = 7; const int kFunct5Shift = 27; const int kFunct5Bits = 5; const int kFunct3Shift = 12; const int kFunct3Bits = 3; const int kFunct2Shift = 25; const int kFunct2Bits = 2; const int kRs1Shift = 15; const int kRs1Bits = 5; const int kVs1Shift = 15; const int kVs1Bits = 5; const int kVs2Shift = 20; const int kVs2Bits = 5; const int kVdShift = 7; const int kVdBits = 5; const int kRs2Shift = 20; const int kRs2Bits = 5; const int kRs3Shift = 27; const int kRs3Bits = 5; const int kRdShift = 7; const int kRdBits = 5; const int kRlShift = 25; const int kAqShift = 26; const int kImm12Shift = 20; const int kImm12Bits = 12; const int kImm11Shift = 2; const int kImm11Bits = 11; const int kShamtShift = 20; const int kShamtBits = 5; const int kShamtWShift = 20; // FIXME: remove this once we have a proper way to handle the wide shift amount const int kShamtWBits = 6; const int kArithShiftShift = 30; const int kImm20Shift = 12; const int kImm20Bits = 20; const int kCsrShift = 20; const int kCsrBits = 12; const int kMemOrderBits = 4; const int kPredOrderShift = 24; const int kSuccOrderShift = 20; // for C extension const int kRvcFunct4Shift = 12; const int kRvcFunct4Bits = 4; const int kRvcFunct3Shift = 13; const int kRvcFunct3Bits = 3; const int kRvcRs1Shift = 7; const int kRvcRs1Bits = 5; const int kRvcRs2Shift = 2; const int kRvcRs2Bits = 5; const int kRvcRdShift = 7; const int kRvcRdBits = 5; const int kRvcRs1sShift = 7; const int kRvcRs1sBits = 3; const int kRvcRs2sShift = 2; const int kRvcRs2sBits = 3; const int kRvcFunct2Shift = 5; const int kRvcFunct2BShift = 10; const int kRvcFunct2Bits = 2; const int kRvcFunct6Shift = 10; const int kRvcFunct6Bits = 6; const uint32_t kRvcOpcodeMask = 0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); const uint32_t kRvcFunct3Mask = (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); const uint32_t kRvcFunct4Mask = (((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift); const uint32_t kRvcFunct6Mask = (((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift); const uint32_t kRvcFunct2Mask = (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift); const uint32_t kRvcFunct2BMask = (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift); const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask; const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask; const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask; const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10); // RISCV Instruction bit masks const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1) << kBaseOpcodeShift; const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift; const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift; const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift; const uint32_t kFunct2Mask = 0b11 << kFunct7Shift; const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask; const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask; const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask; const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask; const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kUTypeMask = kBaseOpcodeMask; const uint32_t kJTypeMask = kBaseOpcodeMask; const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift; const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift; const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift; const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask; const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift; const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift; const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift; const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12; const uint32_t kImm19_0Mask = ((1 << 20) - 1); // for RVV extension #define RVV_LMUL(V) \ V(m1) \ V(m2) \ V(m4) \ V(m8) \ V(RESERVERD) \ V(mf8) \ V(mf4) \ V(mf2) enum Vlmul { #define DEFINE_FLAG(name) name, RVV_LMUL(DEFINE_FLAG) #undef DEFINE_FLAG }; #define RVV_SEW(V) \ V(E8) \ V(E16) \ V(E32) \ V(E64) #define DEFINE_FLAG(name) name, enum VSew { RVV_SEW(DEFINE_FLAG) #undef DEFINE_FLAG }; constexpr int kRvvELEN = 64; constexpr int kRvvVLEN = 128; constexpr int kRvvSLEN = kRvvVLEN; const int kRvvFunct6Shift = 26; const int kRvvFunct6Bits = 6; const uint32_t kRvvFunct6Mask = (((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift); const int kRvvVmBits = 1; const int kRvvVmShift = 25; const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift); const int kRvvVs2Bits = 5; const int kRvvVs2Shift = 20; const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift); const int kRvvVs1Bits = 5; const int kRvvVs1Shift = 15; const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift); const int kRvvRs1Bits = kRvvVs1Bits; const int kRvvRs1Shift = kRvvVs1Shift; const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift); const int kRvvRs2Bits = 5; const int kRvvRs2Shift = 20; const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift); const int kRvvImm5Bits = kRvvVs1Bits; const int kRvvImm5Shift = kRvvVs1Shift; const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift); const int kRvvVdBits = 5; const int kRvvVdShift = 7; const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift); const int kRvvRdBits = kRvvVdBits; const int kRvvRdShift = kRvvVdShift; const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift); const int kRvvZimmBits = 11; const int kRvvZimmShift = 20; const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift); const int kRvvUimmShift = kRvvRs1Shift; const int kRvvUimmBits = kRvvRs1Bits; const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift); const int kRvvWidthBits = 3; const int kRvvWidthShift = 12; const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift); const int kRvvMopBits = 2; const int kRvvMopShift = 26; const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift); const int kRvvMewBits = 1; const int kRvvMewShift = 28; const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift); const int kRvvNfBits = 3; const int kRvvNfShift = 29; const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift); const int kNopByte = 0x00000013; enum BaseOpcode : uint32_t { LOAD = 0b0000011, // I form: LB LH LW LBU LHU LOAD_FP = 0b0000111, // I form: FLW FLD FLQ MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SRAI // Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type AUIPC = 0b0010111, // U form: AUIPC OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW // Note: SRLIW SRAIW I form first, then func3 101 special shift encoding STORE = 0b0100011, // S form: SB SH SW SD STORE_FP = 0b0100111, // S form: FSW FSD FSQ AMO = 0b0101111, // R form: All A instructions OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set LUI = 0b0110111, // U form: LUI OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q OP_FP = 0b1010011, // R type: Q ext BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU JALR = 0b1100111, // I form: JALR JAL = 0b1101111, // J form: JAL SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext OP_V = 0b1010111, // V form: RVV // C extension C0 = 0b00, C1 = 0b01, C2 = 0b10, FUNCT2_0 = 0b00, FUNCT2_1 = 0b01, FUNCT2_2 = 0b10, FUNCT2_3 = 0b11, }; // ----- Emulated conditions. // On RISC-V we use this enum to abstract from conditional branch instructions. // The 'U' prefix is used to specify unsigned comparisons. // Opposite conditions must be paired as odd/even numbers // because 'NegateCondition' function flips LSB to negate condition. enum RiscvCondition { // Any value < 0 is considered no_condition. overflow = 0, no_overflow = 1, Uless = 2, Ugreater_equal = 3, Uless_equal = 4, Ugreater = 5, equal = 6, not_equal = 7, // Unordered or Not Equal. less = 8, greater_equal = 9, less_equal = 10, greater = 11, cc_always = 12, // Aliases. eq = equal, ne = not_equal, ge = greater_equal, lt = less, gt = greater, le = less_equal, al = cc_always, ult = Uless, uge = Ugreater_equal, ule = Uless_equal, ugt = Ugreater, }; // ----- Coprocessor conditions. enum FPUCondition { kNoFPUCondition = -1, EQ = 0x02, // Ordered and Equal NE = 0x03, // Unordered or Not Equal LT = 0x04, // Ordered and Less Than GE = 0x05, // Ordered and Greater Than or Equal LE = 0x06, // Ordered and Less Than or Equal GT = 0x07, // Ordered and Greater Than }; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; enum class MaxMinKind : int { kMin = 0, kMax = 1 }; // ---------------------------------------------------------------------------- // RISCV flags enum ControlStatusReg { csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW) csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW) csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW) csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO) csr_time = 0xc01, // Timer for RDTIME instruction (RO) csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO) csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO) csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO) csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO) }; enum FFlagsMask { kInvalidOperation = 0b10000, // NV: Invalid kDivideByZero = 0b1000, // DZ: Divide by Zero kOverflow = 0b100, // OF: Overflow kUnderflow = 0b10, // UF: Underflow kInexact = 0b1 // NX: Inexact }; enum FPURoundingMode { RNE = 0b000, // Round to Nearest, ties to Even RTZ = 0b001, // Round towards Zero RDN = 0b010, // Round Down (towards -infinity) RUP = 0b011, // Round Up (towards +infinity) RMM = 0b100, // Round to Nearest, tiest to Max Magnitude DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode; // In Rounding Mode register, Invalid }; enum MemoryOdering { PSI = 0b1000, // PI or SI PSO = 0b0100, // PO or SO PSR = 0b0010, // PR or SR PSW = 0b0001, // PW or SW PSIORW = PSI | PSO | PSR | PSW }; const int kFloat32ExponentBias = 127; const int kFloat32MantissaBits = 23; const int kFloat32ExponentBits = 8; const int kFloat64ExponentBias = 1023; const int kFloat64MantissaBits = 52; const int kFloat64ExponentBits = 11; enum FClassFlag { kNegativeInfinity = 1, kNegativeNormalNumber = 1 << 1, kNegativeSubnormalNumber = 1 << 2, kNegativeZero = 1 << 3, kPositiveZero = 1 << 4, kPositiveSubnormalNumber = 1 << 5, kPositiveNormalNumber = 1 << 6, kPositiveInfinity = 1 << 7, kSignalingNaN = 1 << 8, kQuietNaN = 1 << 9 }; enum OffsetSize : uint32_t { kOffset21 = 21, // RISCV jal kOffset12 = 12, // RISCV imm12 kOffset20 = 20, // RISCV imm20 kOffset13 = 13, // RISCV branch kOffset32 = 32, // RISCV auipc + instr_I kOffset11 = 11, // RISCV C_J kOffset9 = 9, // RISCV compressed branch }; // The classes of immediate branch ranges, in order of increasing range. // Note that CondBranchType and CompareBranchType have the same range. enum ImmBranchRangeType { CondBranchRangeType, // UncondBranchRangeType, // UnknownBranchRangeType, // Number of 'short-range' branch range types. // We don't consider unconditional branches 'short-range'. NumShortBranchRangeTypes = UnknownBranchRangeType }; inline ImmBranchRangeType OffsetSizeToImmBranchRangeType(OffsetSize bits) { switch (bits) { case kOffset21: return UncondBranchRangeType; case kOffset13: return CondBranchRangeType; default: MOZ_CRASH("Unimplement"); } } inline OffsetSize ImmBranchRangeTypeToOffsetSize(ImmBranchRangeType type) { switch (type) { case CondBranchRangeType: return kOffset13; case UncondBranchRangeType: return kOffset21; default: MOZ_CRASH("Unimplement"); } } int32_t ImmBranchMaxForwardOffset(OffsetSize bits); inline int32_t ImmBranchMaxForwardOffset(ImmBranchRangeType type) { return ImmBranchMaxForwardOffset(ImmBranchRangeTypeToOffsetSize(type)); } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // These constants are declared in assembler-riscv64.cc, as they use named // registers and other constants. // An Illegal instruction const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall) // An ECALL instruction, used for redirected real time call const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall) // An EBreak instruction, used for debugging and semi-hosting const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak constexpr uint8_t kInstrSize = 4; constexpr uint8_t kShortInstrSize = 2; constexpr uint8_t kInstrSizeLog2 = 2; class InstructionBase { public: enum { // On RISC-V, PC cannot actually be directly accessed. We behave as if PC // was always the value of the current instruction being executed. kPCReadOffset = 0 }; // Instruction type. enum Type { kRType, kR4Type, // Special R4 for Q extension kIType, kSType, kBType, kUType, kJType, // C extension kCRType, kCIType, kCSSType, kCIWType, kCLType, kCSType, kCAType, kCBType, kCJType, // V extension kVType, kVLType, kVSType, kVAMOType, kVIVVType, kVFVVType, kVMVVType, kVIVIType, kVIVXType, kVFVFType, kVMVXType, kVSETType, kUnsupported = -1 }; inline bool IsIllegalInstruction() const { uint16_t FirstHalfWord = *reinterpret_cast(this); return FirstHalfWord == 0; } bool IsShortInstruction() const; inline uint8_t InstructionSize() const { return (this->IsShortInstruction()) ? kShortInstrSize : kInstrSize; } // Get the raw instruction bits. inline Instr InstructionBits() const { if (this->IsShortInstruction()) { return 0x0000FFFF & (*reinterpret_cast(this)); } return *reinterpret_cast(this); } // Set the raw instruction bits to value. inline void SetInstructionBits(Instr value) { *reinterpret_cast(this) = value; } // Read one particular bit out of the instruction bits. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Read a bit field out of the instruction bits. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); } // Accessors for the different named fields used in the RISC-V encoding. inline BaseOpcode BaseOpcodeValue() const { return static_cast( Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift)); } // Return the fields at their original place in the instruction encoding. inline BaseOpcode BaseOpcodeFieldRaw() const { return static_cast(InstructionBits() & kBaseOpcodeMask); } // Safe to call within R-type instructions inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; } // Safe to call within R-, I-, S-, or B-type instructions inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; } // Safe to call within R-, I-, S-, or B-type instructions inline int Rs1FieldRawNoAssert() const { return InstructionBits() & kRs1FieldMask; } // Safe to call within R-, S-, or B-type instructions inline int Rs2FieldRawNoAssert() const { return InstructionBits() & kRs2FieldMask; } // Safe to call within R4-type instructions inline int Rs3FieldRawNoAssert() const { return InstructionBits() & kRs3FieldMask; } inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; } inline int32_t InstructionOpcodeType() const { if (IsShortInstruction()) { return InstructionBits() & kRvcOpcodeMask; } else { return InstructionBits() & kBaseOpcodeMask; } } // Get the encoding type of the instruction. Type InstructionType() const; OffsetSize GetOffsetSize() const; inline ImmBranchRangeType GetImmBranchRangeType() const { return OffsetSizeToImmBranchRangeType(GetOffsetSize()); } protected: InstructionBase() {} }; template class InstructionGetters : public T { public: // Say if the instruction is a break or a trap. bool IsTrap() const; inline int BaseOpcode() const { return this->InstructionBits() & kBaseOpcodeMask; } inline int RvcOpcode() const { MOZ_ASSERT(this->IsShortInstruction()); return this->InstructionBits() & kRvcOpcodeMask; } inline int Rs1Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift); } inline int Rs2Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift); } inline int Rs3Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kR4Type); return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift); } inline int Vs1Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift); } inline int Vs2Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift); } inline int VdValue() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVdShift + kVdBits - 1, kVdShift); } inline int RdValue() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kUType || this->InstructionType() == InstructionBase::kJType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRdShift + kRdBits - 1, kRdShift); } inline int RvcRs1Value() const { return this->RvcRdValue(); } int RvcRdValue() const; int RvcRs2Value() const; int RvcRs1sValue() const; int RvcRs2sValue() const; int Funct7Value() const; inline int Funct3Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType); return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); } inline int Funct5Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType && this->BaseOpcode() == OP_FP); return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift); } int RvcFunct6Value() const; int RvcFunct4Value() const; int RvcFunct3Value() const; int RvcFunct2Value() const; int RvcFunct2BValue() const; inline int CsrValue() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType && this->BaseOpcode() == SYSTEM); return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift)); } inline int RoundMode() const { MOZ_ASSERT((this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type) && this->BaseOpcode() == OP_FP); return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); } inline int MemoryOrder(bool is_pred) const { MOZ_ASSERT((this->InstructionType() == InstructionBase::kIType && this->BaseOpcode() == MISC_MEM)); if (is_pred) { return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift); } else { return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift); } } inline int Imm12Value() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType); int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift); return Value << 20 >> 20; } inline int32_t Imm12SExtValue() const { int32_t Value = this->Imm12Value() << 20 >> 20; return Value; } inline int BranchOffset() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kBType); // | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | // 31 25 11 7 uint32_t Bits = this->InstructionBits(); int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) | ((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19); return imm13 << 19 >> 19; } inline int StoreOffset() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kSType); // | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode | // 31 25 11 7 uint32_t Bits = this->InstructionBits(); int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20); return imm12 << 20 >> 20; } inline int Imm20UValue() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kUType); // | imm[31:12] | rd | opcode | // 31 12 int32_t Bits = this->InstructionBits(); return Bits >> 12; } inline int Imm20JValue() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kJType); // | imm[20|10:1|11|19:12] | rd | opcode | // 31 12 uint32_t Bits = this->InstructionBits(); int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) | (Bits & 0xff000) | ((Bits & 0x80000000) >> 11); return imm20 << 11 >> 11; } inline bool IsArithShift() const { // Valid only for right shift operations MOZ_ASSERT((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 || this->BaseOpcode() == OP_IMM || this->BaseOpcode() == OP_IMM_32) && this->Funct3Value() == 0b101); return this->InstructionBits() & 0x40000000; } inline int Shamt() const { // Valid only for shift instructions (SLLI, SRLI, SRAI) MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM && (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); // | 0A0000 | shamt | rs1 | funct3 | rd | opcode | // 31 25 20 return this->Bits(kImm12Shift + 5, kImm12Shift); } inline int Shamt32() const { // Valid only for shift instructions (SLLIW, SRLIW, SRAIW) MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 && (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); // | 0A00000 | shamt | rs1 | funct3 | rd | opcode | // 31 24 20 return this->Bits(kImm12Shift + 4, kImm12Shift); } inline int RvcImm6Value() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2); return imm6 << 26 >> 26; } inline int RvcImm6Addi16spValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) | ((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) | ((Bits & 0x4) << 3); MOZ_ASSERT(imm10 != 0); return imm10 << 22 >> 22; } inline int RvcImm8Addi4spnValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | nzimm[11] | rd' | opcode | // 15 13 5 2 uint32_t Bits = this->InstructionBits(); int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) | ((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7); MOZ_ASSERT(uimm10 != 0); return uimm10; } inline int RvcShamt6() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode | // 15 12 6 2 int32_t imm6 = this->RvcImm6Value(); return imm6 & 0x3f; } inline int RvcImm6LwspValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4); return imm8; } inline int RvcImm6LdspValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4); return imm9; } inline int RvcImm6SwspValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | uimm[5:2|7:6] | rs2 | opcode | // 15 12 7 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1); return imm8; } inline int RvcImm6SdspValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | uimm[5:3|8:6] | rs2 | opcode | // 15 12 7 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1); return imm9; } inline int RvcImm5WValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode | // 15 12 10 6 4 2 uint32_t Bits = this->InstructionBits(); int32_t imm7 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1); return imm7; } inline int RvcImm5DValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode | // 15 12 10 6 4 2 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1); return imm8; } inline int RvcImm11CJValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode | // 15 12 2 uint32_t Bits = this->InstructionBits(); int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) | ((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) | ((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) | ((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1); return imm12 << 20 >> 20; } inline int RvcImm8BValue() const { MOZ_ASSERT(this->IsShortInstruction()); // | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode | // 15 12 10 7 2 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) | ((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) | ((Bits & 0x1000) >> 4); return imm9 << 23 >> 23; } inline int vl_vs_width() { int width = 0; if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP && (this->InstructionBits() & kBaseOpcodeMask) != STORE_FP) return -1; switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) { case 0x0: width = 8; break; case 0x00005000: width = 16; break; case 0x00006000: width = 32; break; case 0x00007000: width = 64; break; case 0x10000000: width = 128; break; case 0x10005000: width = 256; break; case 0x10006000: width = 512; break; case 0x10007000: width = 1024; break; default: width = -1; break; } return width; } uint32_t Rvvzimm() const; uint32_t Rvvuimm() const; inline uint32_t RvvVsew() const { uint32_t zimm = this->Rvvzimm(); uint32_t vsew = (zimm >> 3) & 0x7; return vsew; } inline uint32_t RvvVlmul() const { uint32_t zimm = this->Rvvzimm(); uint32_t vlmul = zimm & 0x7; return vlmul; } inline uint8_t RvvVM() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift); } inline const char* RvvSEW() const { uint32_t vsew = this->RvvVsew(); switch (vsew) { #define CAST_VSEW(name) \ case name: \ return #name; RVV_SEW(CAST_VSEW) default: return "unknown"; #undef CAST_VSEW } } inline const char* RvvLMUL() const { uint32_t vlmul = this->RvvVlmul(); switch (vlmul) { #define CAST_VLMUL(name) \ case name: \ return #name; RVV_LMUL(CAST_VLMUL) default: return "unknown"; #undef CAST_VLMUL } } #define sext(x, len) (((int32_t)(x) << (32 - len)) >> (32 - len)) #define zext(x, len) (((uint32_t)(x) << (32 - len)) >> (32 - len)) inline int32_t RvvSimm5() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType); return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift), kRvvImm5Bits); } inline uint32_t RvvUimm5() const { MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType); uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift); return zext(imm, kRvvImm5Bits); } #undef sext #undef zext inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); } inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); } }; class Instruction : public InstructionGetters { public: // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(byte* pc) { return reinterpret_cast(pc); } private: // We need to prevent the creation of instances of class Instruction. Instruction() = delete; Instruction(const Instruction&) = delete; Instruction& operator=(const Instruction&) = delete; }; // ----------------------------------------------------------------------------- // Instructions. template bool InstructionGetters

::IsTrap() const { return (this->InstructionBits() == kBreakInstr); } } // namespace jit } // namespace js #endif // jit_riscv64_constant_Base_constant_riscv__h_