// Copyright 2022 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "jit/riscv64/extension/base-riscv-i.h" #include "jit/riscv64/constant/Constant-riscv64.h" #include "jit/riscv64/Assembler-riscv64.h" #include "jit/riscv64/Architecture-riscv64.h" namespace js { namespace jit { void AssemblerRISCVI::lui(Register rd, int32_t imm20) { GenInstrU(LUI, rd, imm20); } void AssemblerRISCVI::auipc(Register rd, int32_t imm20) { GenInstrU(AUIPC, rd, imm20); } // Jumps void AssemblerRISCVI::jal(Register rd, int32_t imm21) { GenInstrJ(JAL, rd, imm21); } void AssemblerRISCVI::jalr(Register rd, Register rs1, int16_t imm12) { GenInstrI(0b000, JALR, rd, rs1, imm12); } // Branches void AssemblerRISCVI::beq(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b000, rs1, rs2, imm13); } void AssemblerRISCVI::bne(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b001, rs1, rs2, imm13); } void AssemblerRISCVI::blt(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b100, rs1, rs2, imm13); } void AssemblerRISCVI::bge(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b101, rs1, rs2, imm13); } void AssemblerRISCVI::bltu(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b110, rs1, rs2, imm13); } void AssemblerRISCVI::bgeu(Register rs1, Register rs2, int16_t imm13) { GenInstrBranchCC_rri(0b111, rs1, rs2, imm13); } // Loads void AssemblerRISCVI::lb(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b000, rd, rs1, imm12); } void AssemblerRISCVI::lh(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b001, rd, rs1, imm12); } void AssemblerRISCVI::lw(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b010, rd, rs1, imm12); } void AssemblerRISCVI::lbu(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b100, rd, rs1, imm12); } void AssemblerRISCVI::lhu(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b101, rd, rs1, imm12); } // Stores void AssemblerRISCVI::sb(Register source, Register base, int16_t imm12) { GenInstrStore_rri(0b000, base, source, imm12); } void AssemblerRISCVI::sh(Register source, Register base, int16_t imm12) { GenInstrStore_rri(0b001, base, source, imm12); } void AssemblerRISCVI::sw(Register source, Register base, int16_t imm12) { GenInstrStore_rri(0b010, base, source, imm12); } // Arithmetic with immediate void AssemblerRISCVI::addi(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b000, rd, rs1, imm12); } void AssemblerRISCVI::slti(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b010, rd, rs1, imm12); } void AssemblerRISCVI::sltiu(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b011, rd, rs1, imm12); } void AssemblerRISCVI::xori(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b100, rd, rs1, imm12); } void AssemblerRISCVI::ori(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b110, rd, rs1, imm12); } void AssemblerRISCVI::andi(Register rd, Register rs1, int16_t imm12) { GenInstrALU_ri(0b111, rd, rs1, imm12); } void AssemblerRISCVI::slli(Register rd, Register rs1, uint8_t shamt) { GenInstrShift_ri(0, 0b001, rd, rs1, shamt & 0x3f); } void AssemblerRISCVI::srli(Register rd, Register rs1, uint8_t shamt) { GenInstrShift_ri(0, 0b101, rd, rs1, shamt & 0x3f); } void AssemblerRISCVI::srai(Register rd, Register rs1, uint8_t shamt) { GenInstrShift_ri(1, 0b101, rd, rs1, shamt & 0x3f); } // Arithmetic void AssemblerRISCVI::add(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b000, rd, rs1, rs2); } void AssemblerRISCVI::sub(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0100000, 0b000, rd, rs1, rs2); } void AssemblerRISCVI::sll(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b001, rd, rs1, rs2); } void AssemblerRISCVI::slt(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b010, rd, rs1, rs2); } void AssemblerRISCVI::sltu(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b011, rd, rs1, rs2); } void AssemblerRISCVI::xor_(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b100, rd, rs1, rs2); } void AssemblerRISCVI::srl(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b101, rd, rs1, rs2); } void AssemblerRISCVI::sra(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0100000, 0b101, rd, rs1, rs2); } void AssemblerRISCVI::or_(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b110, rd, rs1, rs2); } void AssemblerRISCVI::and_(Register rd, Register rs1, Register rs2) { GenInstrALU_rr(0b0000000, 0b111, rd, rs1, rs2); } // Memory fences void AssemblerRISCVI::fence(uint8_t pred, uint8_t succ) { MOZ_ASSERT(is_uint4(pred) && is_uint4(succ)); uint16_t imm12 = succ | (pred << 4) | (0b0000 << 8); GenInstrI(0b000, MISC_MEM, ToRegister(0UL), ToRegister(0UL), imm12); } void AssemblerRISCVI::fence_tso() { uint16_t imm12 = (0b0011) | (0b0011 << 4) | (0b1000 << 8); GenInstrI(0b000, MISC_MEM, ToRegister(0UL), ToRegister(0UL), imm12); } // Environment call / break void AssemblerRISCVI::ecall() { GenInstrI(0b000, SYSTEM, ToRegister(0UL), ToRegister(0UL), 0); } void AssemblerRISCVI::ebreak() { GenInstrI(0b000, SYSTEM, ToRegister(0UL), ToRegister(0UL), 1); } // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented // instruction (i.e., it should always trap, if your implementation has invalid // instruction traps). void AssemblerRISCVI::unimp() { GenInstrI(0b001, SYSTEM, ToRegister(0), ToRegister(0), 0b110000000000); } bool AssemblerRISCVI::IsBranch(Instr instr) { return (instr & kBaseOpcodeMask) == BRANCH; } bool AssemblerRISCVI::IsJump(Instr instr) { int Op = instr & kBaseOpcodeMask; return Op == JAL || Op == JALR; } bool AssemblerRISCVI::IsNop(Instr instr) { return instr == kNopByte; } bool AssemblerRISCVI::IsJal(Instr instr) { return (instr & kBaseOpcodeMask) == JAL; } bool AssemblerRISCVI::IsJalr(Instr instr) { return (instr & kBaseOpcodeMask) == JALR; } bool AssemblerRISCVI::IsLui(Instr instr) { return (instr & kBaseOpcodeMask) == LUI; } bool AssemblerRISCVI::IsAuipc(Instr instr) { return (instr & kBaseOpcodeMask) == AUIPC; } bool AssemblerRISCVI::IsAddi(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDI; } bool AssemblerRISCVI::IsOri(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ORI; } bool AssemblerRISCVI::IsSlli(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_SLLI; } int AssemblerRISCVI::JumpOffset(Instr instr) { int32_t imm21 = ((instr & 0x7fe00000) >> 20) | ((instr & 0x100000) >> 9) | (instr & 0xff000) | ((instr & 0x80000000) >> 11); imm21 = imm21 << 11 >> 11; return imm21; } int AssemblerRISCVI::JalrOffset(Instr instr) { MOZ_ASSERT(IsJalr(instr)); int32_t imm12 = static_cast(instr & kImm12Mask) >> 20; return imm12; } int AssemblerRISCVI::AuipcOffset(Instr instr) { MOZ_ASSERT(IsAuipc(instr)); int32_t imm20 = static_cast(instr & kImm20Mask); return imm20; } bool AssemblerRISCVI::IsLw(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_LW; } int AssemblerRISCVI::LoadOffset(Instr instr) { #if JS_CODEGEN_RISCV64 MOZ_ASSERT(IsLd(instr)); #elif V8_TARGET_ARCH_RISCV32 MOZ_ASSERT(IsLw(instr)); #endif int32_t imm12 = static_cast(instr & kImm12Mask) >> 20; return imm12; } #ifdef JS_CODEGEN_RISCV64 bool AssemblerRISCVI::IsAddiw(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDIW; } bool AssemblerRISCVI::IsLd(Instr instr) { return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_LD; } void AssemblerRISCVI::lwu(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b110, rd, rs1, imm12); } void AssemblerRISCVI::ld(Register rd, Register rs1, int16_t imm12) { GenInstrLoad_ri(0b011, rd, rs1, imm12); } void AssemblerRISCVI::sd(Register source, Register base, int16_t imm12) { GenInstrStore_rri(0b011, base, source, imm12); } void AssemblerRISCVI::addiw(Register rd, Register rs1, int16_t imm12) { GenInstrI(0b000, OP_IMM_32, rd, rs1, imm12); } void AssemblerRISCVI::slliw(Register rd, Register rs1, uint8_t shamt) { GenInstrShiftW_ri(0, 0b001, rd, rs1, shamt & 0x1f); } void AssemblerRISCVI::srliw(Register rd, Register rs1, uint8_t shamt) { GenInstrShiftW_ri(0, 0b101, rd, rs1, shamt & 0x1f); } void AssemblerRISCVI::sraiw(Register rd, Register rs1, uint8_t shamt) { GenInstrShiftW_ri(1, 0b101, rd, rs1, shamt & 0x1f); } void AssemblerRISCVI::addw(Register rd, Register rs1, Register rs2) { GenInstrALUW_rr(0b0000000, 0b000, rd, rs1, rs2); } void AssemblerRISCVI::subw(Register rd, Register rs1, Register rs2) { GenInstrALUW_rr(0b0100000, 0b000, rd, rs1, rs2); } void AssemblerRISCVI::sllw(Register rd, Register rs1, Register rs2) { GenInstrALUW_rr(0b0000000, 0b001, rd, rs1, rs2); } void AssemblerRISCVI::srlw(Register rd, Register rs1, Register rs2) { GenInstrALUW_rr(0b0000000, 0b101, rd, rs1, rs2); } void AssemblerRISCVI::sraw(Register rd, Register rs1, Register rs2) { GenInstrALUW_rr(0b0100000, 0b101, rd, rs1, rs2); } #endif int AssemblerRISCVI::BranchOffset(Instr instr) { // | imm[12] | imm[10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | // 31 25 11 7 int32_t imm13 = ((instr & 0xf00) >> 7) | ((instr & 0x7e000000) >> 20) | ((instr & 0x80) << 4) | ((instr & 0x80000000) >> 19); imm13 = imm13 << 19 >> 19; return imm13; } int AssemblerRISCVI::BrachlongOffset(Instr auipc, Instr instr_I) { MOZ_ASSERT(reinterpret_cast(&instr_I)->InstructionType() == InstructionBase::kIType); MOZ_ASSERT(IsAuipc(auipc)); MOZ_ASSERT(((auipc & kRdFieldMask) >> kRdShift) == ((instr_I & kRs1FieldMask) >> kRs1Shift)); int32_t imm_auipc = AuipcOffset(auipc); int32_t imm12 = static_cast(instr_I & kImm12Mask) >> 20; int32_t offset = imm12 + imm_auipc; return offset; } } // namespace jit } // namespace js