/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_x86_Assembler_x86_h #define jit_x86_Assembler_x86_h #include #include "jit/CompactBuffer.h" #include "jit/JitCode.h" #include "jit/shared/Assembler-shared.h" #include "jit/x86-shared/Constants-x86-shared.h" namespace js { namespace jit { static constexpr Register eax{X86Encoding::rax}; static constexpr Register ecx{X86Encoding::rcx}; static constexpr Register edx{X86Encoding::rdx}; static constexpr Register ebx{X86Encoding::rbx}; static constexpr Register esp{X86Encoding::rsp}; static constexpr Register ebp{X86Encoding::rbp}; static constexpr Register esi{X86Encoding::rsi}; static constexpr Register edi{X86Encoding::rdi}; static constexpr FloatRegister xmm0 = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double); static constexpr FloatRegister xmm1 = FloatRegister(X86Encoding::xmm1, FloatRegisters::Double); static constexpr FloatRegister xmm2 = FloatRegister(X86Encoding::xmm2, FloatRegisters::Double); static constexpr FloatRegister xmm3 = FloatRegister(X86Encoding::xmm3, FloatRegisters::Double); static constexpr FloatRegister xmm4 = FloatRegister(X86Encoding::xmm4, FloatRegisters::Double); static constexpr FloatRegister xmm5 = FloatRegister(X86Encoding::xmm5, FloatRegisters::Double); static constexpr FloatRegister xmm6 = FloatRegister(X86Encoding::xmm6, FloatRegisters::Double); static constexpr FloatRegister xmm7 = FloatRegister(X86Encoding::xmm7, FloatRegisters::Double); // Vector registers fixed for use with some instructions, e.g. PBLENDVB. static constexpr FloatRegister vmm0 = FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128); static constexpr Register InvalidReg{X86Encoding::invalid_reg}; static constexpr FloatRegister InvalidFloatReg = FloatRegister(); static constexpr Register JSReturnReg_Type = ecx; static constexpr Register JSReturnReg_Data = edx; static constexpr Register StackPointer = esp; static constexpr Register FramePointer = ebp; static constexpr Register ReturnReg = eax; static constexpr FloatRegister ReturnFloat32Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Single); static constexpr FloatRegister ReturnDoubleReg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double); static constexpr FloatRegister ReturnSimd128Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128); static constexpr FloatRegister ScratchFloat32Reg_ = FloatRegister(X86Encoding::xmm7, FloatRegisters::Single); static constexpr FloatRegister ScratchDoubleReg_ = FloatRegister(X86Encoding::xmm7, FloatRegisters::Double); static constexpr FloatRegister ScratchSimd128Reg = FloatRegister(X86Encoding::xmm7, FloatRegisters::Simd128); // Note, EDX:EAX is the system ABI 64-bit return register, and it is to our // advantage to keep the SpiderMonkey ABI in sync with the system ABI. // // However, using EDX here means that we have to use a register that does not // have a word or byte part (eg DX/DH/DL) in some other places; notably, // ABINonArgReturnReg1 is EDI. If this becomes a problem and ReturnReg64 has to // be something other than EDX:EAX, then jitted code that calls directly to C++ // will need to shuffle the return value from EDX:EAX into ReturnReg64 directly // after the call. See bug 1730161 for discussion and a patch that does that. static constexpr Register64 ReturnReg64(edx, eax); // Avoid ebp, which is the FramePointer, which is unavailable in some modes. static constexpr Register CallTempReg0 = edi; static constexpr Register CallTempReg1 = eax; static constexpr Register CallTempReg2 = ebx; static constexpr Register CallTempReg3 = ecx; static constexpr Register CallTempReg4 = esi; static constexpr Register CallTempReg5 = edx; // We have no arg regs, so our NonArgRegs are just our CallTempReg* static constexpr Register CallTempNonArgRegs[] = {edi, eax, ebx, ecx, esi, edx}; static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); class ABIArgGenerator { uint32_t stackOffset_; ABIArg current_; public: ABIArgGenerator(); ABIArg next(MIRType argType); ABIArg& current() { return current_; } uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } }; // These registers may be volatile or nonvolatile. static constexpr Register ABINonArgReg0 = eax; static constexpr Register ABINonArgReg1 = ebx; static constexpr Register ABINonArgReg2 = ecx; static constexpr Register ABINonArgReg3 = edx; // This register may be volatile or nonvolatile. Avoid xmm7 which is the // ScratchDoubleReg_. static constexpr FloatRegister ABINonArgDoubleReg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double); // These registers may be volatile or nonvolatile. // Note: these three registers are all guaranteed to be different static constexpr Register ABINonArgReturnReg0 = ecx; static constexpr Register ABINonArgReturnReg1 = edi; static constexpr Register ABINonVolatileReg = ebx; // This register is guaranteed to be clobberable during the prologue and // epilogue of an ABI call which must preserve both ABI argument, return // and non-volatile registers. static constexpr Register ABINonArgReturnVolatileReg = ecx; // Instance pointer argument register for WebAssembly functions. This must not // alias any other register used for passing function arguments or return // values. Preserved by WebAssembly functions. static constexpr Register InstanceReg = esi; // Registers used for asm.js/wasm table calls. These registers must be disjoint // from the ABI argument registers, InstanceReg and each other. static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmTableCallSigReg = ABINonArgReg2; static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; // Registers used for ref calls. static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmCallRefReg = ABINonArgReg3; // Register used as a scratch along the return path in the fast js -> wasm stub // code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg. // It must be a volatile register. static constexpr Register WasmJitEntryReturnScratch = ebx; static constexpr Register OsrFrameReg = edx; static constexpr Register PreBarrierReg = edx; // Not enough registers for a PC register (R0-R2 use 2 registers each). static constexpr Register InterpreterPCReg = InvalidReg; // Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use // JSReturnOperand). static constexpr Register RegExpMatcherRegExpReg = CallTempReg0; static constexpr Register RegExpMatcherStringReg = CallTempReg1; static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2; // Registers used by RegExpExecTest stub (do not use ReturnReg). static constexpr Register RegExpExecTestRegExpReg = CallTempReg0; static constexpr Register RegExpExecTestStringReg = CallTempReg2; // Registers used by RegExpSearcher stub (do not use ReturnReg). static constexpr Register RegExpSearcherRegExpReg = CallTempReg0; static constexpr Register RegExpSearcherStringReg = CallTempReg2; static constexpr Register RegExpSearcherLastIndexReg = CallTempReg3; // GCC stack is aligned on 16 bytes. Ion does not maintain this for internal // calls. wasm code does. #if defined(__GNUC__) && !defined(__MINGW32__) static constexpr uint32_t ABIStackAlignment = 16; #else static constexpr uint32_t ABIStackAlignment = 4; #endif static constexpr uint32_t CodeAlignment = 16; static constexpr uint32_t JitStackAlignment = 16; static constexpr uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value); static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1, "Stack alignment should be a non-zero multiple of sizeof(Value)"); static constexpr uint32_t SimdMemoryAlignment = 16; static_assert(CodeAlignment % SimdMemoryAlignment == 0, "Code alignment should be larger than any of the alignments " "which are used for " "the constant sections of the code buffer. Thus it should be " "larger than the " "alignment for SIMD constants."); static_assert(JitStackAlignment % SimdMemoryAlignment == 0, "Stack alignment should be larger than any of the alignments " "which are used for " "spilled values. Thus it should be larger than the alignment " "for SIMD accesses."); static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment; static constexpr uint32_t WasmTrapInstructionLength = 2; // See comments in wasm::GenerateFunctionPrologue. The difference between these // is the size of the largest callable prologue on the platform. (We could make // the tail offset 3, but I have opted for 4 as that results in a better-aligned // branch target.) static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; struct ImmTag : public Imm32 { explicit ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {} }; struct ImmType : public ImmTag { explicit ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {} }; static constexpr Scale ScalePointer = TimesFour; } // namespace jit } // namespace js #include "jit/x86-shared/Assembler-x86-shared.h" namespace js { namespace jit { static inline Operand LowWord(const Operand& op) { switch (op.kind()) { case Operand::MEM_REG_DISP: return Operand(LowWord(op.toAddress())); case Operand::MEM_SCALE: return Operand(LowWord(op.toBaseIndex())); default: MOZ_CRASH("Invalid operand type"); } } static inline Operand HighWord(const Operand& op) { switch (op.kind()) { case Operand::MEM_REG_DISP: return Operand(HighWord(op.toAddress())); case Operand::MEM_SCALE: return Operand(HighWord(op.toBaseIndex())); default: MOZ_CRASH("Invalid operand type"); } } // Return operand from a JS -> JS call. static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type, JSReturnReg_Data}; class Assembler : public AssemblerX86Shared { Vector jumps_; void addPendingJump(JmpSrc src, ImmPtr target, RelocationKind kind) { enoughMemory_ &= jumps_.append(RelativePatch(src.offset(), target.value, kind)); if (kind == RelocationKind::JITCODE) { jumpRelocations_.writeUnsigned(src.offset()); } } public: using AssemblerX86Shared::call; using AssemblerX86Shared::cmpl; using AssemblerX86Shared::j; using AssemblerX86Shared::jmp; using AssemblerX86Shared::movl; using AssemblerX86Shared::pop; using AssemblerX86Shared::push; using AssemblerX86Shared::retarget; using AssemblerX86Shared::vmovsd; using AssemblerX86Shared::vmovss; static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); // Copy the assembly code to the given buffer, and perform any pending // relocations relying on the target address. void executableCopy(uint8_t* buffer); void assertNoGCThings() const { #ifdef DEBUG MOZ_ASSERT(dataRelocations_.length() == 0); for (auto& j : jumps_) { MOZ_ASSERT(j.kind == RelocationKind::HARDCODED); } #endif } // Actual assembly emitting functions. void push(ImmGCPtr ptr) { masm.push_i32(int32_t(ptr.value)); writeDataRelocation(ptr); } void push(const ImmWord imm) { push(Imm32(imm.value)); } void push(const ImmPtr imm) { push(ImmWord(uintptr_t(imm.value))); } void push(FloatRegister src) { subl(Imm32(sizeof(double)), StackPointer); vmovsd(src, Address(StackPointer, 0)); } CodeOffset pushWithPatch(ImmWord word) { masm.push_i32(int32_t(word.value)); return CodeOffset(masm.currentOffset()); } void pop(FloatRegister src) { vmovsd(Address(StackPointer, 0), src); addl(Imm32(sizeof(double)), StackPointer); } CodeOffset movWithPatch(ImmWord word, Register dest) { movl(Imm32(word.value), dest); return CodeOffset(masm.currentOffset()); } CodeOffset movWithPatch(ImmPtr imm, Register dest) { return movWithPatch(ImmWord(uintptr_t(imm.value)), dest); } void movl(ImmGCPtr ptr, Register dest) { masm.movl_i32r(uintptr_t(ptr.value), dest.encoding()); writeDataRelocation(ptr); } void movl(ImmGCPtr ptr, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.movl_i32r(uintptr_t(ptr.value), dest.reg()); writeDataRelocation(ptr); break; case Operand::MEM_REG_DISP: masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base()); writeDataRelocation(ptr); break; case Operand::MEM_SCALE: masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base(), dest.index(), dest.scale()); writeDataRelocation(ptr); break; default: MOZ_CRASH("unexpected operand kind"); } } void movl(ImmWord imm, Register dest) { masm.movl_i32r(imm.value, dest.encoding()); } void movl(ImmPtr imm, Register dest) { movl(ImmWord(uintptr_t(imm.value)), dest); } void mov(ImmWord imm, Register dest) { // Use xor for setting registers to zero, as it is specially optimized // for this purpose on modern hardware. Note that it does clobber FLAGS // though. if (imm.value == 0) { xorl(dest, dest); } else { movl(imm, dest); } } void mov(ImmPtr imm, Register dest) { mov(ImmWord(uintptr_t(imm.value)), dest); } void mov(wasm::SymbolicAddress imm, Register dest) { masm.movl_i32r(-1, dest.encoding()); append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), imm)); } void mov(const Operand& src, Register dest) { movl(src, dest); } void mov(Register src, const Operand& dest) { movl(src, dest); } void mov(Imm32 imm, const Operand& dest) { movl(imm, dest); } void mov(CodeLabel* label, Register dest) { // Put a placeholder value in the instruction stream. masm.movl_i32r(0, dest.encoding()); label->patchAt()->bind(masm.size()); } void mov(Register src, Register dest) { movl(src, dest); } void xchg(Register src, Register dest) { xchgl(src, dest); } void lea(const Operand& src, Register dest) { return leal(src, dest); } void cmovz32(const Operand& src, Register dest) { return cmovzl(src, dest); } void cmovzPtr(const Operand& src, Register dest) { return cmovzl(src, dest); } void fstp32(const Operand& src) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.fstp32_m(src.disp(), src.base()); break; default: MOZ_CRASH("unexpected operand kind"); } } void faddp() { masm.faddp(); } void cmpl(ImmWord rhs, Register lhs) { masm.cmpl_ir(rhs.value, lhs.encoding()); } void cmpl(ImmPtr rhs, Register lhs) { cmpl(ImmWord(uintptr_t(rhs.value)), lhs); } void cmpl(ImmGCPtr rhs, Register lhs) { masm.cmpl_i32r(uintptr_t(rhs.value), lhs.encoding()); writeDataRelocation(rhs); } void cmpl(Register rhs, Register lhs) { masm.cmpl_rr(rhs.encoding(), lhs.encoding()); } void cmpl(ImmGCPtr rhs, const Operand& lhs) { switch (lhs.kind()) { case Operand::REG: masm.cmpl_i32r(uintptr_t(rhs.value), lhs.reg()); writeDataRelocation(rhs); break; case Operand::MEM_REG_DISP: masm.cmpl_i32m(uintptr_t(rhs.value), lhs.disp(), lhs.base()); writeDataRelocation(rhs); break; case Operand::MEM_ADDRESS32: masm.cmpl_i32m(uintptr_t(rhs.value), lhs.address()); writeDataRelocation(rhs); break; default: MOZ_CRASH("unexpected operand kind"); } } void cmpl(Register rhs, wasm::SymbolicAddress lhs) { masm.cmpl_rm_disp32(rhs.encoding(), (void*)-1); append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), lhs)); } void cmpl(Imm32 rhs, wasm::SymbolicAddress lhs) { JmpSrc src = masm.cmpl_im_disp32(rhs.value, (void*)-1); append(wasm::SymbolicAccess(CodeOffset(src.offset()), lhs)); } void adcl(Imm32 imm, Register dest) { masm.adcl_ir(imm.value, dest.encoding()); } void adcl(Register src, Register dest) { masm.adcl_rr(src.encoding(), dest.encoding()); } void adcl(Operand src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.adcl_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.adcl_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void sbbl(Imm32 imm, Register dest) { masm.sbbl_ir(imm.value, dest.encoding()); } void sbbl(Register src, Register dest) { masm.sbbl_rr(src.encoding(), dest.encoding()); } void sbbl(Operand src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.sbbl_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.sbbl_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void mull(Register multiplier) { masm.mull_r(multiplier.encoding()); } void shldl(const Imm32 imm, Register src, Register dest) { masm.shldl_irr(imm.value, src.encoding(), dest.encoding()); } void shrdl(const Imm32 imm, Register src, Register dest) { masm.shrdl_irr(imm.value, src.encoding(), dest.encoding()); } void vhaddpd(FloatRegister rhs, FloatRegister lhsDest) { MOZ_ASSERT(HasSSE3()); MOZ_ASSERT(rhs.size() == 16); MOZ_ASSERT(lhsDest.size() == 16); masm.vhaddpd_rr(rhs.encoding(), lhsDest.encoding(), lhsDest.encoding()); } void fild(const Operand& src) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.fild_m(src.disp(), src.base()); break; default: MOZ_CRASH("unexpected operand kind"); } } void jmp(ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) { JmpSrc src = masm.jmp(); addPendingJump(src, target, reloc); } void j(Condition cond, ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) { JmpSrc src = masm.jCC(static_cast(cond)); addPendingJump(src, target, reloc); } void jmp(JitCode* target) { jmp(ImmPtr(target->raw()), RelocationKind::JITCODE); } void j(Condition cond, JitCode* target) { j(cond, ImmPtr(target->raw()), RelocationKind::JITCODE); } void call(JitCode* target) { JmpSrc src = masm.call(); addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE); } void call(ImmWord target) { call(ImmPtr((void*)target.value)); } void call(ImmPtr target) { JmpSrc src = masm.call(); addPendingJump(src, target, RelocationKind::HARDCODED); } // Emit a CALL or CMP (nop) instruction. ToggleCall can be used to patch // this instruction. CodeOffset toggledCall(JitCode* target, bool enabled) { CodeOffset offset(size()); JmpSrc src = enabled ? masm.call() : masm.cmp_eax(); addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE); MOZ_ASSERT_IF(!oom(), size() - offset.offset() == ToggledCallSize(nullptr)); return offset; } static size_t ToggledCallSize(uint8_t* code) { // Size of a call instruction. return 5; } // Re-routes pending jumps to an external target, flushing the label in the // process. void retarget(Label* label, ImmPtr target, RelocationKind reloc) { if (label->used()) { bool more; X86Encoding::JmpSrc jmp(label->offset()); do { X86Encoding::JmpSrc next; more = masm.nextJump(jmp, &next); addPendingJump(jmp, target, reloc); jmp = next; } while (more); } label->reset(); } // Move a 32-bit immediate into a register where the immediate can be // patched. CodeOffset movlWithPatch(Imm32 imm, Register dest) { masm.movl_i32r(imm.value, dest.encoding()); return CodeOffset(masm.currentOffset()); } // Load from *(base + disp32) where disp32 can be patched. CodeOffset movsblWithPatch(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.movsbl_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movsbl_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movzblWithPatch(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.movzbl_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movzbl_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movswlWithPatch(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.movswl_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movswl_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movzwlWithPatch(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.movzwl_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movzwl_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movlWithPatch(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.movl_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movl_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovssWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovss_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovss_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } void vmovss(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovss_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovss_mr(src.address(), dest.encoding()); break; case Operand::MEM_SCALE: masm.vmovss_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset vmovdWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovd_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovd_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovqWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovq_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovsdWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovsd_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovsd_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } void vmovsd(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovsd_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovsd_mr(src.address(), dest.encoding()); break; case Operand::MEM_SCALE: masm.vmovsd_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset vmovupsWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovups_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovups_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovdquWithPatch(const Operand& src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); switch (src.kind()) { case Operand::MEM_REG_DISP: masm.vmovdqu_mr_disp32(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.vmovdqu_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } // Store to *(base + disp32) where disp32 can be patched. CodeOffset movbWithPatch(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.movb_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.movb_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movwWithPatch(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.movw_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.movw_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movlWithPatch(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.movl_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.movl_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset movlWithPatchLow(Register regLow, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: { return movlWithPatch(regLow, LowWord(dest)); } case Operand::MEM_ADDRESS32: { Operand low( PatchedAbsoluteAddress(uint32_t(dest.address()) + INT64LOW_OFFSET)); return movlWithPatch(regLow, low); } default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset movlWithPatchHigh(Register regHigh, const Operand& dest) { switch (dest.kind()) { case Operand::MEM_REG_DISP: { return movlWithPatch(regHigh, HighWord(dest)); } case Operand::MEM_ADDRESS32: { Operand high(PatchedAbsoluteAddress(uint32_t(dest.address()) + INT64HIGH_OFFSET)); return movlWithPatch(regHigh, high); } default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset vmovdWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovd_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovd_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovqWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovq_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovq_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovssWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovss_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovss_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } void vmovss(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovss_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovss_rm(src.encoding(), dest.address()); break; case Operand::MEM_SCALE: masm.vmovss_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset vmovsdWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovsd_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovsd_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } void vmovsd(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovsd_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovsd_rm(src.encoding(), dest.address()); break; case Operand::MEM_SCALE: masm.vmovsd_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } CodeOffset vmovupsWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovups_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovups_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } CodeOffset vmovdquWithPatch(FloatRegister src, const Operand& dest) { MOZ_ASSERT(HasSSE2()); switch (dest.kind()) { case Operand::MEM_REG_DISP: masm.vmovdqu_rm_disp32(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.vmovdqu_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } return CodeOffset(masm.currentOffset()); } // Load from *(addr + index*scale) where addr can be patched. CodeOffset movlWithPatch(PatchedAbsoluteAddress addr, Register index, Scale scale, Register dest) { masm.movl_mr(addr.addr, index.encoding(), scale, dest.encoding()); return CodeOffset(masm.currentOffset()); } // Load from *src where src can be patched. CodeOffset movsblWithPatch(PatchedAbsoluteAddress src, Register dest) { masm.movsbl_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset movzblWithPatch(PatchedAbsoluteAddress src, Register dest) { masm.movzbl_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset movswlWithPatch(PatchedAbsoluteAddress src, Register dest) { masm.movswl_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset movzwlWithPatch(PatchedAbsoluteAddress src, Register dest) { masm.movzwl_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset movlWithPatch(PatchedAbsoluteAddress src, Register dest) { masm.movl_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovssWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovss_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovd_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovqWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovq_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovsdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovsd_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdqaWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovdqa_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdquWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovdqu_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovapsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovaps_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset vmovupsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) { MOZ_ASSERT(HasSSE2()); masm.vmovups_mr(src.addr, dest.encoding()); return CodeOffset(masm.currentOffset()); } // Store to *dest where dest can be patched. CodeOffset movbWithPatch(Register src, PatchedAbsoluteAddress dest) { masm.movb_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset movwWithPatch(Register src, PatchedAbsoluteAddress dest) { masm.movw_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset movlWithPatch(Register src, PatchedAbsoluteAddress dest) { masm.movl_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovssWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovss_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovd_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovqWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovq_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovsdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovsd_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdqaWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovdqa_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovapsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovaps_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovdquWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovdqu_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } CodeOffset vmovupsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) { MOZ_ASSERT(HasSSE2()); masm.vmovups_rm(src.encoding(), dest.addr); return CodeOffset(masm.currentOffset()); } }; // Get a register in which we plan to put a quantity that will be used as an // integer argument. This differs from GetIntArgReg in that if we have no more // actual argument registers to use we will fall back on using whatever // CallTempReg* don't overlap the argument registers, and only fail once those // run out too. static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out) { if (usedIntArgs >= NumCallTempNonArgRegs) { return false; } *out = CallTempNonArgRegs[usedIntArgs]; return true; } } // namespace jit } // namespace js #endif /* jit_x86_Assembler_x86_h */