/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/MathAlgorithms.h" #include "jit/Bailouts.h" #include "jit/BaselineFrame.h" #include "jit/BaselineJIT.h" #include "jit/CalleeToken.h" #include "jit/JitFrames.h" #include "jit/JitRuntime.h" #include "jit/JitSpewer.h" #include "jit/PerfSpewer.h" #include "jit/VMFunctions.h" #include "jit/x86/SharedICHelpers-x86.h" #include "vm/JitActivation.h" // js::jit::JitActivation #include "vm/JSContext.h" #include "vm/Realm.h" #ifdef MOZ_VTUNE # include "vtune/VTuneWrapper.h" #endif #include "jit/MacroAssembler-inl.h" #include "vm/JSScript-inl.h" using mozilla::IsPowerOfTwo; using namespace js; using namespace js::jit; // All registers to save and restore. This includes the stack pointer, since we // use the ability to reference register values on the stack by index. static const LiveRegisterSet AllRegs = LiveRegisterSet(GeneralRegisterSet(Registers::AllMask), FloatRegisterSet(FloatRegisters::AllMask)); enum EnterJitEbpArgumentOffset { ARG_JITCODE = 2 * sizeof(void*), ARG_ARGC = 3 * sizeof(void*), ARG_ARGV = 4 * sizeof(void*), ARG_STACKFRAME = 5 * sizeof(void*), ARG_CALLEETOKEN = 6 * sizeof(void*), ARG_SCOPECHAIN = 7 * sizeof(void*), ARG_STACKVALUES = 8 * sizeof(void*), ARG_RESULT = 9 * sizeof(void*) }; // Generates a trampoline for calling Jit compiled code from a C++ function. // The trampoline use the EnterJitCode signature, with the standard cdecl // calling convention. void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { AutoCreatedBy acb(masm, "JitRuntime::generateEnterJIT"); enterJITOffset_ = startTrampolineCode(masm); masm.assertStackAlignment(ABIStackAlignment, -int32_t(sizeof(uintptr_t)) /* return address */); // Save old stack frame pointer, set new stack frame pointer. masm.push(ebp); masm.movl(esp, ebp); // Save non-volatile registers. These must be saved by the trampoline, // rather than the JIT'd code, because they are scanned by the conservative // scanner. masm.push(ebx); masm.push(esi); masm.push(edi); // Load the number of values to be copied (argc) into eax masm.loadPtr(Address(ebp, ARG_ARGC), eax); // If we are constructing, that also needs to include newTarget { Label noNewTarget; masm.loadPtr(Address(ebp, ARG_CALLEETOKEN), edx); masm.branchTest32(Assembler::Zero, edx, Imm32(CalleeToken_FunctionConstructing), &noNewTarget); masm.addl(Imm32(1), eax); masm.bind(&noNewTarget); } // eax <- 8*numValues, eax is now the offset betwen argv and the last value. masm.shll(Imm32(3), eax); // Guarantee stack alignment of Jit frames. // // This code compensates for the offset created by the copy of the vector of // arguments, such that the jit frame will be aligned once the return // address is pushed on the stack. // // In the computation of the offset, we omit the size of the JitFrameLayout // which is pushed on the stack, as the JitFrameLayout size is a multiple of // the JitStackAlignment. masm.movl(esp, ecx); masm.subl(eax, ecx); static_assert( sizeof(JitFrameLayout) % JitStackAlignment == 0, "No need to consider the JitFrameLayout for aligning the stack"); // ecx = ecx & 15, holds alignment. masm.andl(Imm32(JitStackAlignment - 1), ecx); masm.subl(ecx, esp); /*************************************************************** Loop over argv vector, push arguments onto stack in reverse order ***************************************************************/ // ebx = argv --argv pointer is in ebp + 16 masm.loadPtr(Address(ebp, ARG_ARGV), ebx); // eax = argv[8(argc)] --eax now points one value past the last argument masm.addl(ebx, eax); // while (eax > ebx) --while still looping through arguments { Label header, footer; masm.bind(&header); masm.cmp32(eax, ebx); masm.j(Assembler::BelowOrEqual, &footer); // eax -= 8 --move to previous argument masm.subl(Imm32(8), eax); // Push what eax points to on stack, a Value is 2 words masm.push(Operand(eax, 4)); masm.push(Operand(eax, 0)); masm.jmp(&header); masm.bind(&footer); } // Load the number of actual arguments. |result| is used to store the // actual number of arguments without adding an extra argument to the enter // JIT. masm.mov(Operand(ebp, ARG_RESULT), eax); masm.unboxInt32(Address(eax, 0x0), eax); // Push the callee token. masm.push(Operand(ebp, ARG_CALLEETOKEN)); // Load the InterpreterFrame address into the OsrFrameReg. // This address is also used for setting the constructing bit on all paths. masm.loadPtr(Address(ebp, ARG_STACKFRAME), OsrFrameReg); // Push the descriptor. masm.pushFrameDescriptorForJitCall(FrameType::CppToJSJit, eax, eax); CodeLabel returnLabel; Label oomReturnLabel; { // Handle Interpreter -> Baseline OSR. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); MOZ_ASSERT(!regs.has(ebp)); regs.take(OsrFrameReg); regs.take(ReturnReg); Register scratch = regs.takeAny(); Label notOsr; masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, ¬Osr); Register numStackValues = regs.takeAny(); masm.loadPtr(Address(ebp, ARG_STACKVALUES), numStackValues); Register jitcode = regs.takeAny(); masm.loadPtr(Address(ebp, ARG_JITCODE), jitcode); // Push return address. masm.mov(&returnLabel, scratch); masm.push(scratch); // Frame prologue. masm.push(ebp); masm.mov(esp, ebp); // Reserve frame. masm.subPtr(Imm32(BaselineFrame::Size()), esp); Register framePtrScratch = regs.takeAny(); masm.touchFrameValues(numStackValues, scratch, framePtrScratch); masm.mov(esp, framePtrScratch); // Reserve space for locals and stack values. masm.mov(numStackValues, scratch); masm.shll(Imm32(3), scratch); masm.subPtr(scratch, esp); // Enter exit frame. masm.pushFrameDescriptor(FrameType::BaselineJS); masm.push(Imm32(0)); // Fake return address. masm.push(FramePointer); // No GC things to mark on the stack, push a bare token. masm.loadJSContext(scratch); masm.enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare); masm.push(jitcode); using Fn = bool (*)(BaselineFrame * frame, InterpreterFrame * interpFrame, uint32_t numStackValues); masm.setupUnalignedABICall(scratch); masm.passABIArg(framePtrScratch); // BaselineFrame masm.passABIArg(OsrFrameReg); // InterpreterFrame masm.passABIArg(numStackValues); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); masm.pop(jitcode); MOZ_ASSERT(jitcode != ReturnReg); Label error; masm.addPtr(Imm32(ExitFrameLayout::SizeWithFooter()), esp); masm.branchIfFalseBool(ReturnReg, &error); // If OSR-ing, then emit instrumentation for setting lastProfilerFrame // if profiler instrumentation is enabled. { Label skipProfilingInstrumentation; AbsoluteAddress addressOfEnabled( cx->runtime()->geckoProfiler().addressOfEnabled()); masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), &skipProfilingInstrumentation); masm.profilerEnterFrame(ebp, scratch); masm.bind(&skipProfilingInstrumentation); } masm.jump(jitcode); // OOM: frame epilogue, load error value, discard return address and return. masm.bind(&error); masm.mov(ebp, esp); masm.pop(ebp); masm.addPtr(Imm32(sizeof(uintptr_t)), esp); // Return address. masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); masm.jump(&oomReturnLabel); masm.bind(¬Osr); masm.loadPtr(Address(ebp, ARG_SCOPECHAIN), R1.scratchReg()); } // The call will push the return address and frame pointer on the stack, thus // we check that the stack would be aligned once the call is complete. masm.assertStackAlignment(JitStackAlignment, 2 * sizeof(uintptr_t)); /*************************************************************** Call passed-in code, get return value and fill in the passed in return value pointer ***************************************************************/ masm.call(Address(ebp, ARG_JITCODE)); { // Interpreter -> Baseline OSR will return here. masm.bind(&returnLabel); masm.addCodeLabel(returnLabel); masm.bind(&oomReturnLabel); } // Restore the stack pointer so the stack looks like this: // +20 ... arguments ... // +16 // +12 ebp <- %ebp pointing here. // +8 ebx // +4 esi // +0 edi <- %esp pointing here. masm.lea(Operand(ebp, -int32_t(3 * sizeof(void*))), esp); // Store the return value. masm.loadPtr(Address(ebp, ARG_RESULT), eax); masm.storeValue(JSReturnOperand, Operand(eax, 0)); /************************************************************** Return stack and registers to correct state **************************************************************/ // Restore non-volatile registers masm.pop(edi); masm.pop(esi); masm.pop(ebx); // Restore old stack frame pointer masm.pop(ebp); masm.ret(); } // static mozilla::Maybe<::JS::ProfilingFrameIterator::RegisterState> JitRuntime::getCppEntryRegisters(JitFrameLayout* frameStackAddress) { // Not supported, or not implemented yet. // TODO: Implement along with the corresponding stack-walker changes, in // coordination with the Gecko Profiler, see bug 1635987 and follow-ups. return mozilla::Nothing{}; } // Push AllRegs in a way that is compatible with RegisterDump, regardless of // what PushRegsInMask might do to reduce the set size. static void DumpAllRegs(MacroAssembler& masm) { #ifdef ENABLE_WASM_SIMD masm.PushRegsInMask(AllRegs); #else // When SIMD isn't supported, PushRegsInMask reduces the set of float // registers to be double-sized, while the RegisterDump expects each of // the float registers to have the maximal possible size // (Simd128DataSize). To work around this, we just spill the double // registers by hand here, using the register dump offset directly. for (GeneralRegisterBackwardIterator iter(AllRegs.gprs()); iter.more(); ++iter) { masm.Push(*iter); } masm.reserveStack(sizeof(RegisterDump::FPUArray)); for (FloatRegisterBackwardIterator iter(AllRegs.fpus()); iter.more(); ++iter) { FloatRegister reg = *iter; Address spillAddress(StackPointer, reg.getRegisterDumpOffsetInBytes()); masm.storeDouble(reg, spillAddress); } #endif } void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { AutoCreatedBy acb(masm, "JitRuntime::generateInvalidator"); invalidatorOffset_ = startTrampolineCode(masm); // We do the minimum amount of work in assembly and shunt the rest // off to InvalidationBailout. Assembly does: // // - Push the machine state onto the stack. // - Call the InvalidationBailout routine with the stack pointer. // - Now that the frame has been bailed out, convert the invalidated // frame into an exit frame. // - Do the normal check-return-code-and-thunk-to-the-interpreter dance. // Push registers such that we can access them from [base + code]. DumpAllRegs(masm); masm.movl(esp, eax); // Argument to jit::InvalidationBailout. // Make space for InvalidationBailout's bailoutInfo outparam. masm.reserveStack(sizeof(void*)); masm.movl(esp, ebx); using Fn = bool (*)(InvalidationBailoutStack * sp, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(edx); masm.passABIArg(eax); masm.passABIArg(ebx); masm.callWithABI( MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.pop(ecx); // Get bailoutInfo outparam. // Pop the machine state and the dead frame. masm.moveToStackPtr(FramePointer); // Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx. masm.jmp(bailoutTail); } void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, ArgumentsRectifierKind kind) { AutoCreatedBy acb(masm, "JitRuntime::generateArgumentsRectifier"); switch (kind) { case ArgumentsRectifierKind::Normal: argumentsRectifierOffset_ = startTrampolineCode(masm); break; case ArgumentsRectifierKind::TrialInlining: trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); break; } // Caller: // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] <- esp // Frame prologue. // // NOTE: if this changes, fix the Baseline bailout code too! // See BaselineStackBuilder::calculatePrevFramePtr and // BaselineStackBuilder::buildRectifierFrame (in BaselineBailouts.cpp). masm.push(FramePointer); masm.movl(esp, FramePointer); // Save %esp. // Load argc. masm.loadNumActualArgs(FramePointer, esi); // Load the number of |undefined|s to push into %ecx. masm.loadPtr(Address(ebp, RectifierFrameLayout::offsetOfCalleeToken()), eax); masm.mov(eax, ecx); masm.andl(Imm32(CalleeTokenMask), ecx); masm.loadFunctionArgCount(ecx, ecx); // The frame pointer and its padding are pushed on the stack. // Including |this|, there are (|nformals| + 1) arguments to push to the // stack. Then we push a JitFrameLayout. We compute the padding expressed // in the number of extra |undefined| values to push on the stack. static_assert( sizeof(JitFrameLayout) % JitStackAlignment == 0, "No need to consider the JitFrameLayout for aligning the stack"); static_assert( JitStackAlignment % sizeof(Value) == 0, "Ensure that we can pad the stack by pushing extra UndefinedValue"); static_assert(IsPowerOfTwo(JitStackValueAlignment), "must have power of two for masm.andl to do its job"); masm.addl( Imm32(JitStackValueAlignment - 1 /* for padding */ + 1 /* for |this| */), ecx); // Account for newTarget, if necessary. static_assert( CalleeToken_FunctionConstructing == 1, "Ensure that we can use the constructing bit to count an extra push"); masm.mov(eax, edx); masm.andl(Imm32(CalleeToken_FunctionConstructing), edx); masm.addl(edx, ecx); masm.andl(Imm32(~(JitStackValueAlignment - 1)), ecx); masm.subl(esi, ecx); masm.subl(Imm32(1), ecx); // For |this|. // Copy the number of actual arguments into edx. masm.mov(esi, edx); masm.moveValue(UndefinedValue(), ValueOperand(ebx, edi)); // Caller: // [arg2] [arg1] [this] [ [argc] [callee] [descr] [raddr] ] // '-- #esi ---' // // Rectifier frame: // [ebp'] <- ebp [padding] <- esp [undef] [undef] [arg2] [arg1] [this] // '--- #ecx ----' '-- #esi ---' // // [ [argc] [callee] [descr] [raddr] ] // Push undefined. { Label undefLoopTop; masm.bind(&undefLoopTop); masm.push(ebx); // type(undefined); masm.push(edi); // payload(undefined); masm.subl(Imm32(1), ecx); masm.j(Assembler::NonZero, &undefLoopTop); } // Get the topmost argument. BaseIndex b(FramePointer, esi, TimesEight, sizeof(RectifierFrameLayout)); masm.lea(Operand(b), ecx); // Push arguments, |nargs| + 1 times (to include |this|). masm.addl(Imm32(1), esi); { Label copyLoopTop; masm.bind(©LoopTop); masm.push(Operand(ecx, sizeof(Value) / 2)); masm.push(Operand(ecx, 0x0)); masm.subl(Imm32(sizeof(Value)), ecx); masm.subl(Imm32(1), esi); masm.j(Assembler::NonZero, ©LoopTop); } { Label notConstructing; masm.mov(eax, ebx); masm.branchTest32(Assembler::Zero, ebx, Imm32(CalleeToken_FunctionConstructing), ¬Constructing); BaseValueIndex src(FramePointer, edx, sizeof(RectifierFrameLayout) + sizeof(Value)); masm.andl(Imm32(CalleeTokenMask), ebx); masm.loadFunctionArgCount(ebx, ebx); BaseValueIndex dst(esp, ebx, sizeof(Value)); ValueOperand newTarget(ecx, edi); masm.loadValue(src, newTarget); masm.storeValue(newTarget, dst); masm.bind(¬Constructing); } // Construct JitFrameLayout. masm.push(eax); // callee token masm.pushFrameDescriptorForJitCall(FrameType::Rectifier, edx, edx); // Call the target function. masm.andl(Imm32(CalleeTokenMask), eax); switch (kind) { case ArgumentsRectifierKind::Normal: masm.loadJitCodeRaw(eax, eax); argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(eax); break; case ArgumentsRectifierKind::TrialInlining: Label noBaselineScript, done; masm.loadBaselineJitCodeRaw(eax, ebx, &noBaselineScript); masm.callJitNoProfiler(ebx); masm.jump(&done); // See BaselineCacheIRCompiler::emitCallInlinedFunction. masm.bind(&noBaselineScript); masm.loadJitCodeRaw(eax, eax); masm.callJitNoProfiler(eax); masm.bind(&done); break; } masm.mov(FramePointer, StackPointer); masm.pop(FramePointer); masm.ret(); } static void PushBailoutFrame(MacroAssembler& masm, Register spArg) { // Push registers such that we can access them from [base + code]. DumpAllRegs(masm); // The current stack pointer is the first argument to jit::Bailout. masm.movl(esp, spArg); } static void GenerateBailoutThunk(MacroAssembler& masm, Label* bailoutTail) { PushBailoutFrame(masm, eax); // Make space for Bailout's bailoutInfo outparam. masm.reserveStack(sizeof(void*)); masm.movl(esp, ebx); // Call the bailout function. using Fn = bool (*)(BailoutStack * sp, BaselineBailoutInfo * *info); masm.setupUnalignedABICall(ecx); masm.passABIArg(eax); masm.passABIArg(ebx); masm.callWithABI(MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); masm.pop(ecx); // Get the bailoutInfo outparam. // Remove both the bailout frame and the topmost Ion frame's stack. masm.moveToStackPtr(FramePointer); // Jump to shared bailout tail. The BailoutInfo pointer has to be in ecx. masm.jmp(bailoutTail); } void JitRuntime::generateBailoutHandler(MacroAssembler& masm, Label* bailoutTail) { AutoCreatedBy acb(masm, "JitRuntime::generateBailoutHandler"); bailoutHandlerOffset_ = startTrampolineCode(masm); GenerateBailoutThunk(masm, bailoutTail); } bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, const VMFunctionData& f, DynFn nativeFun, uint32_t* wrapperOffset) { AutoCreatedBy acb(masm, "JitRuntime::generateVMWrapper"); *wrapperOffset = startTrampolineCode(masm); // Avoid conflicts with argument registers while discarding the result after // the function call. AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); static_assert( (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, "Wrapper register set must be a superset of Volatile register set."); // The context is the first argument. Register cxreg = regs.takeAny(); // Stack is: // ... frame ... // +8 [args] // +4 descriptor // +0 returnAddress // // Push the frame pointer to finish the exit frame, then link it up. masm.Push(FramePointer); masm.moveStackPtrTo(FramePointer); masm.loadJSContext(cxreg); masm.enterExitFrame(cxreg, regs.getAny(), &f); // Save the current stack pointer as the base for copying arguments. Register argsBase = InvalidReg; if (f.explicitArgs) { argsBase = regs.takeAny(); masm.lea(Operand(esp, ExitFrameLayout::SizeWithFooter()), argsBase); } // Reserve space for the outparameter. Register outReg = InvalidReg; switch (f.outParam) { case Type_Value: outReg = regs.takeAny(); masm.Push(UndefinedValue()); masm.movl(esp, outReg); break; case Type_Handle: outReg = regs.takeAny(); masm.PushEmptyRooted(f.outParamRootType); masm.movl(esp, outReg); break; case Type_Int32: case Type_Pointer: case Type_Bool: outReg = regs.takeAny(); masm.reserveStack(sizeof(int32_t)); masm.movl(esp, outReg); break; case Type_Double: outReg = regs.takeAny(); masm.reserveStack(sizeof(double)); masm.movl(esp, outReg); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } masm.setupUnalignedABICall(regs.getAny()); masm.passABIArg(cxreg); size_t argDisp = 0; // Copy arguments. for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { switch (f.argProperties(explicitArg)) { case VMFunctionData::WordByValue: masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::DoubleByValue: // We don't pass doubles in float registers on x86, so no need // to check for argPassedInFloatReg. masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::WordByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::Kind::EffectiveAddress), MoveOp::GENERAL); argDisp += sizeof(void*); break; case VMFunctionData::DoubleByRef: masm.passABIArg( MoveOperand(argsBase, argDisp, MoveOperand::Kind::EffectiveAddress), MoveOp::GENERAL); argDisp += 2 * sizeof(void*); break; } } // Copy the implicit outparam, if any. if (outReg != InvalidReg) { masm.passABIArg(outReg); } masm.callWithABI(nativeFun, MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); // Test for failure. switch (f.failType()) { case Type_Cell: masm.branchTestPtr(Assembler::Zero, eax, eax, masm.failureLabel()); break; case Type_Bool: masm.testb(eax, eax); masm.j(Assembler::Zero, masm.failureLabel()); break; case Type_Void: break; default: MOZ_CRASH("unknown failure kind"); } // Load the outparam and free any allocated stack. switch (f.outParam) { case Type_Handle: masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand); break; case Type_Value: masm.Pop(JSReturnOperand); break; case Type_Int32: case Type_Pointer: masm.Pop(ReturnReg); break; case Type_Bool: masm.Pop(ReturnReg); masm.movzbl(ReturnReg, ReturnReg); break; case Type_Double: masm.Pop(ReturnDoubleReg); break; default: MOZ_ASSERT(f.outParam == Type_Void); break; } // Until C++ code is instrumented against Spectre, prevent speculative // execution from returning any private data. if (f.returnsData() && JitOptions.spectreJitToCxxCalls) { masm.speculationBarrier(); } // Pop ExitFooterFrame and the frame pointer. masm.leaveExitFrame(0); masm.pop(FramePointer); // Return. Subtract sizeof(void*) for the frame pointer. masm.retn(Imm32(sizeof(ExitFrameLayout) - sizeof(void*) + f.explicitStackSlots() * sizeof(void*) + f.extraValuesToPop * sizeof(Value))); return true; } uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, MIRType type) { AutoCreatedBy acb(masm, "JitRuntime::generatePreBarrier"); uint32_t offset = startTrampolineCode(masm); static_assert(PreBarrierReg == edx); Register temp1 = eax; Register temp2 = ebx; Register temp3 = ecx; masm.push(temp1); masm.push(temp2); masm.push(temp3); Label noBarrier; masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, &noBarrier); // Call into C++ to mark this GC thing. masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); LiveRegisterSet save; save.set() = RegisterSet(GeneralRegisterSet(Registers::VolatileMask), FloatRegisterSet(FloatRegisters::VolatileMask)); masm.PushRegsInMask(save); masm.movl(ImmPtr(cx->runtime()), ecx); masm.setupUnalignedABICall(eax); masm.passABIArg(ecx); masm.passABIArg(edx); masm.callWithABI(JitPreWriteBarrier(type)); masm.PopRegsInMask(save); masm.ret(); masm.bind(&noBarrier); masm.pop(temp3); masm.pop(temp2); masm.pop(temp1); masm.ret(); return offset; } void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, Label* bailoutTail) { AutoCreatedBy acb(masm, "JitRuntime::generateBailoutTailStub"); masm.bind(bailoutTail); masm.generateBailoutTail(edx, ecx); }