/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * * Copyright 2016 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "wasm/WasmCode.h" #include "mozilla/Atomics.h" #include "mozilla/BinarySearch.h" #include "mozilla/EnumeratedRange.h" #include "mozilla/Sprintf.h" #include #include "jsnum.h" #include "jit/Disassemble.h" #include "jit/ExecutableAllocator.h" #include "jit/MacroAssembler.h" #include "jit/PerfSpewer.h" #include "util/Poison.h" #ifdef MOZ_VTUNE # include "vtune/VTuneWrapper.h" #endif #include "wasm/WasmModule.h" #include "wasm/WasmProcess.h" #include "wasm/WasmSerialize.h" #include "wasm/WasmStubs.h" #include "wasm/WasmUtility.h" using namespace js; using namespace js::jit; using namespace js::wasm; using mozilla::BinarySearch; using mozilla::BinarySearchIf; using mozilla::MakeEnumeratedRange; using mozilla::PodAssign; size_t LinkData::SymbolicLinkArray::sizeOfExcludingThis( MallocSizeOf mallocSizeOf) const { size_t size = 0; for (const Uint32Vector& offsets : *this) { size += offsets.sizeOfExcludingThis(mallocSizeOf); } return size; } CodeSegment::~CodeSegment() { if (unregisterOnDestroy_) { UnregisterCodeSegment(this); } } static uint32_t RoundupCodeLength(uint32_t codeLength) { // AllocateExecutableMemory() requires a multiple of ExecutableCodePageSize. return RoundUp(codeLength, ExecutableCodePageSize); } UniqueCodeBytes wasm::AllocateCodeBytes(uint32_t codeLength) { if (codeLength > MaxCodeBytesPerProcess) { return nullptr; } static_assert(MaxCodeBytesPerProcess <= INT32_MAX, "rounding won't overflow"); uint32_t roundedCodeLength = RoundupCodeLength(codeLength); void* p = AllocateExecutableMemory(roundedCodeLength, ProtectionSetting::Writable, MemCheckKind::MakeUndefined); // If the allocation failed and the embedding gives us a last-ditch attempt // to purge all memory (which, in gecko, does a purging GC/CC/GC), do that // then retry the allocation. if (!p) { if (OnLargeAllocationFailure) { OnLargeAllocationFailure(); p = AllocateExecutableMemory(roundedCodeLength, ProtectionSetting::Writable, MemCheckKind::MakeUndefined); } } if (!p) { return nullptr; } // Zero the padding. memset(((uint8_t*)p) + codeLength, 0, roundedCodeLength - codeLength); // We account for the bytes allocated in WasmModuleObject::create, where we // have the necessary JSContext. return UniqueCodeBytes((uint8_t*)p, FreeCode(roundedCodeLength)); } bool CodeSegment::initialize(const CodeTier& codeTier) { MOZ_ASSERT(!initialized()); codeTier_ = &codeTier; MOZ_ASSERT(initialized()); // In the case of tiering, RegisterCodeSegment() immediately makes this code // segment live to access from other threads executing the containing // module. So only call once the CodeSegment is fully initialized. if (!RegisterCodeSegment(this)) { return false; } // This bool is only used by the destructor which cannot be called racily // and so it is not a problem to mutate it after RegisterCodeSegment(). MOZ_ASSERT(!unregisterOnDestroy_); unregisterOnDestroy_ = true; return true; } const Code& CodeSegment::code() const { MOZ_ASSERT(codeTier_); return codeTier_->code(); } void CodeSegment::addSizeOfMisc(MallocSizeOf mallocSizeOf, size_t* code) const { *code += RoundupCodeLength(length()); } void FreeCode::operator()(uint8_t* bytes) { MOZ_ASSERT(codeLength); MOZ_ASSERT(codeLength == RoundupCodeLength(codeLength)); #ifdef MOZ_VTUNE vtune::UnmarkBytes(bytes, codeLength); #endif DeallocateExecutableMemory(bytes, codeLength); } bool wasm::StaticallyLink(const ModuleSegment& ms, const LinkData& linkData) { for (LinkData::InternalLink link : linkData.internalLinks) { CodeLabel label; label.patchAt()->bind(link.patchAtOffset); label.target()->bind(link.targetOffset); #ifdef JS_CODELABEL_LINKMODE label.setLinkMode(static_cast(link.mode)); #endif Assembler::Bind(ms.base(), label); } if (!EnsureBuiltinThunksInitialized()) { return false; } for (auto imm : MakeEnumeratedRange(SymbolicAddress::Limit)) { const Uint32Vector& offsets = linkData.symbolicLinks[imm]; if (offsets.empty()) { continue; } void* target = SymbolicAddressTarget(imm); for (uint32_t offset : offsets) { uint8_t* patchAt = ms.base() + offset; Assembler::PatchDataWithValueCheck(CodeLocationLabel(patchAt), PatchedImmPtr(target), PatchedImmPtr((void*)-1)); } } return true; } void wasm::StaticallyUnlink(uint8_t* base, const LinkData& linkData) { for (LinkData::InternalLink link : linkData.internalLinks) { CodeLabel label; label.patchAt()->bind(link.patchAtOffset); label.target()->bind(-size_t(base)); // to reset immediate to null #ifdef JS_CODELABEL_LINKMODE label.setLinkMode(static_cast(link.mode)); #endif Assembler::Bind(base, label); } for (auto imm : MakeEnumeratedRange(SymbolicAddress::Limit)) { const Uint32Vector& offsets = linkData.symbolicLinks[imm]; if (offsets.empty()) { continue; } void* target = SymbolicAddressTarget(imm); for (uint32_t offset : offsets) { uint8_t* patchAt = base + offset; Assembler::PatchDataWithValueCheck(CodeLocationLabel(patchAt), PatchedImmPtr((void*)-1), PatchedImmPtr(target)); } } } static bool AppendToString(const char* str, UTF8Bytes* bytes) { return bytes->append(str, strlen(str)) && bytes->append('\0'); } static void SendCodeRangesToProfiler(const ModuleSegment& ms, const Metadata& metadata, const CodeRangeVector& codeRanges) { bool enabled = false; enabled |= PerfEnabled(); #ifdef MOZ_VTUNE enabled |= vtune::IsProfilingActive(); #endif if (!enabled) { return; } for (const CodeRange& codeRange : codeRanges) { if (!codeRange.hasFuncIndex()) { continue; } uintptr_t start = uintptr_t(ms.base() + codeRange.begin()); uintptr_t size = codeRange.end() - codeRange.begin(); UTF8Bytes name; if (!metadata.getFuncNameStandalone(codeRange.funcIndex(), &name)) { return; } // Avoid "unused" warnings (void)start; (void)size; if (PerfEnabled()) { const char* file = metadata.filename.get(); if (codeRange.isFunction()) { if (!name.append('\0')) { return; } unsigned line = codeRange.funcLineOrBytecode(); CollectPerfSpewerWasmFunctionMap(start, size, file, line, name.begin()); } else if (codeRange.isInterpEntry()) { if (!AppendToString(" slow entry", &name)) { return; } CollectPerfSpewerWasmMap(start, size, file, name.begin()); } else if (codeRange.isJitEntry()) { if (!AppendToString(" fast entry", &name)) { return; } CollectPerfSpewerWasmMap(start, size, file, name.begin()); } else if (codeRange.isImportInterpExit()) { if (!AppendToString(" slow exit", &name)) { return; } CollectPerfSpewerWasmMap(start, size, file, name.begin()); } else if (codeRange.isImportJitExit()) { if (!AppendToString(" fast exit", &name)) { return; } CollectPerfSpewerWasmMap(start, size, file, name.begin()); } else { MOZ_CRASH("unhandled perf hasFuncIndex type"); } } #ifdef MOZ_VTUNE if (!vtune::IsProfilingActive()) { continue; } if (!codeRange.isFunction()) { continue; } if (!name.append('\0')) { return; } vtune::MarkWasm(vtune::GenerateUniqueMethodID(), name.begin(), (void*)start, size); #endif } } ModuleSegment::ModuleSegment(Tier tier, UniqueCodeBytes codeBytes, uint32_t codeLength, const LinkData& linkData) : CodeSegment(std::move(codeBytes), codeLength, CodeSegment::Kind::Module), tier_(tier), trapCode_(base() + linkData.trapOffset) {} /* static */ UniqueModuleSegment ModuleSegment::create(Tier tier, MacroAssembler& masm, const LinkData& linkData) { uint32_t codeLength = masm.bytesNeeded(); UniqueCodeBytes codeBytes = AllocateCodeBytes(codeLength); if (!codeBytes) { return nullptr; } masm.executableCopy(codeBytes.get()); return js::MakeUnique(tier, std::move(codeBytes), codeLength, linkData); } /* static */ UniqueModuleSegment ModuleSegment::create(Tier tier, const Bytes& unlinkedBytes, const LinkData& linkData) { uint32_t codeLength = unlinkedBytes.length(); UniqueCodeBytes codeBytes = AllocateCodeBytes(codeLength); if (!codeBytes) { return nullptr; } memcpy(codeBytes.get(), unlinkedBytes.begin(), codeLength); return js::MakeUnique(tier, std::move(codeBytes), codeLength, linkData); } bool ModuleSegment::initialize(const CodeTier& codeTier, const LinkData& linkData, const Metadata& metadata, const MetadataTier& metadataTier) { if (!StaticallyLink(*this, linkData)) { return false; } // Optimized compilation finishes on a background thread, so we must make sure // to flush the icaches of all the executing threads. // Reprotect the whole region to avoid having separate RW and RX mappings. if (!ExecutableAllocator::makeExecutableAndFlushICache( base(), RoundupCodeLength(length()))) { return false; } SendCodeRangesToProfiler(*this, metadata, metadataTier.codeRanges); // See comments in CodeSegment::initialize() for why this must be last. return CodeSegment::initialize(codeTier); } void ModuleSegment::addSizeOfMisc(mozilla::MallocSizeOf mallocSizeOf, size_t* code, size_t* data) const { CodeSegment::addSizeOfMisc(mallocSizeOf, code); *data += mallocSizeOf(this); } const CodeRange* ModuleSegment::lookupRange(const void* pc) const { return codeTier().lookupRange(pc); } size_t CacheableChars::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const { return mallocSizeOf(get()); } size_t MetadataTier::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const { return funcToCodeRange.sizeOfExcludingThis(mallocSizeOf) + codeRanges.sizeOfExcludingThis(mallocSizeOf) + callSites.sizeOfExcludingThis(mallocSizeOf) + tryNotes.sizeOfExcludingThis(mallocSizeOf) + trapSites.sizeOfExcludingThis(mallocSizeOf) + funcImports.sizeOfExcludingThis(mallocSizeOf) + funcExports.sizeOfExcludingThis(mallocSizeOf); } UniqueLazyStubSegment LazyStubSegment::create(const CodeTier& codeTier, size_t length) { UniqueCodeBytes codeBytes = AllocateCodeBytes(length); if (!codeBytes) { return nullptr; } auto segment = js::MakeUnique(std::move(codeBytes), length); if (!segment || !segment->initialize(codeTier)) { return nullptr; } return segment; } bool LazyStubSegment::hasSpace(size_t bytes) const { MOZ_ASSERT(AlignBytesNeeded(bytes) == bytes); return bytes <= length() && usedBytes_ <= length() - bytes; } bool LazyStubSegment::addStubs(const Metadata& metadata, size_t codeLength, const Uint32Vector& funcExportIndices, const FuncExportVector& funcExports, const CodeRangeVector& codeRanges, uint8_t** codePtr, size_t* indexFirstInsertedCodeRange) { MOZ_ASSERT(hasSpace(codeLength)); size_t offsetInSegment = usedBytes_; *codePtr = base() + usedBytes_; usedBytes_ += codeLength; *indexFirstInsertedCodeRange = codeRanges_.length(); if (!codeRanges_.reserve(codeRanges_.length() + 2 * codeRanges.length())) { return false; } size_t i = 0; for (uint32_t funcExportIndex : funcExportIndices) { const FuncExport& fe = funcExports[funcExportIndex]; const FuncType& funcType = metadata.getFuncExportType(fe); const CodeRange& interpRange = codeRanges[i]; MOZ_ASSERT(interpRange.isInterpEntry()); MOZ_ASSERT(interpRange.funcIndex() == funcExports[funcExportIndex].funcIndex()); codeRanges_.infallibleAppend(interpRange); codeRanges_.back().offsetBy(offsetInSegment); i++; if (!funcType.canHaveJitEntry()) { continue; } const CodeRange& jitRange = codeRanges[i]; MOZ_ASSERT(jitRange.isJitEntry()); MOZ_ASSERT(jitRange.funcIndex() == interpRange.funcIndex()); codeRanges_.infallibleAppend(jitRange); codeRanges_.back().offsetBy(offsetInSegment); i++; } return true; } const CodeRange* LazyStubSegment::lookupRange(const void* pc) const { // Do not search if the search will not find anything. There can be many // segments, each with many entries. if (pc < base() || pc >= base() + length()) { return nullptr; } return LookupInSorted(codeRanges_, CodeRange::OffsetInCode((uint8_t*)pc - base())); } void LazyStubSegment::addSizeOfMisc(MallocSizeOf mallocSizeOf, size_t* code, size_t* data) const { CodeSegment::addSizeOfMisc(mallocSizeOf, code); *data += codeRanges_.sizeOfExcludingThis(mallocSizeOf); *data += mallocSizeOf(this); } // When allocating a single stub to a page, we should not always place the stub // at the beginning of the page as the stubs will tend to thrash the icache by // creating conflicts (everything ends up in the same cache set). Instead, // locate stubs at different line offsets up to 3/4 the system page size (the // code allocation quantum). // // This may be called on background threads, hence the atomic. static void PadCodeForSingleStub(MacroAssembler& masm) { // Assume 64B icache line size static uint8_t zeroes[64]; // The counter serves only to spread the code out, it has no other meaning and // can wrap around. static mozilla::Atomic counter(0); uint32_t maxPadLines = ((gc::SystemPageSize() * 3) / 4) / sizeof(zeroes); uint32_t padLines = counter++ % maxPadLines; for (uint32_t i = 0; i < padLines; i++) { masm.appendRawCode(zeroes, sizeof(zeroes)); } } static constexpr unsigned LAZY_STUB_LIFO_DEFAULT_CHUNK_SIZE = 8 * 1024; bool LazyStubTier::createManyEntryStubs(const Uint32Vector& funcExportIndices, const Metadata& metadata, const CodeTier& codeTier, size_t* stubSegmentIndex) { MOZ_ASSERT(funcExportIndices.length()); LifoAlloc lifo(LAZY_STUB_LIFO_DEFAULT_CHUNK_SIZE); TempAllocator alloc(&lifo); JitContext jitContext; WasmMacroAssembler masm(alloc); if (funcExportIndices.length() == 1) { PadCodeForSingleStub(masm); } const MetadataTier& metadataTier = codeTier.metadata(); const FuncExportVector& funcExports = metadataTier.funcExports; uint8_t* moduleSegmentBase = codeTier.segment().base(); CodeRangeVector codeRanges; DebugOnly numExpectedRanges = 0; for (uint32_t funcExportIndex : funcExportIndices) { const FuncExport& fe = funcExports[funcExportIndex]; const FuncType& funcType = metadata.getFuncExportType(fe); // Exports that don't support a jit entry get only the interp entry. numExpectedRanges += (funcType.canHaveJitEntry() ? 2 : 1); void* calleePtr = moduleSegmentBase + metadataTier.codeRange(fe).funcUncheckedCallEntry(); Maybe callee; callee.emplace(calleePtr, ImmPtr::NoCheckToken()); if (!GenerateEntryStubs(masm, funcExportIndex, fe, funcType, callee, /* asmjs */ false, &codeRanges)) { return false; } } MOZ_ASSERT(codeRanges.length() == numExpectedRanges, "incorrect number of entries per function"); masm.finish(); MOZ_ASSERT(masm.callSites().empty()); MOZ_ASSERT(masm.callSiteTargets().empty()); MOZ_ASSERT(masm.trapSites().empty()); MOZ_ASSERT(masm.tryNotes().empty()); if (masm.oom()) { return false; } size_t codeLength = LazyStubSegment::AlignBytesNeeded(masm.bytesNeeded()); if (!stubSegments_.length() || !stubSegments_[lastStubSegmentIndex_]->hasSpace(codeLength)) { size_t newSegmentSize = std::max(codeLength, ExecutableCodePageSize); UniqueLazyStubSegment newSegment = LazyStubSegment::create(codeTier, newSegmentSize); if (!newSegment) { return false; } lastStubSegmentIndex_ = stubSegments_.length(); if (!stubSegments_.emplaceBack(std::move(newSegment))) { return false; } } LazyStubSegment* segment = stubSegments_[lastStubSegmentIndex_].get(); *stubSegmentIndex = lastStubSegmentIndex_; size_t interpRangeIndex; uint8_t* codePtr = nullptr; if (!segment->addStubs(metadata, codeLength, funcExportIndices, funcExports, codeRanges, &codePtr, &interpRangeIndex)) { return false; } masm.executableCopy(codePtr); PatchDebugSymbolicAccesses(codePtr, masm); memset(codePtr + masm.bytesNeeded(), 0, codeLength - masm.bytesNeeded()); for (const CodeLabel& label : masm.codeLabels()) { Assembler::Bind(codePtr, label); } if (!ExecutableAllocator::makeExecutableAndFlushICache(codePtr, codeLength)) { return false; } // Create lazy function exports for funcIndex -> entry lookup. if (!exports_.reserve(exports_.length() + funcExportIndices.length())) { return false; } for (uint32_t funcExportIndex : funcExportIndices) { const FuncExport& fe = funcExports[funcExportIndex]; const FuncType& funcType = metadata.getFuncExportType(fe); DebugOnly cr = segment->codeRanges()[interpRangeIndex]; MOZ_ASSERT(cr.value.isInterpEntry()); MOZ_ASSERT(cr.value.funcIndex() == fe.funcIndex()); LazyFuncExport lazyExport(fe.funcIndex(), *stubSegmentIndex, interpRangeIndex); size_t exportIndex; const uint32_t targetFunctionIndex = fe.funcIndex(); MOZ_ALWAYS_FALSE(BinarySearchIf( exports_, 0, exports_.length(), [targetFunctionIndex](const LazyFuncExport& funcExport) { return targetFunctionIndex - funcExport.funcIndex; }, &exportIndex)); MOZ_ALWAYS_TRUE( exports_.insert(exports_.begin() + exportIndex, std::move(lazyExport))); // Exports that don't support a jit entry get only the interp entry. interpRangeIndex += (funcType.canHaveJitEntry() ? 2 : 1); } return true; } bool LazyStubTier::createOneEntryStub(uint32_t funcExportIndex, const Metadata& metadata, const CodeTier& codeTier) { Uint32Vector funcExportIndexes; if (!funcExportIndexes.append(funcExportIndex)) { return false; } size_t stubSegmentIndex; if (!createManyEntryStubs(funcExportIndexes, metadata, codeTier, &stubSegmentIndex)) { return false; } const UniqueLazyStubSegment& segment = stubSegments_[stubSegmentIndex]; const CodeRangeVector& codeRanges = segment->codeRanges(); const FuncExport& fe = codeTier.metadata().funcExports[funcExportIndex]; const FuncType& funcType = metadata.getFuncExportType(fe); // Exports that don't support a jit entry get only the interp entry. if (!funcType.canHaveJitEntry()) { MOZ_ASSERT(codeRanges.length() >= 1); MOZ_ASSERT(codeRanges.back().isInterpEntry()); return true; } MOZ_ASSERT(codeRanges.length() >= 2); MOZ_ASSERT(codeRanges[codeRanges.length() - 2].isInterpEntry()); const CodeRange& cr = codeRanges[codeRanges.length() - 1]; MOZ_ASSERT(cr.isJitEntry()); codeTier.code().setJitEntry(cr.funcIndex(), segment->base() + cr.begin()); return true; } bool LazyStubTier::createTier2(const Uint32Vector& funcExportIndices, const Metadata& metadata, const CodeTier& codeTier, Maybe* outStubSegmentIndex) { if (!funcExportIndices.length()) { return true; } size_t stubSegmentIndex; if (!createManyEntryStubs(funcExportIndices, metadata, codeTier, &stubSegmentIndex)) { return false; } outStubSegmentIndex->emplace(stubSegmentIndex); return true; } void LazyStubTier::setJitEntries(const Maybe& stubSegmentIndex, const Code& code) { if (!stubSegmentIndex) { return; } const UniqueLazyStubSegment& segment = stubSegments_[*stubSegmentIndex]; for (const CodeRange& cr : segment->codeRanges()) { if (!cr.isJitEntry()) { continue; } code.setJitEntry(cr.funcIndex(), segment->base() + cr.begin()); } } bool LazyStubTier::hasEntryStub(uint32_t funcIndex) const { size_t match; return BinarySearchIf( exports_, 0, exports_.length(), [funcIndex](const LazyFuncExport& funcExport) { return funcIndex - funcExport.funcIndex; }, &match); } void* LazyStubTier::lookupInterpEntry(uint32_t funcIndex) const { size_t match; if (!BinarySearchIf( exports_, 0, exports_.length(), [funcIndex](const LazyFuncExport& funcExport) { return funcIndex - funcExport.funcIndex; }, &match)) { return nullptr; } const LazyFuncExport& fe = exports_[match]; const LazyStubSegment& stub = *stubSegments_[fe.lazyStubSegmentIndex]; return stub.base() + stub.codeRanges()[fe.funcCodeRangeIndex].begin(); } void LazyStubTier::addSizeOfMisc(MallocSizeOf mallocSizeOf, size_t* code, size_t* data) const { *data += sizeof(*this); *data += exports_.sizeOfExcludingThis(mallocSizeOf); for (const UniqueLazyStubSegment& stub : stubSegments_) { stub->addSizeOfMisc(mallocSizeOf, code, data); } } size_t Metadata::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const { return types->sizeOfExcludingThis(mallocSizeOf) + globals.sizeOfExcludingThis(mallocSizeOf) + tables.sizeOfExcludingThis(mallocSizeOf) + tags.sizeOfExcludingThis(mallocSizeOf) + funcNames.sizeOfExcludingThis(mallocSizeOf) + filename.sizeOfExcludingThis(mallocSizeOf) + sourceMapURL.sizeOfExcludingThis(mallocSizeOf); } struct ProjectFuncIndex { const FuncExportVector& funcExports; explicit ProjectFuncIndex(const FuncExportVector& funcExports) : funcExports(funcExports) {} uint32_t operator[](size_t index) const { return funcExports[index].funcIndex(); } }; FuncExport& MetadataTier::lookupFuncExport( uint32_t funcIndex, size_t* funcExportIndex /* = nullptr */) { size_t match; if (!BinarySearch(ProjectFuncIndex(funcExports), 0, funcExports.length(), funcIndex, &match)) { MOZ_CRASH("missing function export"); } if (funcExportIndex) { *funcExportIndex = match; } return funcExports[match]; } const FuncExport& MetadataTier::lookupFuncExport( uint32_t funcIndex, size_t* funcExportIndex) const { return const_cast(this)->lookupFuncExport(funcIndex, funcExportIndex); } static bool AppendName(const Bytes& namePayload, const Name& name, UTF8Bytes* bytes) { MOZ_RELEASE_ASSERT(name.offsetInNamePayload <= namePayload.length()); MOZ_RELEASE_ASSERT(name.length <= namePayload.length() - name.offsetInNamePayload); return bytes->append( (const char*)namePayload.begin() + name.offsetInNamePayload, name.length); } static bool AppendFunctionIndexName(uint32_t funcIndex, UTF8Bytes* bytes) { const char beforeFuncIndex[] = "wasm-function["; const char afterFuncIndex[] = "]"; Int32ToCStringBuf cbuf; size_t funcIndexStrLen; const char* funcIndexStr = Uint32ToCString(&cbuf, funcIndex, &funcIndexStrLen); MOZ_ASSERT(funcIndexStr); return bytes->append(beforeFuncIndex, strlen(beforeFuncIndex)) && bytes->append(funcIndexStr, funcIndexStrLen) && bytes->append(afterFuncIndex, strlen(afterFuncIndex)); } bool Metadata::getFuncName(NameContext ctx, uint32_t funcIndex, UTF8Bytes* name) const { if (moduleName && moduleName->length != 0) { if (!AppendName(namePayload->bytes, *moduleName, name)) { return false; } if (!name->append('.')) { return false; } } if (funcIndex < funcNames.length() && funcNames[funcIndex].length != 0) { return AppendName(namePayload->bytes, funcNames[funcIndex], name); } if (ctx == NameContext::BeforeLocation) { return true; } return AppendFunctionIndexName(funcIndex, name); } bool CodeTier::initialize(const Code& code, const LinkData& linkData, const Metadata& metadata) { MOZ_ASSERT(!initialized()); code_ = &code; MOZ_ASSERT(lazyStubs_.readLock()->entryStubsEmpty()); // See comments in CodeSegment::initialize() for why this must be last. if (!segment_->initialize(*this, linkData, metadata, *metadata_)) { return false; } MOZ_ASSERT(initialized()); return true; } void CodeTier::addSizeOfMisc(MallocSizeOf mallocSizeOf, size_t* code, size_t* data) const { segment_->addSizeOfMisc(mallocSizeOf, code, data); lazyStubs_.readLock()->addSizeOfMisc(mallocSizeOf, code, data); *data += metadata_->sizeOfExcludingThis(mallocSizeOf); } const CodeRange* CodeTier::lookupRange(const void* pc) const { CodeRange::OffsetInCode target((uint8_t*)pc - segment_->base()); return LookupInSorted(metadata_->codeRanges, target); } const wasm::TryNote* CodeTier::lookupTryNote(const void* pc) const { size_t target = (uint8_t*)pc - segment_->base(); const TryNoteVector& tryNotes = metadata_->tryNotes; // We find the first hit (there may be multiple) to obtain the innermost // handler, which is why we cannot binary search here. for (const auto& tryNote : tryNotes) { if (tryNote.offsetWithinTryBody(target)) { return &tryNote; } } return nullptr; } bool JumpTables::init(CompileMode mode, const ModuleSegment& ms, const CodeRangeVector& codeRanges) { static_assert(JSScript::offsetOfJitCodeRaw() == 0, "wasm fast jit entry is at (void*) jit[funcIndex]"); mode_ = mode; size_t numFuncs = 0; for (const CodeRange& cr : codeRanges) { if (cr.isFunction()) { numFuncs++; } } numFuncs_ = numFuncs; if (mode_ == CompileMode::Tier1) { tiering_ = TablePointer(js_pod_calloc(numFuncs)); if (!tiering_) { return false; } } // The number of jit entries is overestimated, but it is simpler when // filling/looking up the jit entries and safe (worst case we'll crash // because of a null deref when trying to call the jit entry of an // unexported function). jit_ = TablePointer(js_pod_calloc(numFuncs)); if (!jit_) { return false; } uint8_t* codeBase = ms.base(); for (const CodeRange& cr : codeRanges) { if (cr.isFunction()) { setTieringEntry(cr.funcIndex(), codeBase + cr.funcTierEntry()); } else if (cr.isJitEntry()) { setJitEntry(cr.funcIndex(), codeBase + cr.begin()); } } return true; } Code::Code(UniqueCodeTier tier1, const Metadata& metadata, JumpTables&& maybeJumpTables) : tier1_(std::move(tier1)), metadata_(&metadata), profilingLabels_(mutexid::WasmCodeProfilingLabels, CacheableCharsVector()), jumpTables_(std::move(maybeJumpTables)) {} bool Code::initialize(const LinkData& linkData) { MOZ_ASSERT(!initialized()); if (!tier1_->initialize(*this, linkData, *metadata_)) { return false; } MOZ_ASSERT(initialized()); return true; } bool Code::setAndBorrowTier2(UniqueCodeTier tier2, const LinkData& linkData, const CodeTier** borrowedTier) const { MOZ_RELEASE_ASSERT(!hasTier2()); MOZ_RELEASE_ASSERT(tier2->tier() == Tier::Optimized && tier1_->tier() == Tier::Baseline); if (!tier2->initialize(*this, linkData, *metadata_)) { return false; } tier2_ = std::move(tier2); *borrowedTier = &*tier2_; return true; } void Code::commitTier2() const { MOZ_RELEASE_ASSERT(!hasTier2()); hasTier2_ = true; MOZ_ASSERT(hasTier2()); // To maintain the invariant that tier2_ is never read without the tier having // been committed, this checks tier2_ here instead of before setting hasTier2_ // (as would be natural). See comment in WasmCode.h. MOZ_RELEASE_ASSERT(tier2_.get()); } uint32_t Code::getFuncIndex(JSFunction* fun) const { MOZ_ASSERT(fun->isWasm() || fun->isAsmJSNative()); if (!fun->isWasmWithJitEntry()) { return fun->wasmFuncIndex(); } return jumpTables_.funcIndexFromJitEntry(fun->wasmJitEntry()); } Tiers Code::tiers() const { if (hasTier2()) { return Tiers(tier1_->tier(), tier2_->tier()); } return Tiers(tier1_->tier()); } bool Code::hasTier(Tier t) const { if (hasTier2() && tier2_->tier() == t) { return true; } return tier1_->tier() == t; } Tier Code::stableTier() const { return tier1_->tier(); } Tier Code::bestTier() const { if (hasTier2()) { return tier2_->tier(); } return tier1_->tier(); } const CodeTier& Code::codeTier(Tier tier) const { switch (tier) { case Tier::Baseline: if (tier1_->tier() == Tier::Baseline) { MOZ_ASSERT(tier1_->initialized()); return *tier1_; } MOZ_CRASH("No code segment at this tier"); case Tier::Optimized: if (tier1_->tier() == Tier::Optimized) { MOZ_ASSERT(tier1_->initialized()); return *tier1_; } // It is incorrect to ask for the optimized tier without there being such // a tier and the tier having been committed. The guard here could // instead be `if (hasTier2()) ... ` but codeTier(t) should not be called // in contexts where that test is necessary. MOZ_RELEASE_ASSERT(hasTier2()); MOZ_ASSERT(tier2_->initialized()); return *tier2_; } MOZ_CRASH(); } bool Code::containsCodePC(const void* pc) const { for (Tier t : tiers()) { const ModuleSegment& ms = segment(t); if (ms.containsCodePC(pc)) { return true; } } return false; } struct CallSiteRetAddrOffset { const CallSiteVector& callSites; explicit CallSiteRetAddrOffset(const CallSiteVector& callSites) : callSites(callSites) {} uint32_t operator[](size_t index) const { return callSites[index].returnAddressOffset(); } }; const CallSite* Code::lookupCallSite(void* returnAddress) const { for (Tier t : tiers()) { uint32_t target = ((uint8_t*)returnAddress) - segment(t).base(); size_t lowerBound = 0; size_t upperBound = metadata(t).callSites.length(); size_t match; if (BinarySearch(CallSiteRetAddrOffset(metadata(t).callSites), lowerBound, upperBound, target, &match)) { return &metadata(t).callSites[match]; } } return nullptr; } const CodeRange* Code::lookupFuncRange(void* pc) const { for (Tier t : tiers()) { const CodeRange* result = codeTier(t).lookupRange(pc); if (result && result->isFunction()) { return result; } } return nullptr; } const StackMap* Code::lookupStackMap(uint8_t* nextPC) const { for (Tier t : tiers()) { const StackMap* result = metadata(t).stackMaps.findMap(nextPC); if (result) { return result; } } return nullptr; } const wasm::TryNote* Code::lookupTryNote(void* pc, Tier* tier) const { for (Tier t : tiers()) { const TryNote* result = codeTier(t).lookupTryNote(pc); if (result) { *tier = t; return result; } } return nullptr; } struct TrapSitePCOffset { const TrapSiteVector& trapSites; explicit TrapSitePCOffset(const TrapSiteVector& trapSites) : trapSites(trapSites) {} uint32_t operator[](size_t index) const { return trapSites[index].pcOffset; } }; bool Code::lookupTrap(void* pc, Trap* trapOut, BytecodeOffset* bytecode) const { for (Tier t : tiers()) { uint32_t target = ((uint8_t*)pc) - segment(t).base(); const TrapSiteVectorArray& trapSitesArray = metadata(t).trapSites; for (Trap trap : MakeEnumeratedRange(Trap::Limit)) { const TrapSiteVector& trapSites = trapSitesArray[trap]; size_t upperBound = trapSites.length(); size_t match; if (BinarySearch(TrapSitePCOffset(trapSites), 0, upperBound, target, &match)) { MOZ_ASSERT(segment(t).containsCodePC(pc)); *trapOut = trap; *bytecode = trapSites[match].bytecode; return true; } } } return false; } // When enabled, generate profiling labels for every name in funcNames_ that is // the name of some Function CodeRange. This involves malloc() so do it now // since, once we start sampling, we'll be in a signal-handing context where we // cannot malloc. void Code::ensureProfilingLabels(bool profilingEnabled) const { auto labels = profilingLabels_.lock(); if (!profilingEnabled) { labels->clear(); return; } if (!labels->empty()) { return; } // Any tier will do, we only need tier-invariant data that are incidentally // stored with the code ranges. for (const CodeRange& codeRange : metadata(stableTier()).codeRanges) { if (!codeRange.isFunction()) { continue; } Int32ToCStringBuf cbuf; size_t bytecodeStrLen; const char* bytecodeStr = Uint32ToCString(&cbuf, codeRange.funcLineOrBytecode(), &bytecodeStrLen); MOZ_ASSERT(bytecodeStr); UTF8Bytes name; if (!metadata().getFuncNameStandalone(codeRange.funcIndex(), &name)) { return; } if (!name.append(" (", 2)) { return; } if (const char* filename = metadata().filename.get()) { if (!name.append(filename, strlen(filename))) { return; } } else { if (!name.append('?')) { return; } } if (!name.append(':') || !name.append(bytecodeStr, bytecodeStrLen) || !name.append(")\0", 2)) { return; } UniqueChars label(name.extractOrCopyRawBuffer()); if (!label) { return; } if (codeRange.funcIndex() >= labels->length()) { if (!labels->resize(codeRange.funcIndex() + 1)) { return; } } ((CacheableCharsVector&)labels)[codeRange.funcIndex()] = std::move(label); } } const char* Code::profilingLabel(uint32_t funcIndex) const { auto labels = profilingLabels_.lock(); if (funcIndex >= labels->length() || !((CacheableCharsVector&)labels)[funcIndex]) { return "?"; } return ((CacheableCharsVector&)labels)[funcIndex].get(); } void Code::addSizeOfMiscIfNotSeen(MallocSizeOf mallocSizeOf, Metadata::SeenSet* seenMetadata, Code::SeenSet* seenCode, size_t* code, size_t* data) const { auto p = seenCode->lookupForAdd(this); if (p) { return; } bool ok = seenCode->add(p, this); (void)ok; // oh well *data += mallocSizeOf(this) + metadata().sizeOfIncludingThisIfNotSeen(mallocSizeOf, seenMetadata) + profilingLabels_.lock()->sizeOfExcludingThis(mallocSizeOf) + jumpTables_.sizeOfMiscExcludingThis(); for (auto t : tiers()) { codeTier(t).addSizeOfMisc(mallocSizeOf, code, data); } } void Code::disassemble(JSContext* cx, Tier tier, int kindSelection, PrintCallback printString) const { const MetadataTier& metadataTier = metadata(tier); const CodeTier& codeTier = this->codeTier(tier); const ModuleSegment& segment = codeTier.segment(); for (const CodeRange& range : metadataTier.codeRanges) { if (kindSelection & (1 << range.kind())) { MOZ_ASSERT(range.begin() < segment.length()); MOZ_ASSERT(range.end() < segment.length()); const char* kind; char kindbuf[128]; switch (range.kind()) { case CodeRange::Function: kind = "Function"; break; case CodeRange::InterpEntry: kind = "InterpEntry"; break; case CodeRange::JitEntry: kind = "JitEntry"; break; case CodeRange::ImportInterpExit: kind = "ImportInterpExit"; break; case CodeRange::ImportJitExit: kind = "ImportJitExit"; break; default: SprintfLiteral(kindbuf, "CodeRange::Kind(%d)", range.kind()); kind = kindbuf; break; } const char* separator = "\n--------------------------------------------------\n"; // The buffer is quite large in order to accomodate mangled C++ names; // lengths over 3500 have been observed in the wild. char buf[4096]; if (range.hasFuncIndex()) { const char* funcName = "(unknown)"; UTF8Bytes namebuf; if (metadata().getFuncNameStandalone(range.funcIndex(), &namebuf) && namebuf.append('\0')) { funcName = namebuf.begin(); } SprintfLiteral(buf, "%sKind = %s, index = %d, name = %s:\n", separator, kind, range.funcIndex(), funcName); } else { SprintfLiteral(buf, "%sKind = %s\n", separator, kind); } printString(buf); uint8_t* theCode = segment.base() + range.begin(); jit::Disassemble(theCode, range.end() - range.begin(), printString); } } } void wasm::PatchDebugSymbolicAccesses(uint8_t* codeBase, MacroAssembler& masm) { #ifdef WASM_CODEGEN_DEBUG for (auto& access : masm.symbolicAccesses()) { switch (access.target) { case SymbolicAddress::PrintI32: case SymbolicAddress::PrintPtr: case SymbolicAddress::PrintF32: case SymbolicAddress::PrintF64: case SymbolicAddress::PrintText: break; default: MOZ_CRASH("unexpected symbol in PatchDebugSymbolicAccesses"); } ABIFunctionType abiType; void* target = AddressOf(access.target, &abiType); uint8_t* patchAt = codeBase + access.patchAt.offset(); Assembler::PatchDataWithValueCheck(CodeLocationLabel(patchAt), PatchedImmPtr(target), PatchedImmPtr((void*)-1)); } #else MOZ_ASSERT(masm.symbolicAccesses().empty()); #endif }