/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // Portions of this file were originally under the following license: // // Copyright (C) 2008 Jason Evans . // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice(s), this list of conditions and the following disclaimer // unmodified other than the allowable addition of one or more // copyright notices. // 2. Redistributions in binary form must reproduce the above copyright // notice(s), this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // **************************************************************************** // // C++ template implementation of left-leaning red-black trees. // // All operations are done non-recursively. Parent pointers are not used, and // color bits are stored in the least significant bit of right-child pointers, // thus making node linkage as compact as is possible for red-black trees. // // The RedBlackTree template expects two type arguments: the type of the nodes, // containing a RedBlackTreeNode, and a trait providing two methods: // - a GetTreeNode method that returns a reference to the RedBlackTreeNode // corresponding to a given node with the following signature: // static RedBlackTreeNode& GetTreeNode(T*) // - a Compare function with the following signature: // static Order Compare(T* aNode, T* aOther) // ^^^^^ // or aKey // // Interpretation of comparision function return values: // // Order::eLess: aNode < aOther // Order::eEqual: aNode == aOther // Order::eGreater: aNode > aOther // // In all cases, the aNode or aKey argument is the first argument to the // comparison function, which makes it possible to write comparison functions // that treat the first argument specially. // // *************************************************************************** #ifndef RB_H_ #define RB_H_ #include "mozilla/Alignment.h" #include "mozilla/Assertions.h" #include "Utils.h" enum NodeColor { Black = 0, Red = 1, }; // Node structure. template class RedBlackTreeNode { T* mLeft; // The lowest bit is the color T* mRightAndColor; public: T* Left() { return mLeft; } void SetLeft(T* aValue) { mLeft = aValue; } T* Right() { return reinterpret_cast(reinterpret_cast(mRightAndColor) & uintptr_t(~1)); } void SetRight(T* aValue) { mRightAndColor = reinterpret_cast( (reinterpret_cast(aValue) & uintptr_t(~1)) | Color()); } NodeColor Color() { return static_cast(reinterpret_cast(mRightAndColor) & 1); } bool IsBlack() { return Color() == NodeColor::Black; } bool IsRed() { return Color() == NodeColor::Red; } void SetColor(NodeColor aColor) { mRightAndColor = reinterpret_cast( (reinterpret_cast(mRightAndColor) & uintptr_t(~1)) | aColor); } }; // Tree structure. template class RedBlackTree { public: void Init() { mRoot = nullptr; } T* First(T* aStart = nullptr) { return First(TreeNode(aStart)).Get(); } T* Last(T* aStart = nullptr) { return Last(TreeNode(aStart)).Get(); } T* Next(T* aNode) { return Next(TreeNode(aNode)).Get(); } T* Prev(T* aNode) { return Prev(TreeNode(aNode)).Get(); } T* Search(T* aKey) { return Search(TreeNode(aKey)).Get(); } // Find a match if it exists. Otherwise, find the next greater node, if one // exists. T* SearchOrNext(T* aKey) { return SearchOrNext(TreeNode(aKey)).Get(); } void Insert(T* aNode) { Insert(TreeNode(aNode)); } void Remove(T* aNode) { Remove(TreeNode(aNode)); } // Helper class to avoid having all the tree traversal code further below // have to use Trait::GetTreeNode and do manual null pointer checks, adding // visual noise. Practically speaking TreeNode(nullptr) acts as a virtual // sentinel, that loops back to itself for Left() and Right() and is always // black. class TreeNode { public: constexpr TreeNode() : mNode(nullptr) {} MOZ_IMPLICIT TreeNode(T* aNode) : mNode(aNode) {} TreeNode& operator=(TreeNode aOther) { mNode = aOther.mNode; return *this; } TreeNode Left() { return TreeNode(mNode ? Trait::GetTreeNode(mNode).Left() : nullptr); } void SetLeft(TreeNode aNode) { MOZ_RELEASE_ASSERT(mNode); Trait::GetTreeNode(mNode).SetLeft(aNode.mNode); } TreeNode Right() { return TreeNode(mNode ? Trait::GetTreeNode(mNode).Right() : nullptr); } void SetRight(TreeNode aNode) { MOZ_RELEASE_ASSERT(mNode); Trait::GetTreeNode(mNode).SetRight(aNode.mNode); } NodeColor Color() { return mNode ? Trait::GetTreeNode(mNode).Color() : NodeColor::Black; } bool IsRed() { return Color() == NodeColor::Red; } bool IsBlack() { return Color() == NodeColor::Black; } void SetColor(NodeColor aColor) { MOZ_RELEASE_ASSERT(mNode); Trait::GetTreeNode(mNode).SetColor(aColor); } T* Get() { return mNode; } MOZ_IMPLICIT operator bool() { return !!mNode; } bool operator==(TreeNode& aOther) { return mNode == aOther.mNode; } private: T* mNode; }; private: // Ideally we'd use a TreeNode for mRoot, but we need RedBlackTree to stay // a POD type to avoid a static initializer for gArenas. T* mRoot; TreeNode First(TreeNode aStart) { TreeNode ret; for (ret = aStart ? aStart : mRoot; ret.Left(); ret = ret.Left()) { } return ret; } TreeNode Last(TreeNode aStart) { TreeNode ret; for (ret = aStart ? aStart : mRoot; ret.Right(); ret = ret.Right()) { } return ret; } TreeNode Next(TreeNode aNode) { TreeNode ret; if (aNode.Right()) { ret = First(aNode.Right()); } else { TreeNode rbp_n_t = mRoot; MOZ_ASSERT(rbp_n_t); ret = nullptr; while (true) { Order rbp_n_cmp = Trait::Compare(aNode.Get(), rbp_n_t.Get()); if (rbp_n_cmp == Order::eLess) { ret = rbp_n_t; rbp_n_t = rbp_n_t.Left(); } else if (rbp_n_cmp == Order::eGreater) { rbp_n_t = rbp_n_t.Right(); } else { break; } MOZ_ASSERT(rbp_n_t); } } return ret; } TreeNode Prev(TreeNode aNode) { TreeNode ret; if (aNode.Left()) { ret = Last(aNode.Left()); } else { TreeNode rbp_p_t = mRoot; MOZ_ASSERT(rbp_p_t); ret = nullptr; while (true) { Order rbp_p_cmp = Trait::Compare(aNode.Get(), rbp_p_t.Get()); if (rbp_p_cmp == Order::eLess) { rbp_p_t = rbp_p_t.Left(); } else if (rbp_p_cmp == Order::eGreater) { ret = rbp_p_t; rbp_p_t = rbp_p_t.Right(); } else { break; } MOZ_ASSERT(rbp_p_t); } } return ret; } TreeNode Search(TreeNode aKey) { TreeNode ret = mRoot; Order rbp_se_cmp; while (ret && (rbp_se_cmp = Trait::Compare(aKey.Get(), ret.Get())) != Order::eEqual) { if (rbp_se_cmp == Order::eLess) { ret = ret.Left(); } else { ret = ret.Right(); } } return ret; } TreeNode SearchOrNext(TreeNode aKey) { TreeNode ret = nullptr; TreeNode rbp_ns_t = mRoot; while (rbp_ns_t) { Order rbp_ns_cmp = Trait::Compare(aKey.Get(), rbp_ns_t.Get()); if (rbp_ns_cmp == Order::eLess) { ret = rbp_ns_t; rbp_ns_t = rbp_ns_t.Left(); } else if (rbp_ns_cmp == Order::eGreater) { rbp_ns_t = rbp_ns_t.Right(); } else { ret = rbp_ns_t; break; } } return ret; } void Insert(TreeNode aNode) { // rbp_i_s is only used as a placeholder for its RedBlackTreeNode. Use // AlignedStorage2 to avoid running the TreeNode base class constructor. mozilla::AlignedStorage2 rbp_i_s; TreeNode rbp_i_g, rbp_i_p, rbp_i_c, rbp_i_t, rbp_i_u; Order rbp_i_cmp = Order::eEqual; rbp_i_g = nullptr; rbp_i_p = rbp_i_s.addr(); rbp_i_p.SetLeft(mRoot); rbp_i_p.SetRight(nullptr); rbp_i_p.SetColor(NodeColor::Black); rbp_i_c = mRoot; // Iteratively search down the tree for the insertion point, // splitting 4-nodes as they are encountered. At the end of each // iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down // the tree, assuming a sufficiently deep tree. while (rbp_i_c) { rbp_i_t = rbp_i_c.Left(); rbp_i_u = rbp_i_t.Left(); if (rbp_i_t.IsRed() && rbp_i_u.IsRed()) { // rbp_i_c is the top of a logical 4-node, so split it. // This iteration does not move down the tree, due to the // disruptiveness of node splitting. // // Rotate right. rbp_i_t = RotateRight(rbp_i_c); // Pass red links up one level. rbp_i_u = rbp_i_t.Left(); rbp_i_u.SetColor(NodeColor::Black); if (rbp_i_p.Left() == rbp_i_c) { rbp_i_p.SetLeft(rbp_i_t); rbp_i_c = rbp_i_t; } else { // rbp_i_c was the right child of rbp_i_p, so rotate // left in order to maintain the left-leaning invariant. MOZ_ASSERT(rbp_i_p.Right() == rbp_i_c); rbp_i_p.SetRight(rbp_i_t); rbp_i_u = LeanLeft(rbp_i_p); if (rbp_i_g.Left() == rbp_i_p) { rbp_i_g.SetLeft(rbp_i_u); } else { MOZ_ASSERT(rbp_i_g.Right() == rbp_i_p); rbp_i_g.SetRight(rbp_i_u); } rbp_i_p = rbp_i_u; rbp_i_cmp = Trait::Compare(aNode.Get(), rbp_i_p.Get()); if (rbp_i_cmp == Order::eLess) { rbp_i_c = rbp_i_p.Left(); } else { MOZ_ASSERT(rbp_i_cmp == Order::eGreater); rbp_i_c = rbp_i_p.Right(); } continue; } } rbp_i_g = rbp_i_p; rbp_i_p = rbp_i_c; rbp_i_cmp = Trait::Compare(aNode.Get(), rbp_i_c.Get()); if (rbp_i_cmp == Order::eLess) { rbp_i_c = rbp_i_c.Left(); } else { MOZ_ASSERT(rbp_i_cmp == Order::eGreater); rbp_i_c = rbp_i_c.Right(); } } // rbp_i_p now refers to the node under which to insert. aNode.SetLeft(nullptr); aNode.SetRight(nullptr); aNode.SetColor(NodeColor::Red); if (rbp_i_cmp == Order::eGreater) { rbp_i_p.SetRight(aNode); rbp_i_t = LeanLeft(rbp_i_p); if (rbp_i_g.Left() == rbp_i_p) { rbp_i_g.SetLeft(rbp_i_t); } else if (rbp_i_g.Right() == rbp_i_p) { rbp_i_g.SetRight(rbp_i_t); } } else { rbp_i_p.SetLeft(aNode); } // Update the root and make sure that it is black. TreeNode root = TreeNode(rbp_i_s.addr()).Left(); root.SetColor(NodeColor::Black); mRoot = root.Get(); } void Remove(TreeNode aNode) { // rbp_r_s is only used as a placeholder for its RedBlackTreeNode. Use // AlignedStorage2 to avoid running the TreeNode base class constructor. mozilla::AlignedStorage2 rbp_r_s; TreeNode rbp_r_p, rbp_r_c, rbp_r_xp, rbp_r_t, rbp_r_u; Order rbp_r_cmp; rbp_r_p = TreeNode(rbp_r_s.addr()); rbp_r_p.SetLeft(mRoot); rbp_r_p.SetRight(nullptr); rbp_r_p.SetColor(NodeColor::Black); rbp_r_c = mRoot; rbp_r_xp = nullptr; // Iterate down the tree, but always transform 2-nodes to 3- or // 4-nodes in order to maintain the invariant that the current // node is not a 2-node. This allows simple deletion once a leaf // is reached. Handle the root specially though, since there may // be no way to convert it from a 2-node to a 3-node. rbp_r_cmp = Trait::Compare(aNode.Get(), rbp_r_c.Get()); if (rbp_r_cmp == Order::eLess) { rbp_r_t = rbp_r_c.Left(); rbp_r_u = rbp_r_t.Left(); if (rbp_r_t.IsBlack() && rbp_r_u.IsBlack()) { // Apply standard transform to prepare for left move. rbp_r_t = MoveRedLeft(rbp_r_c); rbp_r_t.SetColor(NodeColor::Black); rbp_r_p.SetLeft(rbp_r_t); rbp_r_c = rbp_r_t; } else { // Move left. rbp_r_p = rbp_r_c; rbp_r_c = rbp_r_c.Left(); } } else { if (rbp_r_cmp == Order::eEqual) { MOZ_ASSERT(aNode == rbp_r_c); if (!rbp_r_c.Right()) { // Delete root node (which is also a leaf node). if (rbp_r_c.Left()) { rbp_r_t = LeanRight(rbp_r_c); rbp_r_t.SetRight(nullptr); } else { rbp_r_t = nullptr; } rbp_r_p.SetLeft(rbp_r_t); } else { // This is the node we want to delete, but we will // instead swap it with its successor and delete the // successor. Record enough information to do the // swap later. rbp_r_xp is the aNode's parent. rbp_r_xp = rbp_r_p; rbp_r_cmp = Order::eGreater; // Note that deletion is incomplete. } } if (rbp_r_cmp == Order::eGreater) { if (rbp_r_c.Right().Left().IsBlack()) { rbp_r_t = rbp_r_c.Left(); if (rbp_r_t.IsRed()) { // Standard transform. rbp_r_t = MoveRedRight(rbp_r_c); } else { // Root-specific transform. rbp_r_c.SetColor(NodeColor::Red); rbp_r_u = rbp_r_t.Left(); if (rbp_r_u.IsRed()) { rbp_r_u.SetColor(NodeColor::Black); rbp_r_t = RotateRight(rbp_r_c); rbp_r_u = RotateLeft(rbp_r_c); rbp_r_t.SetRight(rbp_r_u); } else { rbp_r_t.SetColor(NodeColor::Red); rbp_r_t = RotateLeft(rbp_r_c); } } rbp_r_p.SetLeft(rbp_r_t); rbp_r_c = rbp_r_t; } else { // Move right. rbp_r_p = rbp_r_c; rbp_r_c = rbp_r_c.Right(); } } } if (rbp_r_cmp != Order::eEqual) { while (true) { MOZ_ASSERT(rbp_r_p); rbp_r_cmp = Trait::Compare(aNode.Get(), rbp_r_c.Get()); if (rbp_r_cmp == Order::eLess) { rbp_r_t = rbp_r_c.Left(); if (!rbp_r_t) { // rbp_r_c now refers to the successor node to // relocate, and rbp_r_xp/aNode refer to the // context for the relocation. if (rbp_r_xp.Left() == aNode) { rbp_r_xp.SetLeft(rbp_r_c); } else { MOZ_ASSERT(rbp_r_xp.Right() == (aNode)); rbp_r_xp.SetRight(rbp_r_c); } rbp_r_c.SetLeft(aNode.Left()); rbp_r_c.SetRight(aNode.Right()); rbp_r_c.SetColor(aNode.Color()); if (rbp_r_p.Left() == rbp_r_c) { rbp_r_p.SetLeft(nullptr); } else { MOZ_ASSERT(rbp_r_p.Right() == rbp_r_c); rbp_r_p.SetRight(nullptr); } break; } rbp_r_u = rbp_r_t.Left(); if (rbp_r_t.IsBlack() && rbp_r_u.IsBlack()) { rbp_r_t = MoveRedLeft(rbp_r_c); if (rbp_r_p.Left() == rbp_r_c) { rbp_r_p.SetLeft(rbp_r_t); } else { rbp_r_p.SetRight(rbp_r_t); } rbp_r_c = rbp_r_t; } else { rbp_r_p = rbp_r_c; rbp_r_c = rbp_r_c.Left(); } } else { // Check whether to delete this node (it has to be // the correct node and a leaf node). if (rbp_r_cmp == Order::eEqual) { MOZ_ASSERT(aNode == rbp_r_c); if (!rbp_r_c.Right()) { // Delete leaf node. if (rbp_r_c.Left()) { rbp_r_t = LeanRight(rbp_r_c); rbp_r_t.SetRight(nullptr); } else { rbp_r_t = nullptr; } if (rbp_r_p.Left() == rbp_r_c) { rbp_r_p.SetLeft(rbp_r_t); } else { rbp_r_p.SetRight(rbp_r_t); } break; } // This is the node we want to delete, but we // will instead swap it with its successor // and delete the successor. Record enough // information to do the swap later. // rbp_r_xp is aNode's parent. rbp_r_xp = rbp_r_p; } rbp_r_t = rbp_r_c.Right(); rbp_r_u = rbp_r_t.Left(); if (rbp_r_u.IsBlack()) { rbp_r_t = MoveRedRight(rbp_r_c); if (rbp_r_p.Left() == rbp_r_c) { rbp_r_p.SetLeft(rbp_r_t); } else { rbp_r_p.SetRight(rbp_r_t); } rbp_r_c = rbp_r_t; } else { rbp_r_p = rbp_r_c; rbp_r_c = rbp_r_c.Right(); } } } } // Update root. mRoot = TreeNode(rbp_r_s.addr()).Left().Get(); aNode.SetLeft(nullptr); aNode.SetRight(nullptr); aNode.SetColor(NodeColor::Black); } TreeNode RotateLeft(TreeNode aNode) { TreeNode node = aNode.Right(); aNode.SetRight(node.Left()); node.SetLeft(aNode); return node; } TreeNode RotateRight(TreeNode aNode) { TreeNode node = aNode.Left(); aNode.SetLeft(node.Right()); node.SetRight(aNode); return node; } TreeNode LeanLeft(TreeNode aNode) { TreeNode node = RotateLeft(aNode); NodeColor color = aNode.Color(); node.SetColor(color); aNode.SetColor(NodeColor::Red); return node; } TreeNode LeanRight(TreeNode aNode) { TreeNode node = RotateRight(aNode); NodeColor color = aNode.Color(); node.SetColor(color); aNode.SetColor(NodeColor::Red); return node; } TreeNode MoveRedLeft(TreeNode aNode) { TreeNode node; TreeNode rbp_mrl_t, rbp_mrl_u; rbp_mrl_t = aNode.Left(); rbp_mrl_t.SetColor(NodeColor::Red); rbp_mrl_t = aNode.Right(); rbp_mrl_u = rbp_mrl_t.Left(); if (rbp_mrl_u.IsRed()) { rbp_mrl_u = RotateRight(rbp_mrl_t); aNode.SetRight(rbp_mrl_u); node = RotateLeft(aNode); rbp_mrl_t = aNode.Right(); if (rbp_mrl_t.IsRed()) { rbp_mrl_t.SetColor(NodeColor::Black); aNode.SetColor(NodeColor::Red); rbp_mrl_t = RotateLeft(aNode); node.SetLeft(rbp_mrl_t); } else { aNode.SetColor(NodeColor::Black); } } else { aNode.SetColor(NodeColor::Red); node = RotateLeft(aNode); } return node; } TreeNode MoveRedRight(TreeNode aNode) { TreeNode node; TreeNode rbp_mrr_t; rbp_mrr_t = aNode.Left(); if (rbp_mrr_t.IsRed()) { TreeNode rbp_mrr_u, rbp_mrr_v; rbp_mrr_u = rbp_mrr_t.Right(); rbp_mrr_v = rbp_mrr_u.Left(); if (rbp_mrr_v.IsRed()) { rbp_mrr_u.SetColor(aNode.Color()); rbp_mrr_v.SetColor(NodeColor::Black); rbp_mrr_u = RotateLeft(rbp_mrr_t); aNode.SetLeft(rbp_mrr_u); node = RotateRight(aNode); rbp_mrr_t = RotateLeft(aNode); node.SetRight(rbp_mrr_t); } else { rbp_mrr_t.SetColor(aNode.Color()); rbp_mrr_u.SetColor(NodeColor::Red); node = RotateRight(aNode); rbp_mrr_t = RotateLeft(aNode); node.SetRight(rbp_mrr_t); } aNode.SetColor(NodeColor::Red); } else { rbp_mrr_t.SetColor(NodeColor::Red); rbp_mrr_t = rbp_mrr_t.Left(); if (rbp_mrr_t.IsRed()) { rbp_mrr_t.SetColor(NodeColor::Black); node = RotateRight(aNode); rbp_mrr_t = RotateLeft(aNode); node.SetRight(rbp_mrr_t); } else { node = RotateLeft(aNode); } } return node; } // The iterator simulates recursion via an array of pointers that store the // current path. This is critical to performance, since a series of calls to // rb_{next,prev}() would require time proportional to (n lg n), whereas this // implementation only requires time proportional to (n). // // Since the iterator caches a path down the tree, any tree modification may // cause the cached path to become invalid. Don't modify the tree during an // iteration. // Size the path arrays such that they are always large enough, even if a // tree consumes all of memory. Since each node must contain a minimum of // two pointers, there can never be more nodes than: // // 1 << ((sizeof(void*)<<3) - (log2(sizeof(void*))+1)) // // Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth // is: // // (3 * ((sizeof(void*)<<3) - (log2(sizeof(void*))+1))) // // This works out to a maximum depth of 87 and 180 for 32- and 64-bit // systems, respectively (approximately 348 and 1440 bytes, respectively). public: class Iterator { TreeNode mPath[3 * ((sizeof(void*) << 3) - (LOG2(sizeof(void*)) + 1))]; unsigned mDepth; public: explicit Iterator(RedBlackTree* aTree) : mDepth(0) { // Initialize the path to contain the left spine. if (aTree->mRoot) { TreeNode node; mPath[mDepth++] = aTree->mRoot; while ((node = mPath[mDepth - 1].Left())) { mPath[mDepth++] = node; } } } template class Item { Iterator* mIterator; T* mItem; public: Item(Iterator* aIterator, T* aItem) : mIterator(aIterator), mItem(aItem) {} bool operator!=(const Item& aOther) const { return (mIterator != aOther.mIterator) || (mItem != aOther.mItem); } T* operator*() const { return mItem; } const Item& operator++() { mItem = mIterator->Next(); return *this; } }; Item begin() { return Item(this, mDepth > 0 ? mPath[mDepth - 1].Get() : nullptr); } Item end() { return Item(this, nullptr); } T* Next() { TreeNode node; if ((node = mPath[mDepth - 1].Right())) { // The successor is the left-most node in the right subtree. mPath[mDepth++] = node; while ((node = mPath[mDepth - 1].Left())) { mPath[mDepth++] = node; } } else { // The successor is above the current node. Unwind until a // left-leaning edge is removed from the path, of the path is empty. for (mDepth--; mDepth > 0; mDepth--) { if (mPath[mDepth - 1].Left() == mPath[mDepth]) { break; } } } return mDepth > 0 ? mPath[mDepth - 1].Get() : nullptr; } }; Iterator iter() { return Iterator(this); } }; #endif // RB_H_