/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * prtime.c -- * * NSPR date and time functions * */ #include "prinit.h" #include "prtime.h" #include "prlock.h" #include "prprf.h" #include "prlog.h" #include #include #include /* for EINVAL */ #include /* * The COUNT_LEAPS macro counts the number of leap years passed by * till the start of the given year Y. At the start of the year 4 * A.D. the number of leap years passed by is 0, while at the start of * the year 5 A.D. this count is 1. The number of years divisible by * 100 but not divisible by 400 (the non-leap years) is deducted from * the count to get the correct number of leap years. * * The COUNT_DAYS macro counts the number of days since 01/01/01 till the * start of the given year Y. The number of days at the start of the year * 1 is 0 while the number of days at the start of the year 2 is 365 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 * midnight 00:00:00. */ #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) /* * Static variables used by functions in this file */ /* * The following array contains the day of year for the last day of * each month, where index 1 is January, and day 0 is January 1. */ static const int lastDayOfMonth[2][13] = { {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} }; /* * The number of days in a month */ static const PRInt8 nDays[2][12] = { {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} }; /* * Declarations for internal functions defined later in this file. */ static void ComputeGMT(PRTime time, PRExplodedTime *gmt); static int IsLeapYear(PRInt16 year); static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset); /* *------------------------------------------------------------------------ * * ComputeGMT -- * * Caveats: * - we ignore leap seconds * *------------------------------------------------------------------------ */ static void ComputeGMT(PRTime time, PRExplodedTime *gmt) { PRInt32 tmp, rem; PRInt32 numDays; PRInt64 numDays64, rem64; int isLeap; PRInt64 sec; PRInt64 usec; PRInt64 usecPerSec; PRInt64 secPerDay; /* * We first do the usec, sec, min, hour thing so that we do not * have to do LL arithmetic. */ LL_I2L(usecPerSec, 1000000L); LL_DIV(sec, time, usecPerSec); LL_MOD(usec, time, usecPerSec); LL_L2I(gmt->tm_usec, usec); /* Correct for weird mod semantics so the remainder is always positive */ if (gmt->tm_usec < 0) { PRInt64 one; LL_I2L(one, 1L); LL_SUB(sec, sec, one); gmt->tm_usec += 1000000L; } LL_I2L(secPerDay, 86400L); LL_DIV(numDays64, sec, secPerDay); LL_MOD(rem64, sec, secPerDay); /* We are sure both of these numbers can fit into PRInt32 */ LL_L2I(numDays, numDays64); LL_L2I(rem, rem64); if (rem < 0) { numDays--; rem += 86400L; } /* Compute day of week. Epoch started on a Thursday. */ gmt->tm_wday = (numDays + 4) % 7; if (gmt->tm_wday < 0) { gmt->tm_wday += 7; } /* Compute the time of day. */ gmt->tm_hour = rem / 3600; rem %= 3600; gmt->tm_min = rem / 60; gmt->tm_sec = rem % 60; /* * Compute the year by finding the 400 year period, then working * down from there. * * Since numDays is originally the number of days since January 1, 1970, * we must change it to be the number of days from January 1, 0001. */ numDays += 719162; /* 719162 = days from year 1 up to 1970 */ tmp = numDays / 146097; /* 146097 = days in 400 years */ rem = numDays % 146097; gmt->tm_year = tmp * 400 + 1; /* Compute the 100 year period. */ tmp = rem / 36524; /* 36524 = days in 100 years */ rem %= 36524; if (tmp == 4) { /* the 400th year is a leap year */ tmp = 3; rem = 36524; } gmt->tm_year += tmp * 100; /* Compute the 4 year period. */ tmp = rem / 1461; /* 1461 = days in 4 years */ rem %= 1461; gmt->tm_year += tmp * 4; /* Compute which year in the 4. */ tmp = rem / 365; rem %= 365; if (tmp == 4) { /* the 4th year is a leap year */ tmp = 3; rem = 365; } gmt->tm_year += tmp; gmt->tm_yday = rem; isLeap = IsLeapYear(gmt->tm_year); /* Compute the month and day of month. */ for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) { } gmt->tm_month = --tmp; gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp]; gmt->tm_params.tp_gmt_offset = 0; gmt->tm_params.tp_dst_offset = 0; } /* *------------------------------------------------------------------------ * * PR_ExplodeTime -- * * Cf. struct tm *gmtime(const time_t *tp) and * struct tm *localtime(const time_t *tp) * *------------------------------------------------------------------------ */ PR_IMPLEMENT(void) PR_ExplodeTime( PRTime usecs, PRTimeParamFn params, PRExplodedTime *exploded) { ComputeGMT(usecs, exploded); exploded->tm_params = params(exploded); ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset + exploded->tm_params.tp_dst_offset); } /* *------------------------------------------------------------------------ * * PR_ImplodeTime -- * * Cf. time_t mktime(struct tm *tp) * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. * *------------------------------------------------------------------------ */ PR_IMPLEMENT(PRTime) PR_ImplodeTime(const PRExplodedTime *exploded) { PRExplodedTime copy; PRTime retVal; PRInt64 secPerDay, usecPerSec; PRInt64 temp; PRInt64 numSecs64; PRInt32 numDays; PRInt32 numSecs; /* Normalize first. Do this on our copy */ copy = *exploded; PR_NormalizeTime(©, PR_GMTParameters); numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year); numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 + copy.tm_sec; LL_I2L(temp, numDays); LL_I2L(secPerDay, 86400); LL_MUL(temp, temp, secPerDay); LL_I2L(numSecs64, numSecs); LL_ADD(numSecs64, numSecs64, temp); /* apply the GMT and DST offsets */ LL_I2L(temp, copy.tm_params.tp_gmt_offset); LL_SUB(numSecs64, numSecs64, temp); LL_I2L(temp, copy.tm_params.tp_dst_offset); LL_SUB(numSecs64, numSecs64, temp); LL_I2L(usecPerSec, 1000000L); LL_MUL(temp, numSecs64, usecPerSec); LL_I2L(retVal, copy.tm_usec); LL_ADD(retVal, retVal, temp); return retVal; } /* *------------------------------------------------------------------------- * * IsLeapYear -- * * Returns 1 if the year is a leap year, 0 otherwise. * *------------------------------------------------------------------------- */ static int IsLeapYear(PRInt16 year) { if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) { return 1; } return 0; } /* * 'secOffset' should be less than 86400 (i.e., a day). * 'time' should point to a normalized PRExplodedTime. */ static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) { time->tm_sec += secOffset; /* Note that in this implementation we do not count leap seconds */ if (time->tm_sec < 0 || time->tm_sec >= 60) { time->tm_min += time->tm_sec / 60; time->tm_sec %= 60; if (time->tm_sec < 0) { time->tm_sec += 60; time->tm_min--; } } if (time->tm_min < 0 || time->tm_min >= 60) { time->tm_hour += time->tm_min / 60; time->tm_min %= 60; if (time->tm_min < 0) { time->tm_min += 60; time->tm_hour--; } } if (time->tm_hour < 0) { /* Decrement mday, yday, and wday */ time->tm_hour += 24; time->tm_mday--; time->tm_yday--; if (time->tm_mday < 1) { time->tm_month--; if (time->tm_month < 0) { time->tm_month = 11; time->tm_year--; if (IsLeapYear(time->tm_year)) { time->tm_yday = 365; } else { time->tm_yday = 364; } } time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; } time->tm_wday--; if (time->tm_wday < 0) { time->tm_wday = 6; } } else if (time->tm_hour > 23) { /* Increment mday, yday, and wday */ time->tm_hour -= 24; time->tm_mday++; time->tm_yday++; if (time->tm_mday > nDays[IsLeapYear(time->tm_year)][time->tm_month]) { time->tm_mday = 1; time->tm_month++; if (time->tm_month > 11) { time->tm_month = 0; time->tm_year++; time->tm_yday = 0; } } time->tm_wday++; if (time->tm_wday > 6) { time->tm_wday = 0; } } } PR_IMPLEMENT(void) PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) { int daysInMonth; PRInt32 numDays; /* Get back to GMT */ time->tm_sec -= time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset; time->tm_params.tp_gmt_offset = 0; time->tm_params.tp_dst_offset = 0; /* Now normalize GMT */ if (time->tm_usec < 0 || time->tm_usec >= 1000000) { time->tm_sec += time->tm_usec / 1000000; time->tm_usec %= 1000000; if (time->tm_usec < 0) { time->tm_usec += 1000000; time->tm_sec--; } } /* Note that we do not count leap seconds in this implementation */ if (time->tm_sec < 0 || time->tm_sec >= 60) { time->tm_min += time->tm_sec / 60; time->tm_sec %= 60; if (time->tm_sec < 0) { time->tm_sec += 60; time->tm_min--; } } if (time->tm_min < 0 || time->tm_min >= 60) { time->tm_hour += time->tm_min / 60; time->tm_min %= 60; if (time->tm_min < 0) { time->tm_min += 60; time->tm_hour--; } } if (time->tm_hour < 0 || time->tm_hour >= 24) { time->tm_mday += time->tm_hour / 24; time->tm_hour %= 24; if (time->tm_hour < 0) { time->tm_hour += 24; time->tm_mday--; } } /* Normalize month and year before mday */ if (time->tm_month < 0 || time->tm_month >= 12) { time->tm_year += time->tm_month / 12; time->tm_month %= 12; if (time->tm_month < 0) { time->tm_month += 12; time->tm_year--; } } /* Now that month and year are in proper range, normalize mday */ if (time->tm_mday < 1) { /* mday too small */ do { /* the previous month */ time->tm_month--; if (time->tm_month < 0) { time->tm_month = 11; time->tm_year--; } time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; } while (time->tm_mday < 1); } else { daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; while (time->tm_mday > daysInMonth) { /* mday too large */ time->tm_mday -= daysInMonth; time->tm_month++; if (time->tm_month > 11) { time->tm_month = 0; time->tm_year++; } daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; } } /* Recompute yday and wday */ time->tm_yday = time->tm_mday + lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; time->tm_wday = (numDays + 4) % 7; if (time->tm_wday < 0) { time->tm_wday += 7; } /* Recompute time parameters */ time->tm_params = params(time); ApplySecOffset(time, time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset); } /* *------------------------------------------------------------------------- * * PR_LocalTimeParameters -- * * returns the time parameters for the local time zone * * The following uses localtime() from the standard C library. * (time.h) This is our fallback implementation. Unix, PC, and BeOS * use this version. A platform may have its own machine-dependent * implementation of this function. * *------------------------------------------------------------------------- */ #if defined(HAVE_INT_LOCALTIME_R) /* * In this case we could define the macro as * #define MT_safe_localtime(timer, result) \ * (localtime_r(timer, result) == 0 ? result : NULL) * I chose to compare the return value of localtime_r with -1 so * that I can catch the cases where localtime_r returns a pointer * to struct tm. The macro definition above would not be able to * detect such mistakes because it is legal to compare a pointer * with 0. */ #define MT_safe_localtime(timer, result) \ (localtime_r(timer, result) == -1 ? NULL: result) #elif defined(HAVE_POINTER_LOCALTIME_R) #define MT_safe_localtime localtime_r #elif defined(_MSC_VER) /* Visual C++ has had localtime_s() since Visual C++ 2005. */ static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) { errno_t err = localtime_s(result, clock); if (err != 0) { errno = err; return NULL; } return result; } #else #define HAVE_LOCALTIME_MONITOR 1 /* We use 'monitor' to serialize our calls * to localtime(). */ static PRLock *monitor = NULL; static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) { struct tm *tmPtr; int needLock = PR_Initialized(); /* We need to use a lock to protect * against NSPR threads only when the * NSPR thread system is activated. */ if (needLock) { PR_Lock(monitor); } /* * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock' * represents a time before midnight January 1, 1970. In * that case, we also return a NULL pointer and the struct tm * object pointed to by 'result' is not modified. * * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long * hence, does not recognize negative values of clock as pre-1/1/70. * We have to manually check (WIN16 only) for negative value of * clock and return NULL. * * With negative values of clock, OS/2 returns the struct tm for * clock plus ULONG_MAX. So we also have to check for the invalid * structs returned for timezones west of Greenwich when clock == 0. */ tmPtr = localtime(clock); #if defined(WIN16) || defined(XP_OS2) if ( (PRInt32) *clock < 0 || ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70)) { result = NULL; } else { *result = *tmPtr; } #else if (tmPtr) { *result = *tmPtr; } else { result = NULL; } #endif /* WIN16 */ if (needLock) { PR_Unlock(monitor); } return result; } #endif /* definition of MT_safe_localtime() */ void _PR_InitTime(void) { #ifdef HAVE_LOCALTIME_MONITOR monitor = PR_NewLock(); #endif #ifdef WINCE _MD_InitTime(); #endif } void _PR_CleanupTime(void) { #ifdef HAVE_LOCALTIME_MONITOR if (monitor) { PR_DestroyLock(monitor); monitor = NULL; } #endif #ifdef WINCE _MD_CleanupTime(); #endif } #if defined(XP_UNIX) || defined(XP_PC) PR_IMPLEMENT(PRTimeParameters) PR_LocalTimeParameters(const PRExplodedTime *gmt) { PRTimeParameters retVal; struct tm localTime; struct tm *localTimeResult; time_t secs; PRTime secs64; PRInt64 usecPerSec; PRInt64 usecPerSec_1; PRInt64 maxInt32; PRInt64 minInt32; PRInt32 dayOffset; PRInt32 offset2Jan1970; PRInt32 offsetNew; int isdst2Jan1970; /* * Calculate the GMT offset. First, figure out what is * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400 * seconds, since the epoch) in local time. Then we calculate * the difference between local time and GMT in seconds: * gmt_offset = local_time - GMT * * Caveat: the validity of this calculation depends on two * assumptions: * 1. Daylight saving time was not in effect on Jan. 2, 1970. * 2. The time zone of the geographic location has not changed * since Jan. 2, 1970. */ secs = 86400L; localTimeResult = MT_safe_localtime(&secs, &localTime); PR_ASSERT(localTimeResult != NULL); if (localTimeResult == NULL) { /* Shouldn't happen. Use safe fallback for optimized builds. */ return PR_GMTParameters(gmt); } /* GMT is 00:00:00, 2nd of Jan. */ offset2Jan1970 = (PRInt32)localTime.tm_sec + 60L * (PRInt32)localTime.tm_min + 3600L * (PRInt32)localTime.tm_hour + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L); isdst2Jan1970 = localTime.tm_isdst; /* * Now compute DST offset. We calculate the overall offset * of local time from GMT, similar to above. The overall * offset has two components: gmt offset and dst offset. * We subtract gmt offset from the overall offset to get * the dst offset. * overall_offset = local_time - GMT * overall_offset = gmt_offset + dst_offset * ==> dst_offset = local_time - GMT - gmt_offset */ secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */ LL_I2L(usecPerSec, PR_USEC_PER_SEC); LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1); /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */ if (LL_GE_ZERO(secs64)) { LL_DIV(secs64, secs64, usecPerSec); } else { LL_NEG(secs64, secs64); LL_ADD(secs64, secs64, usecPerSec_1); LL_DIV(secs64, secs64, usecPerSec); LL_NEG(secs64, secs64); } LL_I2L(maxInt32, PR_INT32_MAX); LL_I2L(minInt32, PR_INT32_MIN); if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) { /* secs64 is too large or too small for time_t (32-bit integer) */ retVal.tp_gmt_offset = offset2Jan1970; retVal.tp_dst_offset = 0; return retVal; } LL_L2I(secs, secs64); /* * On Windows, localtime() (and our MT_safe_localtime() too) * returns a NULL pointer for time before midnight January 1, * 1970 GMT. In that case, we just use the GMT offset for * Jan 2, 1970 and assume that DST was not in effect. */ if (MT_safe_localtime(&secs, &localTime) == NULL) { retVal.tp_gmt_offset = offset2Jan1970; retVal.tp_dst_offset = 0; return retVal; } /* * dayOffset is the offset between local time and GMT in * the day component, which can only be -1, 0, or 1. We * use the day of the week to compute dayOffset. */ dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday; /* * Need to adjust for wrapping around of day of the week from * 6 back to 0. */ if (dayOffset == -6) { /* Local time is Sunday (0) and GMT is Saturday (6) */ dayOffset = 1; } else if (dayOffset == 6) { /* Local time is Saturday (6) and GMT is Sunday (0) */ dayOffset = -1; } offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min) + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) + 86400L * (PRInt32)dayOffset; if (localTime.tm_isdst <= 0) { /* DST is not in effect */ retVal.tp_gmt_offset = offsetNew; retVal.tp_dst_offset = 0; } else { /* DST is in effect */ if (isdst2Jan1970 <=0) { /* * DST was not in effect back in 2 Jan. 1970. * Use the offset back then as the GMT offset, * assuming the time zone has not changed since then. */ retVal.tp_gmt_offset = offset2Jan1970; retVal.tp_dst_offset = offsetNew - offset2Jan1970; } else { /* * DST was also in effect back in 2 Jan. 1970. * Then our clever trick (or rather, ugly hack) fails. * We will just assume DST offset is an hour. */ retVal.tp_gmt_offset = offsetNew - 3600; retVal.tp_dst_offset = 3600; } } return retVal; } #endif /* defined(XP_UNIX) || defined(XP_PC) */ /* *------------------------------------------------------------------------ * * PR_USPacificTimeParameters -- * * The time parameters function for the US Pacific Time Zone. * *------------------------------------------------------------------------ */ /* * Returns the mday of the first sunday of the month, where * mday and wday are for a given day in the month. * mdays start with 1 (e.g. 1..31). * wdays start with 0 and are in the range 0..6. 0 = Sunday. */ #define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1) /* * Returns the mday for the N'th Sunday of the month, where * mday and wday are for a given day in the month. * mdays start with 1 (e.g. 1..31). * wdays start with 0 and are in the range 0..6. 0 = Sunday. * N has the following values: 0 = first, 1 = second (etc), -1 = last. * ndays is the number of days in that month, the same value as the * mday of the last day of the month. */ static PRInt32 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) { PRInt32 firstSun = firstSunday(mday, wday); if (N < 0) { N = (ndays - firstSun) / 7; } return firstSun + (7 * N); } typedef struct DSTParams { PRInt8 dst_start_month; /* 0 = January */ PRInt8 dst_start_Nth_Sunday; /* N as defined above */ PRInt8 dst_start_month_ndays; /* ndays as defined above */ PRInt8 dst_end_month; /* 0 = January */ PRInt8 dst_end_Nth_Sunday; /* N as defined above */ PRInt8 dst_end_month_ndays; /* ndays as defined above */ } DSTParams; static const DSTParams dstParams[2] = { /* year < 2007: First April Sunday - Last October Sunday */ { 3, 0, 30, 9, -1, 31 }, /* year >= 2007: Second March Sunday - First November Sunday */ { 2, 1, 31, 10, 0, 30 } }; PR_IMPLEMENT(PRTimeParameters) PR_USPacificTimeParameters(const PRExplodedTime *gmt) { const DSTParams *dst; PRTimeParameters retVal; PRExplodedTime st; /* * Based on geographic location and GMT, figure out offset of * standard time from GMT. In this example implementation, we * assume the local time zone is US Pacific Time. */ retVal.tp_gmt_offset = -8L * 3600L; /* * Make a copy of GMT. Note that the tm_params field of this copy * is ignored. */ st.tm_usec = gmt->tm_usec; st.tm_sec = gmt->tm_sec; st.tm_min = gmt->tm_min; st.tm_hour = gmt->tm_hour; st.tm_mday = gmt->tm_mday; st.tm_month = gmt->tm_month; st.tm_year = gmt->tm_year; st.tm_wday = gmt->tm_wday; st.tm_yday = gmt->tm_yday; /* Apply the offset to GMT to obtain the local standard time */ ApplySecOffset(&st, retVal.tp_gmt_offset); if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */ dst = &dstParams[0]; } else { /* Second March Sunday - First November Sunday */ dst = &dstParams[1]; } /* * Apply the rules on standard time or GMT to obtain daylight saving * time offset. In this implementation, we use the US DST rule. */ if (st.tm_month < dst->dst_start_month) { retVal.tp_dst_offset = 0L; } else if (st.tm_month == dst->dst_start_month) { int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_start_Nth_Sunday, dst->dst_start_month_ndays); if (st.tm_mday < NthSun) { /* Before starting Sunday */ retVal.tp_dst_offset = 0L; } else if (st.tm_mday == NthSun) { /* Starting Sunday */ /* 01:59:59 PST -> 03:00:00 PDT */ if (st.tm_hour < 2) { retVal.tp_dst_offset = 0L; } else { retVal.tp_dst_offset = 3600L; } } else { /* After starting Sunday */ retVal.tp_dst_offset = 3600L; } } else if (st.tm_month < dst->dst_end_month) { retVal.tp_dst_offset = 3600L; } else if (st.tm_month == dst->dst_end_month) { int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_end_Nth_Sunday, dst->dst_end_month_ndays); if (st.tm_mday < NthSun) { /* Before ending Sunday */ retVal.tp_dst_offset = 3600L; } else if (st.tm_mday == NthSun) { /* Ending Sunday */ /* 01:59:59 PDT -> 01:00:00 PST */ if (st.tm_hour < 1) { retVal.tp_dst_offset = 3600L; } else { retVal.tp_dst_offset = 0L; } } else { /* After ending Sunday */ retVal.tp_dst_offset = 0L; } } else { retVal.tp_dst_offset = 0L; } return retVal; } /* *------------------------------------------------------------------------ * * PR_GMTParameters -- * * Returns the PRTimeParameters for Greenwich Mean Time. * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. * *------------------------------------------------------------------------ */ PR_IMPLEMENT(PRTimeParameters) PR_GMTParameters(const PRExplodedTime *gmt) { PRTimeParameters retVal = { 0, 0 }; return retVal; } /* * The following code implements PR_ParseTimeString(). It is based on * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski . */ /* * We only recognize the abbreviations of a small subset of time zones * in North America, Europe, and Japan. * * PST/PDT: Pacific Standard/Daylight Time * MST/MDT: Mountain Standard/Daylight Time * CST/CDT: Central Standard/Daylight Time * EST/EDT: Eastern Standard/Daylight Time * AST: Atlantic Standard Time * NST: Newfoundland Standard Time * GMT: Greenwich Mean Time * BST: British Summer Time * MET: Middle Europe Time * EET: Eastern Europe Time * JST: Japan Standard Time */ typedef enum { TT_UNKNOWN, TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST } TIME_TOKEN; /* * This parses a time/date string into a PRTime * (microseconds after "1-Jan-1970 00:00:00 GMT"). * It returns PR_SUCCESS on success, and PR_FAILURE * if the time/date string can't be parsed. * * Many formats are handled, including: * * 14 Apr 89 03:20:12 * 14 Apr 89 03:20 GMT * Fri, 17 Mar 89 4:01:33 * Fri, 17 Mar 89 4:01 GMT * Mon Jan 16 16:12 PDT 1989 * Mon Jan 16 16:12 +0130 1989 * 6 May 1992 16:41-JST (Wednesday) * 22-AUG-1993 10:59:12.82 * 22-AUG-1993 10:59pm * 22-AUG-1993 12:59am * 22-AUG-1993 12:59 PM * Friday, August 04, 1995 3:54 PM * 06/21/95 04:24:34 PM * 20/06/95 21:07 * 95-06-08 19:32:48 EDT * * If the input string doesn't contain a description of the timezone, * we consult the `default_to_gmt' to decide whether the string should * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). * The correct value for this argument depends on what standard specified * the time string which you are parsing. */ PR_IMPLEMENT(PRStatus) PR_ParseTimeStringToExplodedTime( const char *string, PRBool default_to_gmt, PRExplodedTime *result) { TIME_TOKEN dotw = TT_UNKNOWN; TIME_TOKEN month = TT_UNKNOWN; TIME_TOKEN zone = TT_UNKNOWN; int zone_offset = -1; int dst_offset = 0; int date = -1; PRInt32 year = -1; int hour = -1; int min = -1; int sec = -1; struct tm *localTimeResult; const char *rest = string; int iterations = 0; PR_ASSERT(string && result); if (!string || !result) { return PR_FAILURE; } while (*rest) { if (iterations++ > 1000) { return PR_FAILURE; } switch (*rest) { case 'a': case 'A': if (month == TT_UNKNOWN && (rest[1] == 'p' || rest[1] == 'P') && (rest[2] == 'r' || rest[2] == 'R')) { month = TT_APR; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_AST; } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'g' || rest[2] == 'G')) { month = TT_AUG; } break; case 'b': case 'B': if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_BST; } break; case 'c': case 'C': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_CDT; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_CST; } break; case 'd': case 'D': if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'c' || rest[2] == 'C')) { month = TT_DEC; } break; case 'e': case 'E': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_EDT; } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_EET; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_EST; } break; case 'f': case 'F': if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'b' || rest[2] == 'B')) { month = TT_FEB; } else if (dotw == TT_UNKNOWN && (rest[1] == 'r' || rest[1] == 'R') && (rest[2] == 'i' || rest[2] == 'I')) { dotw = TT_FRI; } break; case 'g': case 'G': if (zone == TT_UNKNOWN && (rest[1] == 'm' || rest[1] == 'M') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_GMT; } break; case 'j': case 'J': if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'n' || rest[2] == 'N')) { month = TT_JAN; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_JST; } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'l' || rest[2] == 'L')) { month = TT_JUL; } else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'n' || rest[2] == 'N')) { month = TT_JUN; } break; case 'm': case 'M': if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'r' || rest[2] == 'R')) { month = TT_MAR; } else if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'y' || rest[2] == 'Y')) { month = TT_MAY; } else if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_MDT; } else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_MET; } else if (dotw == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && (rest[2] == 'n' || rest[2] == 'N')) { dotw = TT_MON; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_MST; } break; case 'n': case 'N': if (month == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && (rest[2] == 'v' || rest[2] == 'V')) { month = TT_NOV; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_NST; } break; case 'o': case 'O': if (month == TT_UNKNOWN && (rest[1] == 'c' || rest[1] == 'C') && (rest[2] == 't' || rest[2] == 'T')) { month = TT_OCT; } break; case 'p': case 'P': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_PDT; } else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) { zone = TT_PST; } break; case 's': case 'S': if (dotw == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 't' || rest[2] == 'T')) { dotw = TT_SAT; } else if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'p' || rest[2] == 'P')) { month = TT_SEP; } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'n' || rest[2] == 'N')) { dotw = TT_SUN; } break; case 't': case 'T': if (dotw == TT_UNKNOWN && (rest[1] == 'h' || rest[1] == 'H') && (rest[2] == 'u' || rest[2] == 'U')) { dotw = TT_THU; } else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'e' || rest[2] == 'E')) { dotw = TT_TUE; } break; case 'u': case 'U': if (zone == TT_UNKNOWN && (rest[1] == 't' || rest[1] == 'T') && !(rest[2] >= 'A' && rest[2] <= 'Z') && !(rest[2] >= 'a' && rest[2] <= 'z')) /* UT is the same as GMT but UTx is not. */ { zone = TT_GMT; } break; case 'w': case 'W': if (dotw == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'd' || rest[2] == 'D')) { dotw = TT_WED; } break; case '+': case '-': { const char *end; int sign; if (zone_offset != -1) { /* already got one... */ rest++; break; } if (zone != TT_UNKNOWN && zone != TT_GMT) { /* GMT+0300 is legal, but PST+0300 is not. */ rest++; break; } sign = ((*rest == '+') ? 1 : -1); rest++; /* move over sign */ end = rest; while (*end >= '0' && *end <= '9') { end++; } if (rest == end) { /* no digits here */ break; } if ((end - rest) == 4) /* offset in HHMM */ zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + (((rest[2]-'0')*10) + (rest[3]-'0'))); else if ((end - rest) == 2) /* offset in hours */ { zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; } else if ((end - rest) == 1) /* offset in hours */ { zone_offset = (rest[0]-'0') * 60; } else /* 3 or >4 */ { break; } zone_offset *= sign; zone = TT_GMT; break; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int tmp_hour = -1; int tmp_min = -1; int tmp_sec = -1; const char *end = rest + 1; while (*end >= '0' && *end <= '9') { end++; } /* end is now the first character after a range of digits. */ if (*end == ':') { if (hour >= 0 && min >= 0) { /* already got it */ break; } /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ { break; } if ((end - rest) == 2) tmp_hour = ((rest[0]-'0')*10 + (rest[1]-'0')); else { tmp_hour = (rest[0]-'0'); } /* move over the colon, and parse minutes */ rest = ++end; while (*end >= '0' && *end <= '9') { end++; } if (end == rest) /* no digits after first colon? */ { break; } if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ { break; } if ((end - rest) == 2) tmp_min = ((rest[0]-'0')*10 + (rest[1]-'0')); else { tmp_min = (rest[0]-'0'); } /* now go for seconds */ rest = end; if (*rest == ':') { rest++; } end = rest; while (*end >= '0' && *end <= '9') { end++; } if (end == rest) /* no digits after second colon - that's ok. */ ; else if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ { break; } if ((end - rest) == 2) tmp_sec = ((rest[0]-'0')*10 + (rest[1]-'0')); else { tmp_sec = (rest[0]-'0'); } /* If we made it here, we've parsed hour and min, and possibly sec, so it worked as a unit. */ /* skip over whitespace and see if there's an AM or PM directly following the time. */ if (tmp_hour <= 12) { const char *s = end; while (*s && (*s == ' ' || *s == '\t')) { s++; } if ((s[0] == 'p' || s[0] == 'P') && (s[1] == 'm' || s[1] == 'M')) /* 10:05pm == 22:05, and 12:05pm == 12:05 */ { tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); } else if (tmp_hour == 12 && (s[0] == 'a' || s[0] == 'A') && (s[1] == 'm' || s[1] == 'M')) /* 12:05am == 00:05 */ { tmp_hour = 0; } } hour = tmp_hour; min = tmp_min; sec = tmp_sec; rest = end; break; } if ((*end == '/' || *end == '-') && end[1] >= '0' && end[1] <= '9') { /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 or even 95-06-05... #### But it doesn't handle 1995-06-22. */ int n1, n2, n3; const char *s; if (month != TT_UNKNOWN) /* if we saw a month name, this can't be. */ { break; } s = rest; n1 = (*s++ - '0'); /* first 1 or 2 digits */ if (*s >= '0' && *s <= '9') { n1 = n1*10 + (*s++ - '0'); } if (*s != '/' && *s != '-') { /* slash */ break; } s++; if (*s < '0' || *s > '9') { /* second 1 or 2 digits */ break; } n2 = (*s++ - '0'); if (*s >= '0' && *s <= '9') { n2 = n2*10 + (*s++ - '0'); } if (*s != '/' && *s != '-') { /* slash */ break; } s++; if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */ break; } n3 = (*s++ - '0'); if (*s >= '0' && *s <= '9') { n3 = n3*10 + (*s++ - '0'); } if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ { n3 = n3*10 + (*s++ - '0'); if (*s < '0' || *s > '9') { break; } n3 = n3*10 + (*s++ - '0'); if (*s >= '0' && *s <= '9') { n3 = n3*10 + (*s++ - '0'); } } if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ (*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z')) { break; } /* Ok, we parsed three 1-2 digit numbers, with / or - between them. Now decide what the hell they are (DD/MM/YY or MM/DD/YY or YY/MM/DD.) */ if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ { if (n2 > 12) { break; } if (n3 > 31) { break; } year = n1; if (year < 70) { year += 2000; } else if (year < 100) { year += 1900; } month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); date = n3; rest = s; break; } if (n1 > 12 && n2 > 12) /* illegal */ { rest = s; break; } if (n3 < 70) { n3 += 2000; } else if (n3 < 100) { n3 += 1900; } if (n1 > 12) /* must be DD/MM/YY */ { date = n1; month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); year = n3; } else /* assume MM/DD/YY */ { /* #### In the ambiguous case, should we consult the locale to find out the local default? */ month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); date = n2; year = n3; } rest = s; } else if ((*end >= 'A' && *end <= 'Z') || (*end >= 'a' && *end <= 'z')) /* Digits followed by non-punctuation - what's that? */ ; else if ((end - rest) == 5) /* five digits is a year */ year = (year < 0 ? ((rest[0]-'0')*10000L + (rest[1]-'0')*1000L + (rest[2]-'0')*100L + (rest[3]-'0')*10L + (rest[4]-'0')) : year); else if ((end - rest) == 4) /* four digits is a year */ year = (year < 0 ? ((rest[0]-'0')*1000L + (rest[1]-'0')*100L + (rest[2]-'0')*10L + (rest[3]-'0')) : year); else if ((end - rest) == 2) /* two digits - date or year */ { int n = ((rest[0]-'0')*10 + (rest[1]-'0')); /* If we don't have a date (day of the month) and we see a number less than 32, then assume that is the date. Otherwise, if we have a date and not a year, assume this is the year. If it is less than 70, then assume it refers to the 21st century. If it is two digits (>= 70), assume it refers to this century. Otherwise, assume it refers to an unambiguous year. The world will surely end soon. */ if (date < 0 && n < 32) { date = n; } else if (year < 0) { if (n < 70) { year = 2000 + n; } else if (n < 100) { year = 1900 + n; } else { year = n; } } /* else what the hell is this. */ } else if ((end - rest) == 1) { /* one digit - date */ date = (date < 0 ? (rest[0]-'0') : date); } /* else, three or more than five digits - what's that? */ break; } } /* Skip to the end of this token, whether we parsed it or not. Tokens are delimited by whitespace, or ,;-/ But explicitly not :+-. */ while (*rest && *rest != ' ' && *rest != '\t' && *rest != ',' && *rest != ';' && *rest != '-' && *rest != '+' && *rest != '/' && *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') { rest++; } /* skip over uninteresting chars. */ SKIP_MORE: while (*rest && (*rest == ' ' || *rest == '\t' || *rest == ',' || *rest == ';' || *rest == '/' || *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) { rest++; } /* "-" is ignored at the beginning of a token if we have not yet parsed a year (e.g., the second "-" in "30-AUG-1966"), or if the character after the dash is not a digit. */ if (*rest == '-' && ((rest > string && isalpha((unsigned char)rest[-1]) && year < 0) || rest[1] < '0' || rest[1] > '9')) { rest++; goto SKIP_MORE; } } if (zone != TT_UNKNOWN && zone_offset == -1) { switch (zone) { case TT_PST: zone_offset = -8 * 60; break; case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; case TT_MST: zone_offset = -7 * 60; break; case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; case TT_CST: zone_offset = -6 * 60; break; case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; case TT_EST: zone_offset = -5 * 60; break; case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; case TT_AST: zone_offset = -4 * 60; break; case TT_NST: zone_offset = -3 * 60 - 30; break; case TT_GMT: zone_offset = 0 * 60; break; case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; case TT_MET: zone_offset = 1 * 60; break; case TT_EET: zone_offset = 2 * 60; break; case TT_JST: zone_offset = 9 * 60; break; default: PR_ASSERT (0); break; } } /* If we didn't find a year, month, or day-of-the-month, we can't possibly parse this, and in fact, mktime() will do something random (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt a numerologically significant date... */ if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) { return PR_FAILURE; } memset(result, 0, sizeof(*result)); if (sec != -1) { result->tm_sec = sec; } if (min != -1) { result->tm_min = min; } if (hour != -1) { result->tm_hour = hour; } if (date != -1) { result->tm_mday = date; } if (month != TT_UNKNOWN) { result->tm_month = (((int)month) - ((int)TT_JAN)); } if (year != -1) { result->tm_year = year; } if (dotw != TT_UNKNOWN) { result->tm_wday = (((int)dotw) - ((int)TT_SUN)); } /* * Mainly to compute wday and yday, but normalized time is also required * by the check below that works around a Visual C++ 2005 mktime problem. */ PR_NormalizeTime(result, PR_GMTParameters); /* The remaining work is to set the gmt and dst offsets in tm_params. */ if (zone == TT_UNKNOWN && default_to_gmt) { /* No zone was specified, so pretend the zone was GMT. */ zone = TT_GMT; zone_offset = 0; } if (zone_offset == -1) { /* no zone was specified, and we're to assume that everything is local. */ struct tm localTime; time_t secs; PR_ASSERT(result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result->tm_min > -1 && result->tm_sec > -1); /* * To obtain time_t from a tm structure representing the local * time, we call mktime(). However, we need to see if we are * on 1-Jan-1970 or before. If we are, we can't call mktime() * because mktime() will crash on win16. In that case, we * calculate zone_offset based on the zone offset at * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the * date we are parsing to transform the date to GMT. We also * do so if mktime() returns (time_t) -1 (time out of range). */ /* month, day, hours, mins and secs are always non-negative so we dont need to worry about them. */ if(result->tm_year >= 1970) { PRInt64 usec_per_sec; localTime.tm_sec = result->tm_sec; localTime.tm_min = result->tm_min; localTime.tm_hour = result->tm_hour; localTime.tm_mday = result->tm_mday; localTime.tm_mon = result->tm_month; localTime.tm_year = result->tm_year - 1900; /* Set this to -1 to tell mktime "I don't care". If you set it to 0 or 1, you are making assertions about whether the date you are handing it is in daylight savings mode or not; and if you're wrong, it will "fix" it for you. */ localTime.tm_isdst = -1; #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ /* * mktime will return (time_t) -1 if the input is a date * after 23:59:59, December 31, 3000, US Pacific Time (not * UTC as documented): * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx * But if the year is 3001, mktime also invokes the invalid * parameter handler, causing the application to crash. This * problem has been reported in * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. * We avoid this crash by not calling mktime if the date is * out of range. To use a simple test that works in any time * zone, we consider year 3000 out of range as well. (See * bug 480740.) */ if (result->tm_year >= 3000) { /* Emulate what mktime would have done. */ errno = EINVAL; secs = (time_t) -1; } else { secs = mktime(&localTime); } #else secs = mktime(&localTime); #endif if (secs != (time_t) -1) { PRTime usecs64; LL_I2L(usecs64, secs); LL_I2L(usec_per_sec, PR_USEC_PER_SEC); LL_MUL(usecs64, usecs64, usec_per_sec); PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result); return PR_SUCCESS; } } /* So mktime() can't handle this case. We assume the zone_offset for the date we are parsing is the same as the zone offset on 00:00:00 2 Jan 1970 GMT. */ secs = 86400; localTimeResult = MT_safe_localtime(&secs, &localTime); PR_ASSERT(localTimeResult != NULL); if (localTimeResult == NULL) { return PR_FAILURE; } zone_offset = localTime.tm_min + 60 * localTime.tm_hour + 1440 * (localTime.tm_mday - 2); } result->tm_params.tp_gmt_offset = zone_offset * 60; result->tm_params.tp_dst_offset = dst_offset * 60; return PR_SUCCESS; } PR_IMPLEMENT(PRStatus) PR_ParseTimeString( const char *string, PRBool default_to_gmt, PRTime *result) { PRExplodedTime tm; PRStatus rv; rv = PR_ParseTimeStringToExplodedTime(string, default_to_gmt, &tm); if (rv != PR_SUCCESS) { return rv; } *result = PR_ImplodeTime(&tm); return PR_SUCCESS; } /* ******************************************************************* ******************************************************************* ** ** OLD COMPATIBILITY FUNCTIONS ** ******************************************************************* ******************************************************************* */ /* *----------------------------------------------------------------------- * * PR_FormatTime -- * * Format a time value into a buffer. Same semantics as strftime(). * *----------------------------------------------------------------------- */ PR_IMPLEMENT(PRUint32) PR_FormatTime(char *buf, int buflen, const char *fmt, const PRExplodedTime *time) { size_t rv; struct tm a; struct tm *ap; if (time) { ap = &a; a.tm_sec = time->tm_sec; a.tm_min = time->tm_min; a.tm_hour = time->tm_hour; a.tm_mday = time->tm_mday; a.tm_mon = time->tm_month; a.tm_wday = time->tm_wday; a.tm_year = time->tm_year - 1900; a.tm_yday = time->tm_yday; a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0; /* * On some platforms, for example SunOS 4, struct tm has two * additional fields: tm_zone and tm_gmtoff. */ #if (__GLIBC__ >= 2) || defined(NETBSD) \ || defined(OPENBSD) || defined(FREEBSD) \ || defined(DARWIN) || defined(ANDROID) a.tm_zone = NULL; a.tm_gmtoff = time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset; #endif } else { ap = NULL; } rv = strftime(buf, buflen, fmt, ap); if (!rv && buf && buflen > 0) { /* * When strftime fails, the contents of buf are indeterminate. * Some callers don't check the return value from this function, * so store an empty string in buf in case they try to print it. */ buf[0] = '\0'; } return rv; } /* * The following string arrays and macros are used by PR_FormatTimeUSEnglish(). */ static const char* abbrevDays[] = { "Sun","Mon","Tue","Wed","Thu","Fri","Sat" }; static const char* days[] = { "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday" }; static const char* abbrevMonths[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; static const char* months[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" }; /* * Add a single character to the given buffer, incrementing the buffer pointer * and decrementing the buffer size. Return 0 on error. */ #define ADDCHAR( buf, bufSize, ch ) \ do \ { \ if( bufSize < 1 ) \ { \ *(--buf) = '\0'; \ return 0; \ } \ *buf++ = ch; \ bufSize--; \ } \ while(0) /* * Add a string to the given buffer, incrementing the buffer pointer * and decrementing the buffer size appropriately. Return 0 on error. */ #define ADDSTR( buf, bufSize, str ) \ do \ { \ PRUint32 strSize = strlen( str ); \ if( strSize > bufSize ) \ { \ if( bufSize==0 ) \ *(--buf) = '\0'; \ else \ *buf = '\0'; \ return 0; \ } \ memcpy(buf, str, strSize); \ buf += strSize; \ bufSize -= strSize; \ } \ while(0) /* Needed by PR_FormatTimeUSEnglish() */ static unsigned int pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek); /*********************************************************************************** * * Description: * This is a dumbed down version of strftime that will format the date in US * English regardless of the setting of the global locale. This functionality is * needed to write things like MIME headers which must always be in US English. * **********************************************************************************/ PR_IMPLEMENT(PRUint32) PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize, const char* format, const PRExplodedTime* time ) { char* bufPtr = buf; const char* fmtPtr; char tmpBuf[ 40 ]; const int tmpBufSize = sizeof( tmpBuf ); for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ ) { if( *fmtPtr != '%' ) { ADDCHAR( bufPtr, bufSize, *fmtPtr ); } else { switch( *(++fmtPtr) ) { case '%': /* escaped '%' character */ ADDCHAR( bufPtr, bufSize, '%' ); break; case 'a': /* abbreviated weekday name */ ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] ); break; case 'A': /* full weekday name */ ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] ); break; case 'b': /* abbreviated month name */ ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] ); break; case 'B': /* full month name */ ADDSTR(bufPtr, bufSize, months[ time->tm_month ] ); break; case 'c': /* Date and time. */ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'd': /* day of month ( 01 - 31 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'H': /* hour ( 00 - 23 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'I': /* hour ( 01 - 12 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld", (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'j': /* day number of year ( 001 - 366 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'm': /* month number ( 01 - 12 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'M': /* minute ( 00 - 59 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'p': /* locale's equivalent of either AM or PM */ ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" ); break; case 'S': /* seconds ( 00 - 61 ), allows for leap seconds */ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'U': /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */ PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'w': /* weekday number ( 0 - 6 ), Sunday = 0 */ PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'W': /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */ PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'x': /* Date representation */ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'X': /* Time representation. */ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'y': /* year within century ( 00 - 99 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'Y': /* year as ccyy ( for example 1986 ) */ PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; case 'Z': /* Time zone name or no characters if no time zone exists. * Since time zone name is supposed to be independant of locale, we * defer to PR_FormatTime() for this option. */ PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time ); ADDSTR( bufPtr, bufSize, tmpBuf ); break; default: /* Unknown format. Simply copy format into output buffer. */ ADDCHAR( bufPtr, bufSize, '%' ); ADDCHAR( bufPtr, bufSize, *fmtPtr ); break; } } } ADDCHAR( bufPtr, bufSize, '\0' ); return (PRUint32)(bufPtr - buf - 1); } /*********************************************************************************** * * Description: * Returns the week number of the year (0-53) for the given time. firstDayOfWeek * is the day on which the week is considered to start (0=Sun, 1=Mon, ...). * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words, * a partial week at the start of the year is considered week 0. * **********************************************************************************/ static unsigned int pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek) { int dayOfWeek; int dayOfYear; /* Get the day of the year for the given time then adjust it to represent the * first day of the week containing the given time. */ dayOfWeek = time->tm_wday - firstDayOfWeek; if (dayOfWeek < 0) { dayOfWeek += 7; } dayOfYear = time->tm_yday - dayOfWeek; if( dayOfYear <= 0 ) { /* If dayOfYear is <= 0, it is in the first partial week of the year. */ return 0; } /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there * are any days left over ( dayOfYear % 7 ). Because we are only counting to * the first day of the week containing the given time, rather than to the * actual day representing the given time, any days in week 0 will be "absorbed" * as extra days in the given week. */ return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 ); }