/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // During certificate authentication, we call CertVerifier::VerifySSLServerCert. // This function may make zero or more HTTP requests (e.g. to gather revocation // information). Our fetching logic for these requests processes them on the // socket transport service thread. // // Because the connection for which we are verifying the certificate is // happening on the socket transport thread, if our cert auth hook were to call // VerifySSLServerCert directly, there would be a deadlock: VerifySSLServerCert // would cause an event to be asynchronously posted to the socket transport // thread, and then it would block the socket transport thread waiting to be // notified of the HTTP response. However, the HTTP request would never actually // be processed because the socket transport thread would be blocked and so it // wouldn't be able process HTTP requests. // // Consequently, when we are asked to verify a certificate, we must always call // VerifySSLServerCert on another thread. To accomplish this, our auth cert hook // dispatches a SSLServerCertVerificationJob to a pool of background threads, // and then immediately returns SECWouldBlock to libssl. These jobs are where // VerifySSLServerCert is actually called. // // When our auth cert hook returns SECWouldBlock, libssl will carry on the // handshake while we validate the certificate. This will free up the socket // transport thread so that HTTP requests--including the OCSP requests needed // for cert verification as mentioned above--can be processed. // // Once VerifySSLServerCert returns, the cert verification job dispatches a // SSLServerCertVerificationResult to the socket transport thread; the // SSLServerCertVerificationResult will notify libssl that the certificate // authentication is complete. Once libssl is notified that the authentication // is complete, it will continue the TLS handshake (if it hasn't already // finished) and it will begin allowing us to send/receive data on the // connection. // // Timeline of events (for connections managed by the socket transport service): // // * libssl calls SSLServerCertVerificationJob::Dispatch on the socket // transport thread. // * SSLServerCertVerificationJob::Dispatch queues a job // (instance of SSLServerCertVerificationJob) to its background thread // pool and returns. // * One of the background threads calls CertVerifier::VerifySSLServerCert, // which may enqueue some HTTP request(s) onto the socket transport thread, // and then blocks that background thread waiting for the responses and/or // timeouts or errors for those requests. // * Once those HTTP responses have all come back or failed, the // CertVerifier::VerifySSLServerCert function returns a result indicating // that the validation succeeded or failed. // * If the validation succeeded, then a SSLServerCertVerificationResult // event is posted to the socket transport thread, and the cert // verification thread becomes free to verify other certificates. // * Otherwise, we do cert override processing to see if the validation // error can be convered by override rules. The result of this processing // is similarly dispatched in a SSLServerCertVerificationResult. // * The SSLServerCertVerificationResult event will either wake up the // socket (using SSL_AuthCertificateComplete) if validation succeeded or // there was an error override, or it will set an error flag so that the // next I/O operation on the socket will fail, causing the socket transport // thread to close the connection. // // SSLServerCertVerificationResult must be dispatched to the socket transport // thread because we must only call SSL_* functions on the socket transport // thread since they may do I/O, because many parts of NSSSocketControl and the // PSM NSS I/O layer are not thread-safe, and because we need the event to // interrupt the PR_Poll that may waiting for I/O on the socket for which we // are validating the cert. // // When socket process is enabled, libssl is running on socket process. To // perform certificate authentication with CertVerifier, we have to send all // needed information to parent process and send the result back to socket // process via IPC. The workflow is described below. // 1. In AuthCertificateHookInternal(), we call RemoteProcessCertVerification() // instead of SSLServerCertVerificationJob::Dispatch when we are on socket // process. // 2. In RemoteProcessCertVerification(), PVerifySSLServerCert actors will be // created on IPDL background thread for carrying needed information via IPC. // 3. On parent process, VerifySSLServerCertParent is created and it calls // SSLServerCertVerificationJob::Dispatch for doing certificate verification // on one of CertVerificationThreads. // 4. When validation is done, OnVerifiedSSLServerCertSuccess IPC message is // sent through the IPDL background thread when // CertVerifier::VerifySSLServerCert returns Success. Otherwise, // OnVerifiedSSLServerCertFailure is sent. // 5. After setp 4, PVerifySSLServerCert actors will be released. The // verification result will be dispatched via // SSLServerCertVerificationResult. #include "SSLServerCertVerification.h" #include #include "CertVerifier.h" #include "CryptoTask.h" #include "ExtendedValidation.h" #include "NSSCertDBTrustDomain.h" #include "NSSSocketControl.h" #include "PSMRunnable.h" #include "RootCertificateTelemetryUtils.h" #include "ScopedNSSTypes.h" #include "SharedCertVerifier.h" #include "SharedSSLState.h" #include "VerifySSLServerCertChild.h" #include "cert.h" #include "mozilla/Assertions.h" #include "mozilla/Casting.h" #include "mozilla/RefPtr.h" #include "mozilla/Telemetry.h" #include "mozilla/UniquePtr.h" #include "mozilla/Unused.h" #include "nsComponentManagerUtils.h" #include "nsContentUtils.h" #include "nsICertOverrideService.h" #include "nsIPublicKeyPinningService.h" #include "nsISiteSecurityService.h" #include "nsISocketProvider.h" #include "nsThreadPool.h" #include "nsNetUtil.h" #include "nsNSSCertificate.h" #include "nsNSSComponent.h" #include "nsNSSIOLayer.h" #include "nsServiceManagerUtils.h" #include "nsString.h" #include "nsURLHelper.h" #include "nsXPCOMCIDInternal.h" #include "mozpkix/pkix.h" #include "mozpkix/pkixcheck.h" #include "mozpkix/pkixnss.h" #include "mozpkix/pkixutil.h" #include "secerr.h" #include "secport.h" #include "ssl.h" #include "sslerr.h" #include "sslexp.h" extern mozilla::LazyLogModule gPIPNSSLog; using namespace mozilla::pkix; namespace mozilla { namespace psm { // do not use a nsCOMPtr to avoid static initializer/destructor nsIThreadPool* gCertVerificationThreadPool = nullptr; // Called when the socket transport thread starts, to initialize the SSL cert // verification thread pool. By tying the thread pool startup/shutdown directly // to the STS thread's lifetime, we ensure that they are *always* available for // SSL connections and that there are no races during startup and especially // shutdown. (Previously, we have had multiple problems with races in PSM // background threads, and the race-prevention/shutdown logic used there is // brittle. Since this service is critical to things like downloading updates, // we take no chances.) Also, by doing things this way, we avoid the need for // locks, since gCertVerificationThreadPool is only ever accessed on the socket // transport thread. void InitializeSSLServerCertVerificationThreads() { // TODO: tuning, make parameters preferences gCertVerificationThreadPool = new nsThreadPool(); NS_ADDREF(gCertVerificationThreadPool); (void)gCertVerificationThreadPool->SetIdleThreadLimit(5); (void)gCertVerificationThreadPool->SetIdleThreadTimeout(30 * 1000); (void)gCertVerificationThreadPool->SetThreadLimit(5); (void)gCertVerificationThreadPool->SetName("SSL Cert"_ns); } // Called when the socket transport thread finishes, to destroy the thread // pool. Since the socket transport service has stopped processing events, it // will not attempt any more SSL I/O operations, so it is clearly safe to shut // down the SSL cert verification infrastructure. Also, the STS will not // dispatch many SSL verification result events at this point, so any pending // cert verifications will (correctly) fail at the point they are dispatched. // // The other shutdown race condition that is possible is a race condition with // shutdown of the nsNSSComponent service. We use the // nsNSSShutdownPreventionLock where needed (not here) to prevent that. void StopSSLServerCertVerificationThreads() { if (gCertVerificationThreadPool) { gCertVerificationThreadPool->Shutdown(); NS_RELEASE(gCertVerificationThreadPool); } } // A probe value of 1 means "no error". uint32_t MapOverridableErrorToProbeValue(PRErrorCode errorCode) { switch (errorCode) { case SEC_ERROR_UNKNOWN_ISSUER: return 2; case SEC_ERROR_CA_CERT_INVALID: return 3; case SEC_ERROR_UNTRUSTED_ISSUER: return 4; case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: return 5; case SEC_ERROR_UNTRUSTED_CERT: return 6; case SEC_ERROR_INADEQUATE_KEY_USAGE: return 7; case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: return 8; case SSL_ERROR_BAD_CERT_DOMAIN: return 9; case SEC_ERROR_EXPIRED_CERTIFICATE: return 10; case mozilla::pkix::MOZILLA_PKIX_ERROR_CA_CERT_USED_AS_END_ENTITY: return 11; case mozilla::pkix::MOZILLA_PKIX_ERROR_V1_CERT_USED_AS_CA: return 12; case mozilla::pkix::MOZILLA_PKIX_ERROR_INADEQUATE_KEY_SIZE: return 13; case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_CERTIFICATE: return 14; case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_ISSUER_CERTIFICATE: return 15; case SEC_ERROR_INVALID_TIME: return 16; case mozilla::pkix::MOZILLA_PKIX_ERROR_EMPTY_ISSUER_NAME: return 17; case mozilla::pkix::MOZILLA_PKIX_ERROR_ADDITIONAL_POLICY_CONSTRAINT_FAILED: return 18; case mozilla::pkix::MOZILLA_PKIX_ERROR_SELF_SIGNED_CERT: return 19; case mozilla::pkix::MOZILLA_PKIX_ERROR_MITM_DETECTED: return 20; } NS_WARNING( "Unknown certificate error code. Does MapOverridableErrorToProbeValue " "handle everything in CategorizeCertificateError?"); return 0; } static uint32_t MapCertErrorToProbeValue(PRErrorCode errorCode) { uint32_t probeValue; switch (errorCode) { // see security/pkix/include/pkix/Result.h #define MOZILLA_PKIX_MAP(name, value, nss_name) \ case nss_name: \ probeValue = value; \ break; MOZILLA_PKIX_MAP_LIST #undef MOZILLA_PKIX_MAP default: return 0; } // Since FATAL_ERROR_FLAG is 0x800, fatal error values are much larger than // non-fatal error values. To conserve space, we remap these so they start at // (decimal) 90 instead of 0x800. Currently there are ~50 non-fatal errors // mozilla::pkix might return, so saving space for 90 should be sufficient // (similarly, there are 4 fatal errors, so saving space for 10 should also // be sufficient). static_assert( FATAL_ERROR_FLAG == 0x800, "mozilla::pkix::FATAL_ERROR_FLAG is not what we were expecting"); if (probeValue & FATAL_ERROR_FLAG) { probeValue ^= FATAL_ERROR_FLAG; probeValue += 90; } return probeValue; } // If the given PRErrorCode is an overridable certificate error, return which // category (trust, time, domain mismatch) it falls in. If it is not // overridable, return Nothing. Maybe CategorizeCertificateError(PRErrorCode certificateError) { switch (certificateError) { case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: case SEC_ERROR_UNKNOWN_ISSUER: case SEC_ERROR_CA_CERT_INVALID: case mozilla::pkix::MOZILLA_PKIX_ERROR_ADDITIONAL_POLICY_CONSTRAINT_FAILED: case mozilla::pkix::MOZILLA_PKIX_ERROR_CA_CERT_USED_AS_END_ENTITY: case mozilla::pkix::MOZILLA_PKIX_ERROR_EMPTY_ISSUER_NAME: case mozilla::pkix::MOZILLA_PKIX_ERROR_INADEQUATE_KEY_SIZE: case mozilla::pkix::MOZILLA_PKIX_ERROR_MITM_DETECTED: case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_ISSUER_CERTIFICATE: case mozilla::pkix::MOZILLA_PKIX_ERROR_SELF_SIGNED_CERT: case mozilla::pkix::MOZILLA_PKIX_ERROR_V1_CERT_USED_AS_CA: return Some( nsITransportSecurityInfo::OverridableErrorCategory::ERROR_TRUST); case SSL_ERROR_BAD_CERT_DOMAIN: return Some( nsITransportSecurityInfo::OverridableErrorCategory::ERROR_DOMAIN); case SEC_ERROR_INVALID_TIME: case SEC_ERROR_EXPIRED_CERTIFICATE: case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_CERTIFICATE: return Some( nsITransportSecurityInfo::OverridableErrorCategory::ERROR_TIME); default: break; } return Nothing(); } // Helper function to determine if overrides are allowed for this host. // Overrides are not allowed for known HSTS hosts or hosts with pinning // information. However, IP addresses can never be HSTS hosts and don't have // pinning information. static nsresult OverrideAllowedForHost( uint64_t aPtrForLog, const nsACString& aHostname, const OriginAttributes& aOriginAttributes, /*out*/ bool& aOverrideAllowed) { aOverrideAllowed = false; // If this is an IP address, overrides are allowed, because an IP address is // never an HSTS host. nsISiteSecurityService takes this into account // already, but the real problem here is that calling NS_NewURI with an IPv6 // address fails. We do this to avoid that. A more comprehensive fix would be // to have Necko provide an nsIURI to PSM and to use that here (and // everywhere). However, that would be a wide-spanning change. if (net_IsValidIPv6Addr(aHostname)) { aOverrideAllowed = true; return NS_OK; } // If this is an HTTP Strict Transport Security host or a pinned host and the // certificate is bad, don't allow overrides (RFC 6797 section 12.1). bool strictTransportSecurityEnabled = false; bool isStaticallyPinned = false; nsCOMPtr sss(do_GetService(NS_SSSERVICE_CONTRACTID)); if (!sss) { MOZ_LOG( gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] Couldn't get nsISiteSecurityService to check HSTS", aPtrForLog)); return NS_ERROR_FAILURE; } nsCOMPtr uri; nsresult rv = NS_NewURI(getter_AddRefs(uri), "https://"_ns + aHostname); if (NS_FAILED(rv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] Creating new URI failed", aPtrForLog)); return rv; } rv = sss->IsSecureURI(uri, aOriginAttributes, &strictTransportSecurityEnabled); if (NS_FAILED(rv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] checking for HSTS failed", aPtrForLog)); return rv; } nsCOMPtr pkps = do_GetService(NS_PKPSERVICE_CONTRACTID, &rv); if (!pkps) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] Couldn't get nsIPublicKeyPinningService to check pinning", aPtrForLog)); return NS_ERROR_FAILURE; } rv = pkps->HostHasPins(uri, &isStaticallyPinned); if (NS_FAILED(rv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] checking for static pin failed", aPtrForLog)); return rv; } aOverrideAllowed = !strictTransportSecurityEnabled && !isStaticallyPinned; return NS_OK; } // This function assumes that we will only use the SPDY connection coalescing // feature on connections where we have negotiated SPDY using NPN. If we ever // talk SPDY without having negotiated it with SPDY, this code will give wrong // and perhaps unsafe results. // // Returns SECSuccess on the initial handshake of all connections, on // renegotiations for any connections where we did not negotiate SPDY, or on any // SPDY connection where the server's certificate did not change. // // Prohibit changing the server cert only if we negotiated SPDY, // in order to support SPDY's cross-origin connection pooling. static SECStatus BlockServerCertChangeForSpdy( NSSSocketControl* socketControl, const UniqueCERTCertificate& serverCert) { if (!socketControl->IsHandshakeCompleted()) { // first handshake on this connection, not a // renegotiation. return SECSuccess; } // Filter out sockets that did not neogtiate SPDY via NPN nsCOMPtr securityInfo; nsresult rv = socketControl->GetSecurityInfo(getter_AddRefs(securityInfo)); MOZ_ASSERT(NS_SUCCEEDED(rv), "GetSecurityInfo() failed during renegotiation"); if (NS_FAILED(rv) || !securityInfo) { PR_SetError(SEC_ERROR_LIBRARY_FAILURE, 0); return SECFailure; } nsAutoCString negotiatedNPN; rv = securityInfo->GetNegotiatedNPN(negotiatedNPN); MOZ_ASSERT(NS_SUCCEEDED(rv), "GetNegotiatedNPN() failed during renegotiation"); if (NS_SUCCEEDED(rv) && !StringBeginsWith(negotiatedNPN, "spdy/"_ns)) { return SECSuccess; } // If GetNegotiatedNPN() failed we will assume spdy for safety's safe if (NS_FAILED(rv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BlockServerCertChangeForSpdy failed GetNegotiatedNPN() call." " Assuming spdy.")); } // Check to see if the cert has actually changed nsCOMPtr cert(socketControl->GetServerCert()); if (!cert) { PR_SetError(SEC_ERROR_LIBRARY_FAILURE, 0); return SECFailure; } nsTArray certDER; if (NS_FAILED(cert->GetRawDER(certDER))) { PR_SetError(SEC_ERROR_LIBRARY_FAILURE, 0); return SECFailure; } if (certDER.Length() == serverCert->derCert.len && memcmp(certDER.Elements(), serverCert->derCert.data, certDER.Length()) == 0) { return SECSuccess; } // Report an error - changed cert is confirmed MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("SPDY refused to allow new cert during renegotiation")); PR_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED, 0); return SECFailure; } void GatherTelemetryForSingleSCT(const ct::VerifiedSCT& verifiedSct) { // See SSL_SCTS_ORIGIN in Histograms.json. uint32_t origin = 0; switch (verifiedSct.origin) { case ct::VerifiedSCT::Origin::Embedded: origin = 1; break; case ct::VerifiedSCT::Origin::TLSExtension: origin = 2; break; case ct::VerifiedSCT::Origin::OCSPResponse: origin = 3; break; default: MOZ_ASSERT_UNREACHABLE("Unexpected VerifiedSCT::Origin type"); } Telemetry::Accumulate(Telemetry::SSL_SCTS_ORIGIN, origin); // See SSL_SCTS_VERIFICATION_STATUS in Histograms.json. uint32_t verificationStatus = 0; switch (verifiedSct.status) { case ct::VerifiedSCT::Status::Valid: verificationStatus = 1; break; case ct::VerifiedSCT::Status::UnknownLog: verificationStatus = 2; break; case ct::VerifiedSCT::Status::InvalidSignature: verificationStatus = 3; break; case ct::VerifiedSCT::Status::InvalidTimestamp: verificationStatus = 4; break; case ct::VerifiedSCT::Status::ValidFromDisqualifiedLog: verificationStatus = 5; break; default: MOZ_ASSERT_UNREACHABLE("Unexpected VerifiedSCT::Status type"); } Telemetry::Accumulate(Telemetry::SSL_SCTS_VERIFICATION_STATUS, verificationStatus); } void GatherCertificateTransparencyTelemetry( const nsTArray& rootCert, bool isEV, const CertificateTransparencyInfo& info) { if (!info.enabled) { // No telemetry is gathered when CT is disabled. return; } for (const ct::VerifiedSCT& sct : info.verifyResult.verifiedScts) { GatherTelemetryForSingleSCT(sct); } // Decoding errors are reported to the 0th bucket // of the SSL_SCTS_VERIFICATION_STATUS enumerated probe. for (size_t i = 0; i < info.verifyResult.decodingErrors; ++i) { Telemetry::Accumulate(Telemetry::SSL_SCTS_VERIFICATION_STATUS, 0); } // Handle the histogram of SCTs counts. uint32_t sctsCount = static_cast(info.verifyResult.verifiedScts.size()); // Note that sctsCount can also be 0 in case we've received SCT binary data, // but it failed to parse (e.g. due to unsupported CT protocol version). Telemetry::Accumulate(Telemetry::SSL_SCTS_PER_CONNECTION, sctsCount); // Report CT Policy compliance of EV certificates. if (isEV) { uint32_t evCompliance = 0; switch (info.policyCompliance) { case ct::CTPolicyCompliance::Compliant: evCompliance = 1; break; case ct::CTPolicyCompliance::NotEnoughScts: evCompliance = 2; break; case ct::CTPolicyCompliance::NotDiverseScts: evCompliance = 3; break; case ct::CTPolicyCompliance::Unknown: default: MOZ_ASSERT_UNREACHABLE("Unexpected CTPolicyCompliance type"); } Telemetry::Accumulate(Telemetry::SSL_CT_POLICY_COMPLIANCE_OF_EV_CERTS, evCompliance); } // Report CT Policy compliance by CA. switch (info.policyCompliance) { case ct::CTPolicyCompliance::Compliant: AccumulateTelemetryForRootCA( Telemetry::SSL_CT_POLICY_COMPLIANT_CONNECTIONS_BY_CA, rootCert); break; case ct::CTPolicyCompliance::NotEnoughScts: case ct::CTPolicyCompliance::NotDiverseScts: AccumulateTelemetryForRootCA( Telemetry::SSL_CT_POLICY_NON_COMPLIANT_CONNECTIONS_BY_CA, rootCert); break; case ct::CTPolicyCompliance::Unknown: default: MOZ_ASSERT_UNREACHABLE("Unexpected CTPolicyCompliance type"); } } // This function collects telemetry about certs. It will be called on one of // CertVerificationThread. When the socket process is used this will be called // on the parent process. static void CollectCertTelemetry( mozilla::pkix::Result aCertVerificationResult, EVStatus aEVStatus, CertVerifier::OCSPStaplingStatus aOcspStaplingStatus, KeySizeStatus aKeySizeStatus, const PinningTelemetryInfo& aPinningTelemetryInfo, const nsTArray>& aBuiltCertChain, const CertificateTransparencyInfo& aCertificateTransparencyInfo) { uint32_t evStatus = (aCertVerificationResult != Success) ? 0 // 0 = Failure : (aEVStatus != EVStatus::EV) ? 1 // 1 = DV : 2; // 2 = EV Telemetry::Accumulate(Telemetry::CERT_EV_STATUS, evStatus); if (aOcspStaplingStatus != CertVerifier::OCSP_STAPLING_NEVER_CHECKED) { Telemetry::Accumulate(Telemetry::SSL_OCSP_STAPLING, aOcspStaplingStatus); } if (aKeySizeStatus != KeySizeStatus::NeverChecked) { Telemetry::Accumulate(Telemetry::CERT_CHAIN_KEY_SIZE_STATUS, static_cast(aKeySizeStatus)); } if (aPinningTelemetryInfo.accumulateForRoot) { Telemetry::Accumulate(Telemetry::CERT_PINNING_FAILURES_BY_CA, aPinningTelemetryInfo.rootBucket); } if (aPinningTelemetryInfo.accumulateResult) { MOZ_ASSERT(aPinningTelemetryInfo.certPinningResultHistogram.isSome()); Telemetry::Accumulate( aPinningTelemetryInfo.certPinningResultHistogram.value(), aPinningTelemetryInfo.certPinningResultBucket); } if (aCertVerificationResult == Success && aBuiltCertChain.Length() > 0) { const nsTArray& rootCert = aBuiltCertChain.LastElement(); AccumulateTelemetryForRootCA(Telemetry::CERT_VALIDATION_SUCCESS_BY_CA, rootCert); GatherCertificateTransparencyTelemetry(rootCert, aEVStatus == EVStatus::EV, aCertificateTransparencyInfo); } } // Note: Takes ownership of |peerCertChain| if SECSuccess is not returned. Result AuthCertificate( CertVerifier& certVerifier, void* aPinArg, const nsTArray& certBytes, const nsTArray>& peerCertChain, const nsACString& aHostName, const OriginAttributes& aOriginAttributes, const Maybe>& stapledOCSPResponse, const Maybe>& sctsFromTLSExtension, const Maybe& dcInfo, uint32_t providerFlags, Time time, uint32_t certVerifierFlags, /*out*/ nsTArray>& builtCertChain, /*out*/ EVStatus& evStatus, /*out*/ CertificateTransparencyInfo& certificateTransparencyInfo, /*out*/ bool& aIsBuiltCertChainRootBuiltInRoot, /*out*/ bool& aMadeOCSPRequests) { CertVerifier::OCSPStaplingStatus ocspStaplingStatus = CertVerifier::OCSP_STAPLING_NEVER_CHECKED; KeySizeStatus keySizeStatus = KeySizeStatus::NeverChecked; PinningTelemetryInfo pinningTelemetryInfo; nsTArray> peerCertsBytes; // Don't include the end-entity certificate. if (!peerCertChain.IsEmpty()) { std::transform( peerCertChain.cbegin() + 1, peerCertChain.cend(), MakeBackInserter(peerCertsBytes), [](const auto& elementArray) { return elementArray.Clone(); }); } Result rv = certVerifier.VerifySSLServerCert( certBytes, time, aPinArg, aHostName, builtCertChain, certVerifierFlags, Some(std::move(peerCertsBytes)), stapledOCSPResponse, sctsFromTLSExtension, dcInfo, aOriginAttributes, &evStatus, &ocspStaplingStatus, &keySizeStatus, &pinningTelemetryInfo, &certificateTransparencyInfo, &aIsBuiltCertChainRootBuiltInRoot, &aMadeOCSPRequests); CollectCertTelemetry(rv, evStatus, ocspStaplingStatus, keySizeStatus, pinningTelemetryInfo, builtCertChain, certificateTransparencyInfo); return rv; } PRErrorCode AuthCertificateParseResults( uint64_t aPtrForLog, const nsACString& aHostName, int32_t aPort, const OriginAttributes& aOriginAttributes, const nsCOMPtr& aCert, mozilla::pkix::Time aTime, PRErrorCode aCertVerificationError, /* out */ nsITransportSecurityInfo::OverridableErrorCategory& aOverridableErrorCategory) { uint32_t probeValue = MapCertErrorToProbeValue(aCertVerificationError); Telemetry::Accumulate(Telemetry::SSL_CERT_VERIFICATION_ERRORS, probeValue); Maybe maybeOverridableErrorCategory = CategorizeCertificateError(aCertVerificationError); // If this isn't an overridable error, return it now. This will stop the // connection and report the given error. if (!maybeOverridableErrorCategory.isSome()) { return aCertVerificationError; } aOverridableErrorCategory = *maybeOverridableErrorCategory; bool overrideAllowed = false; nsresult rv = OverrideAllowedForHost(aPtrForLog, aHostName, aOriginAttributes, overrideAllowed); if (NS_FAILED(rv)) { return aCertVerificationError; } if (!overrideAllowed) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] HSTS or pinned host - no overrides allowed", aPtrForLog)); return aCertVerificationError; } nsCOMPtr overrideService = do_GetService(NS_CERTOVERRIDE_CONTRACTID); if (!overrideService) { return aCertVerificationError; } bool haveOverride; bool isTemporaryOverride; rv = overrideService->HasMatchingOverride(aHostName, aPort, aOriginAttributes, aCert, &isTemporaryOverride, &haveOverride); if (NS_FAILED(rv)) { return aCertVerificationError; } Unused << isTemporaryOverride; if (haveOverride) { uint32_t probeValue = MapOverridableErrorToProbeValue(aCertVerificationError); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, probeValue); MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[0x%" PRIx64 "] certificate error overridden", aPtrForLog)); return 0; } return aCertVerificationError; } static nsTArray> CreateCertBytesArray( const UniqueCERTCertList& aCertChain) { nsTArray> certsBytes; for (CERTCertListNode* n = CERT_LIST_HEAD(aCertChain); !CERT_LIST_END(n, aCertChain); n = CERT_LIST_NEXT(n)) { nsTArray certBytes; certBytes.AppendElements(n->cert->derCert.data, n->cert->derCert.len); certsBytes.AppendElement(std::move(certBytes)); } return certsBytes; } /*static*/ SECStatus SSLServerCertVerificationJob::Dispatch( uint64_t addrForLogging, void* aPinArg, nsTArray>&& peerCertChain, const nsACString& aHostName, int32_t aPort, const OriginAttributes& aOriginAttributes, Maybe>& stapledOCSPResponse, Maybe>& sctsFromTLSExtension, Maybe& dcInfo, uint32_t providerFlags, Time time, uint32_t certVerifierFlags, BaseSSLServerCertVerificationResult* aResultTask) { // Runs on the socket transport thread if (!aResultTask || peerCertChain.IsEmpty()) { MOZ_ASSERT_UNREACHABLE( "must have result task and non-empty peer cert chain"); PR_SetError(SEC_ERROR_LIBRARY_FAILURE, 0); return SECFailure; } if (!gCertVerificationThreadPool) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } RefPtr job(new SSLServerCertVerificationJob( addrForLogging, aPinArg, std::move(peerCertChain), aHostName, aPort, aOriginAttributes, stapledOCSPResponse, sctsFromTLSExtension, dcInfo, providerFlags, time, certVerifierFlags, aResultTask)); nsresult nrv = gCertVerificationThreadPool->Dispatch(job, NS_DISPATCH_NORMAL); if (NS_FAILED(nrv)) { // We can't call SetCertVerificationResult here to change // mCertVerificationState because SetCertVerificationResult will call // libssl functions that acquire SSL locks that are already being held at // this point. However, we can set an error with PR_SetError and return // SECFailure, and the correct thing will happen (the error will be // propagated and this connection will be terminated). PRErrorCode error = nrv == NS_ERROR_OUT_OF_MEMORY ? PR_OUT_OF_MEMORY_ERROR : PR_INVALID_STATE_ERROR; PR_SetError(error, 0); return SECFailure; } PR_SetError(PR_WOULD_BLOCK_ERROR, 0); return SECWouldBlock; } NS_IMETHODIMP SSLServerCertVerificationJob::Run() { // Runs on a cert verification thread and only on parent process. MOZ_ASSERT(XRE_IsParentProcess()); MOZ_LOG( gPIPNSSLog, LogLevel::Debug, ("[%" PRIx64 "] SSLServerCertVerificationJob::Run\n", mAddrForLogging)); RefPtr certVerifier(GetDefaultCertVerifier()); if (!certVerifier) { PR_SetError(SEC_ERROR_NOT_INITIALIZED, 0); return NS_OK; } TimeStamp jobStartTime = TimeStamp::Now(); EVStatus evStatus; CertificateTransparencyInfo certificateTransparencyInfo; bool isCertChainRootBuiltInRoot = false; bool madeOCSPRequests = false; nsTArray> builtChainBytesArray; nsTArray certBytes(mPeerCertChain.ElementAt(0).Clone()); Result rv = AuthCertificate( *certVerifier, mPinArg, certBytes, mPeerCertChain, mHostName, mOriginAttributes, mStapledOCSPResponse, mSCTsFromTLSExtension, mDCInfo, mProviderFlags, mTime, mCertVerifierFlags, builtChainBytesArray, evStatus, certificateTransparencyInfo, isCertChainRootBuiltInRoot, madeOCSPRequests); if (rv == Success) { Telemetry::AccumulateTimeDelta( Telemetry::SSL_SUCCESFUL_CERT_VALIDATION_TIME_MOZILLAPKIX, jobStartTime, TimeStamp::Now()); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, 1); mResultTask->Dispatch( std::move(builtChainBytesArray), std::move(mPeerCertChain), TransportSecurityInfo::ConvertCertificateTransparencyInfoToStatus( certificateTransparencyInfo), evStatus, true, 0, nsITransportSecurityInfo::OverridableErrorCategory::ERROR_UNSET, isCertChainRootBuiltInRoot, mProviderFlags, madeOCSPRequests); return NS_OK; } Telemetry::AccumulateTimeDelta( Telemetry::SSL_INITIAL_FAILED_CERT_VALIDATION_TIME_MOZILLAPKIX, jobStartTime, TimeStamp::Now()); PRErrorCode error = MapResultToPRErrorCode(rv); nsITransportSecurityInfo::OverridableErrorCategory overridableErrorCategory = nsITransportSecurityInfo::OverridableErrorCategory::ERROR_UNSET; nsCOMPtr cert(new nsNSSCertificate(std::move(certBytes))); PRErrorCode finalError = AuthCertificateParseResults( mAddrForLogging, mHostName, mPort, mOriginAttributes, cert, mTime, error, overridableErrorCategory); // NB: finalError may be 0 here, in which the connection will continue. mResultTask->Dispatch( std::move(builtChainBytesArray), std::move(mPeerCertChain), nsITransportSecurityInfo::CERTIFICATE_TRANSPARENCY_NOT_APPLICABLE, EVStatus::NotEV, false, finalError, overridableErrorCategory, false, mProviderFlags, madeOCSPRequests); return NS_OK; } // Takes information needed for cert verification, does some consistency // checks and calls SSLServerCertVerificationJob::Dispatch. SECStatus AuthCertificateHookInternal( CommonSocketControl* socketControl, const void* aPtrForLogging, const nsACString& hostName, nsTArray>&& peerCertChain, Maybe>& stapledOCSPResponse, Maybe>& sctsFromTLSExtension, Maybe& dcInfo, uint32_t providerFlags, uint32_t certVerifierFlags) { // Runs on the socket transport thread MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] starting AuthCertificateHookInternal\n", aPtrForLogging)); if (!socketControl || peerCertChain.IsEmpty()) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } bool onSTSThread; nsresult nrv; nsCOMPtr sts = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &nrv); if (NS_SUCCEEDED(nrv)) { nrv = sts->IsOnCurrentThread(&onSTSThread); } if (NS_FAILED(nrv)) { NS_ERROR("Could not get STS service or IsOnCurrentThread failed"); PR_SetError(PR_UNKNOWN_ERROR, 0); return SECFailure; } MOZ_ASSERT(onSTSThread); if (!onSTSThread) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } uint64_t addr = reinterpret_cast(aPtrForLogging); RefPtr resultTask = new SSLServerCertVerificationResult(socketControl); if (XRE_IsSocketProcess()) { return RemoteProcessCertVerification( std::move(peerCertChain), hostName, socketControl->GetPort(), socketControl->GetOriginAttributes(), stapledOCSPResponse, sctsFromTLSExtension, dcInfo, providerFlags, certVerifierFlags, resultTask); } // We *must* do certificate verification on a background thread because // we need the socket transport thread to be free for our OCSP requests, // and we *want* to do certificate verification on a background thread // because of the performance benefits of doing so. return SSLServerCertVerificationJob::Dispatch( addr, socketControl, std::move(peerCertChain), hostName, socketControl->GetPort(), socketControl->GetOriginAttributes(), stapledOCSPResponse, sctsFromTLSExtension, dcInfo, providerFlags, Now(), certVerifierFlags, resultTask); } // Extracts whatever information we need out of fd (using SSL_*) and passes it // to AuthCertificateHookInternal. AuthCertificateHookInternal will call // SSLServerCertVerificationJob::Dispatch. SSLServerCertVerificationJob // should never do anything with fd except logging. SECStatus AuthCertificateHook(void* arg, PRFileDesc* fd, PRBool checkSig, PRBool isServer) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] starting AuthCertificateHook\n", fd)); // Modern libssl always passes PR_TRUE for checkSig, and we have no means of // doing verification without checking signatures. MOZ_ASSERT(checkSig, "AuthCertificateHook: checkSig unexpectedly false"); // PSM never causes libssl to call this function with PR_TRUE for isServer, // and many things in PSM assume that we are a client. MOZ_ASSERT(!isServer, "AuthCertificateHook: isServer unexpectedly true"); NSSSocketControl* socketInfo = static_cast(arg); UniqueCERTCertificate serverCert(SSL_PeerCertificate(fd)); if (!checkSig || isServer || !socketInfo || !serverCert) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } socketInfo->SetFullHandshake(); if (BlockServerCertChangeForSpdy(socketInfo, serverCert) != SECSuccess) { return SECFailure; } UniqueCERTCertList peerCertChain(SSL_PeerCertificateChain(fd)); if (!peerCertChain) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } nsTArray> peerCertsBytes = CreateCertBytesArray(peerCertChain); // SSL_PeerStapledOCSPResponses will never return a non-empty response if // OCSP stapling wasn't enabled because libssl wouldn't have let the server // return a stapled OCSP response. // We don't own these pointers. const SECItemArray* csa = SSL_PeerStapledOCSPResponses(fd); Maybe> stapledOCSPResponse; // we currently only support single stapled responses if (csa && csa->len == 1) { stapledOCSPResponse.emplace(); stapledOCSPResponse->SetCapacity(csa->items[0].len); stapledOCSPResponse->AppendElements(csa->items[0].data, csa->items[0].len); } Maybe> sctsFromTLSExtension; const SECItem* sctsFromTLSExtensionSECItem = SSL_PeerSignedCertTimestamps(fd); if (sctsFromTLSExtensionSECItem) { sctsFromTLSExtension.emplace(); sctsFromTLSExtension->SetCapacity(sctsFromTLSExtensionSECItem->len); sctsFromTLSExtension->AppendElements(sctsFromTLSExtensionSECItem->data, sctsFromTLSExtensionSECItem->len); } uint32_t providerFlags = 0; socketInfo->GetProviderFlags(&providerFlags); uint32_t certVerifierFlags = 0; if (!socketInfo->SharedState().IsOCSPStaplingEnabled() || !socketInfo->SharedState().IsOCSPMustStapleEnabled()) { certVerifierFlags |= CertVerifier::FLAG_TLS_IGNORE_STATUS_REQUEST; } // Get DC information Maybe dcInfo; SSLPreliminaryChannelInfo channelPreInfo; SECStatus rv = SSL_GetPreliminaryChannelInfo(fd, &channelPreInfo, sizeof(channelPreInfo)); if (rv != SECSuccess) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } if (channelPreInfo.peerDelegCred) { dcInfo.emplace(DelegatedCredentialInfo(channelPreInfo.signatureScheme, channelPreInfo.authKeyBits)); } // If we configured an ECHConfig and NSS returned the public name // for verification, ECH was rejected. Proceed, verifying to the // public name. The result determines how NSS will fail (i.e. with // any provided retry_configs if successful). See draft-ietf-tls-esni-08. nsCString echConfig; nsresult nsrv = socketInfo->GetEchConfig(echConfig); bool verifyToEchPublicName = NS_SUCCEEDED(nsrv) && echConfig.Length() && channelPreInfo.echPublicName; const nsCString echPublicName(channelPreInfo.echPublicName); const nsACString& hostname = verifyToEchPublicName ? echPublicName : socketInfo->GetHostName(); socketInfo->SetCertVerificationWaiting(); rv = AuthCertificateHookInternal(socketInfo, static_cast(fd), hostname, std::move(peerCertsBytes), stapledOCSPResponse, sctsFromTLSExtension, dcInfo, providerFlags, certVerifierFlags); return rv; } // Takes information needed for cert verification, does some consistency // checks and calls SSLServerCertVerificationJob::Dispatch. // This function is used for Quic. SECStatus AuthCertificateHookWithInfo( CommonSocketControl* socketControl, const nsACString& aHostName, const void* aPtrForLogging, nsTArray>&& peerCertChain, Maybe>>& stapledOCSPResponses, Maybe>& sctsFromTLSExtension, uint32_t providerFlags) { if (peerCertChain.IsEmpty()) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } // we currently only support single stapled responses Maybe> stapledOCSPResponse; if (stapledOCSPResponses && (stapledOCSPResponses->Length() == 1)) { stapledOCSPResponse.emplace(stapledOCSPResponses->ElementAt(0).Clone()); } uint32_t certVerifierFlags = 0; // QuicSocketControl does not have a SharedState as NSSSocketControl. // Here we need prefs for ocsp. This are prefs they are the same for // PublicSSLState and PrivateSSLState, just take them from one of them. if (!PublicSSLState()->IsOCSPStaplingEnabled() || !PublicSSLState()->IsOCSPMustStapleEnabled()) { certVerifierFlags |= CertVerifier::FLAG_TLS_IGNORE_STATUS_REQUEST; } // Need to update Quic stack to reflect the PreliminaryInfo fields // for Delegated Credentials. Maybe dcInfo; return AuthCertificateHookInternal(socketControl, aPtrForLogging, aHostName, std::move(peerCertChain), stapledOCSPResponse, sctsFromTLSExtension, dcInfo, providerFlags, certVerifierFlags); } NS_IMPL_ISUPPORTS_INHERITED0(SSLServerCertVerificationResult, Runnable) SSLServerCertVerificationResult::SSLServerCertVerificationResult( CommonSocketControl* socketControl) : Runnable("psm::SSLServerCertVerificationResult"), mSocketControl(socketControl), mCertificateTransparencyStatus(0), mEVStatus(EVStatus::NotEV), mSucceeded(false), mFinalError(0), mOverridableErrorCategory( nsITransportSecurityInfo::OverridableErrorCategory::ERROR_UNSET), mProviderFlags(0) {} void SSLServerCertVerificationResult::Dispatch( nsTArray>&& aBuiltChain, nsTArray>&& aPeerCertChain, uint16_t aCertificateTransparencyStatus, EVStatus aEVStatus, bool aSucceeded, PRErrorCode aFinalError, nsITransportSecurityInfo::OverridableErrorCategory aOverridableErrorCategory, bool aIsBuiltCertChainRootBuiltInRoot, uint32_t aProviderFlags, bool aMadeOCSPRequests) { mBuiltChain = std::move(aBuiltChain); mPeerCertChain = std::move(aPeerCertChain); mCertificateTransparencyStatus = aCertificateTransparencyStatus; mEVStatus = aEVStatus; mSucceeded = aSucceeded; mFinalError = aFinalError; mOverridableErrorCategory = aOverridableErrorCategory; mIsBuiltCertChainRootBuiltInRoot = aIsBuiltCertChainRootBuiltInRoot; mProviderFlags = aProviderFlags; mMadeOCSPRequests = aMadeOCSPRequests; if (mSucceeded && mBuiltChain.IsEmpty()) { MOZ_ASSERT_UNREACHABLE( "if the handshake succeeded, the built chain shouldn't be empty"); mSucceeded = false; mFinalError = SEC_ERROR_LIBRARY_FAILURE; } if (!mSucceeded && mPeerCertChain.IsEmpty()) { MOZ_ASSERT_UNREACHABLE( "if the handshake failed, the peer chain shouldn't be empty"); mFinalError = SEC_ERROR_LIBRARY_FAILURE; } nsresult rv; nsCOMPtr stsTarget = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv); MOZ_ASSERT(stsTarget, "Failed to get socket transport service event target"); rv = stsTarget->Dispatch(this, NS_DISPATCH_NORMAL); MOZ_ASSERT(NS_SUCCEEDED(rv), "Failed to dispatch SSLServerCertVerificationResult"); } NS_IMETHODIMP SSLServerCertVerificationResult::Run() { #ifdef DEBUG bool onSTSThread = false; nsresult nrv; nsCOMPtr sts = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &nrv); if (NS_SUCCEEDED(nrv)) { nrv = sts->IsOnCurrentThread(&onSTSThread); } MOZ_ASSERT(onSTSThread); #endif if (mSucceeded && !XRE_IsSocketProcess() && !(mProviderFlags & nsISocketProvider::NO_PERMANENT_STORAGE)) { // This dispatches an event that will run when the socket thread is idle. SaveIntermediateCerts(mBuiltChain); } mSocketControl->SetMadeOCSPRequests(mMadeOCSPRequests); if (mSucceeded) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("SSLServerCertVerificationResult::Run setting NEW cert")); nsTArray certBytes(mBuiltChain.ElementAt(0).Clone()); nsCOMPtr cert(new nsNSSCertificate(std::move(certBytes))); mSocketControl->SetServerCert(cert, mEVStatus); mSocketControl->SetSucceededCertChain(std::move(mBuiltChain)); mSocketControl->SetIsBuiltCertChainRootBuiltInRoot( mIsBuiltCertChainRootBuiltInRoot); mSocketControl->SetCertificateTransparencyStatus( mCertificateTransparencyStatus); } else { nsTArray certBytes(mPeerCertChain.ElementAt(0).Clone()); nsCOMPtr cert(new nsNSSCertificate(std::move(certBytes))); // Certificate validation failed; store the peer certificate chain on // mSocketControl so it can be used for error reporting. mSocketControl->SetFailedCertChain(std::move(mPeerCertChain)); if (mOverridableErrorCategory != nsITransportSecurityInfo::OverridableErrorCategory::ERROR_UNSET) { mSocketControl->SetStatusErrorBits(cert, mOverridableErrorCategory); } } mSocketControl->SetCertVerificationResult(mFinalError); return NS_OK; } } // namespace psm } // namespace mozilla