// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/cpu.h" #include #include #include #include #include #include #include "base/stl_util.h" #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX)) #include "base/files/file_util.h" #endif #if defined(ARCH_CPU_X86_FAMILY) #if defined(COMPILER_MSVC) #include #include // For _xgetbv() #endif #endif namespace base { #if defined(ARCH_CPU_X86_FAMILY) namespace internal { std::tuple ComputeX86FamilyAndModel( const std::string& vendor, int signature) { int family = (signature >> 8) & 0xf; int model = (signature >> 4) & 0xf; int ext_family = 0; int ext_model = 0; // The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A" // specifies the Extended Model is defined only when the Base Family is // 06h or 0Fh. // The "AMD CPUID Specification" specifies that the Extended Model is // defined only when Base Family is 0Fh. // Both manuals define the display model as // {ExtendedModel[3:0],BaseModel[3:0]} in that case. if (family == 0xf || (family == 0x6 && vendor == "GenuineIntel")) { ext_model = (signature >> 16) & 0xf; model += ext_model << 4; } // Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A" // and the "AMD CPUID Specification" specify that the Extended Family is // defined only when the Base Family is 0Fh. // Both manuals define the display family as {0000b,BaseFamily[3:0]} + // ExtendedFamily[7:0] in that case. if (family == 0xf) { ext_family = (signature >> 20) & 0xff; family += ext_family; } return {family, model, ext_family, ext_model}; } } // namespace internal #endif // defined(ARCH_CPU_X86_FAMILY) CPU::CPU() : signature_(0), type_(0), family_(0), model_(0), stepping_(0), ext_model_(0), ext_family_(0), has_mmx_(false), has_sse_(false), has_sse2_(false), has_sse3_(false), has_ssse3_(false), has_sse41_(false), has_sse42_(false), has_popcnt_(false), has_avx_(false), has_avx2_(false), has_aesni_(false), has_non_stop_time_stamp_counter_(false), is_running_in_vm_(false), cpu_vendor_("unknown") { Initialize(); } namespace { #if defined(ARCH_CPU_X86_FAMILY) #if !defined(COMPILER_MSVC) #if defined(__pic__) && defined(__i386__) void __cpuid(int cpu_info[4], int info_type) { __asm__ volatile( "mov %%ebx, %%edi\n" "cpuid\n" "xchg %%edi, %%ebx\n" : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type), "c"(0)); } #else void __cpuid(int cpu_info[4], int info_type) { __asm__ volatile("cpuid\n" : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type), "c"(0)); } #endif #endif // !defined(COMPILER_MSVC) // xgetbv returns the value of an Intel Extended Control Register (XCR). // Currently only XCR0 is defined by Intel so |xcr| should always be zero. uint64_t xgetbv(uint32_t xcr) { #if defined(COMPILER_MSVC) return _xgetbv(xcr); #else uint32_t eax, edx; __asm__ volatile ( "xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr)); return (static_cast(edx) << 32) | eax; #endif // defined(COMPILER_MSVC) } #endif // ARCH_CPU_X86_FAMILY #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX)) std::string* CpuInfoBrand() { static std::string* brand = []() { // This function finds the value from /proc/cpuinfo under the key "model // name" or "Processor". "model name" is used in Linux 3.8 and later (3.7 // and later for arm64) and is shown once per CPU. "Processor" is used in // earler versions and is shown only once at the top of /proc/cpuinfo // regardless of the number CPUs. const char kModelNamePrefix[] = "model name\t: "; const char kProcessorPrefix[] = "Processor\t: "; std::string contents; ReadFileToString(FilePath("/proc/cpuinfo"), &contents); DCHECK(!contents.empty()); std::istringstream iss(contents); std::string line; while (std::getline(iss, line)) { if (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0) return new std::string(line.substr(strlen(kModelNamePrefix))); if (line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0) return new std::string(line.substr(strlen(kProcessorPrefix))); } return new std::string(); }(); return brand; } #endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || // defined(OS_LINUX)) } // namespace void CPU::Initialize() { #if defined(ARCH_CPU_X86_FAMILY) int cpu_info[4] = {-1}; // This array is used to temporarily hold the vendor name and then the brand // name. Thus it has to be big enough for both use cases. There are // static_asserts below for each of the use cases to make sure this array is // big enough. char cpu_string[sizeof(cpu_info) * 3 + 1]; // __cpuid with an InfoType argument of 0 returns the number of // valid Ids in CPUInfo[0] and the CPU identification string in // the other three array elements. The CPU identification string is // not in linear order. The code below arranges the information // in a human readable form. The human readable order is CPUInfo[1] | // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped // before using memcpy() to copy these three array elements to |cpu_string|. __cpuid(cpu_info, 0); int num_ids = cpu_info[0]; std::swap(cpu_info[2], cpu_info[3]); static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]); static_assert(kVendorNameSize < base::size(cpu_string), "cpu_string too small"); memcpy(cpu_string, &cpu_info[1], kVendorNameSize); cpu_string[kVendorNameSize] = '\0'; cpu_vendor_ = cpu_string; // Interpret CPU feature information. if (num_ids > 0) { int cpu_info7[4] = {0}; __cpuid(cpu_info, 1); if (num_ids >= 7) { __cpuid(cpu_info7, 7); } signature_ = cpu_info[0]; stepping_ = cpu_info[0] & 0xf; type_ = (cpu_info[0] >> 12) & 0x3; std::tie(family_, model_, ext_family_, ext_model_) = internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_); has_mmx_ = (cpu_info[3] & 0x00800000) != 0; has_sse_ = (cpu_info[3] & 0x02000000) != 0; has_sse2_ = (cpu_info[3] & 0x04000000) != 0; has_sse3_ = (cpu_info[2] & 0x00000001) != 0; has_ssse3_ = (cpu_info[2] & 0x00000200) != 0; has_sse41_ = (cpu_info[2] & 0x00080000) != 0; has_sse42_ = (cpu_info[2] & 0x00100000) != 0; has_popcnt_ = (cpu_info[2] & 0x00800000) != 0; // "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1." // See https://lwn.net/Articles/301888/ // This is checking for any hypervisor. Hypervisors may choose not to // announce themselves. Hypervisors trap CPUID and sometimes return // different results to underlying hardware. is_running_in_vm_ = (cpu_info[2] & 0x80000000) != 0; // AVX instructions will generate an illegal instruction exception unless // a) they are supported by the CPU, // b) XSAVE is supported by the CPU and // c) XSAVE is enabled by the kernel. // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled // // In addition, we have observed some crashes with the xgetbv instruction // even after following Intel's example code. (See crbug.com/375968.) // Because of that, we also test the XSAVE bit because its description in // the CPUID documentation suggests that it signals xgetbv support. has_avx_ = (cpu_info[2] & 0x10000000) != 0 && (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ && (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ && (xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */; has_aesni_ = (cpu_info[2] & 0x02000000) != 0; has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0; } // Get the brand string of the cpu. __cpuid(cpu_info, 0x80000000); const int max_parameter = cpu_info[0]; static constexpr int kParameterStart = 0x80000002; static constexpr int kParameterEnd = 0x80000004; static constexpr int kParameterSize = kParameterEnd - kParameterStart + 1; static_assert(kParameterSize * sizeof(cpu_info) + 1 == base::size(cpu_string), "cpu_string has wrong size"); if (max_parameter >= kParameterEnd) { size_t i = 0; for (int parameter = kParameterStart; parameter <= kParameterEnd; ++parameter) { __cpuid(cpu_info, parameter); memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info)); i += sizeof(cpu_info); } cpu_string[i] = '\0'; cpu_brand_ = cpu_string; } static constexpr int kParameterContainingNonStopTimeStampCounter = 0x80000007; if (max_parameter >= kParameterContainingNonStopTimeStampCounter) { __cpuid(cpu_info, kParameterContainingNonStopTimeStampCounter); has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0; } if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) { int cpu_info_hv[4] = {}; __cpuid(cpu_info_hv, 0x40000000); if (cpu_info_hv[1] == 0x7263694D && // Micr cpu_info_hv[2] == 0x666F736F && // osof cpu_info_hv[3] == 0x76482074) { // t Hv // If CPUID says we have a variant TSC and a hypervisor has identified // itself and the hypervisor says it is Microsoft Hyper-V, then treat // TSC as invariant. // // Microsoft Hyper-V hypervisor reports variant TSC as there are some // scenarios (eg. VM live migration) where the TSC is variant, but for // our purposes we can treat it as invariant. has_non_stop_time_stamp_counter_ = true; } } #elif defined(ARCH_CPU_ARM_FAMILY) #if (defined(OS_ANDROID) || defined(OS_LINUX)) cpu_brand_ = *CpuInfoBrand(); #elif defined(OS_WIN) // Windows makes high-resolution thread timing information available in // user-space. has_non_stop_time_stamp_counter_ = true; #endif #endif } CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const { if (has_avx2()) return AVX2; if (has_avx()) return AVX; if (has_sse42()) return SSE42; if (has_sse41()) return SSE41; if (has_ssse3()) return SSSE3; if (has_sse3()) return SSE3; if (has_sse2()) return SSE2; if (has_sse()) return SSE; return PENTIUM; } } // namespace base