/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/blend.h" #include "aom_dsp/variance.h" #include "av1/common/filter.h" #include "av1/common/onyxc_int.h" #include "av1/common/reconinter.h" uint32_t aom_get4x4sse_cs_c(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride) { int distortion = 0; int r, c; for (r = 0; r < 4; ++r) { for (c = 0; c < 4; ++c) { int diff = a[c] - b[c]; distortion += diff * diff; } a += a_stride; b += b_stride; } return distortion; } uint32_t aom_get_mb_ss_c(const int16_t *a) { unsigned int i, sum = 0; for (i = 0; i < 256; ++i) { sum += a[i] * a[i]; } return sum; } static void variance(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int w, int h, uint32_t *sse, int *sum) { int i, j; *sum = 0; *sse = 0; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int diff = a[j] - b[j]; *sum += diff; *sse += diff * diff; } a += a_stride; b += b_stride; } } uint32_t aom_sse_odd_size(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int w, int h) { uint32_t sse; int sum; variance(a, a_stride, b, b_stride, w, h, &sse, &sum); return sse; } // Applies a 1-D 2-tap bilinear filter to the source block in either horizontal // or vertical direction to produce the filtered output block. Used to implement // the first-pass of 2-D separable filter. // // Produces int16_t output to retain precision for the next pass. Two filter // taps should sum to FILTER_WEIGHT. pixel_step defines whether the filter is // applied horizontally (pixel_step = 1) or vertically (pixel_step = stride). // It defines the offset required to move from one input to the next. void aom_var_filter_block2d_bil_first_pass_c(const uint8_t *a, uint16_t *b, unsigned int src_pixels_per_line, unsigned int pixel_step, unsigned int output_height, unsigned int output_width, const uint8_t *filter) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { b[j] = ROUND_POWER_OF_TWO( (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); ++a; } a += src_pixels_per_line - output_width; b += output_width; } } // Applies a 1-D 2-tap bilinear filter to the source block in either horizontal // or vertical direction to produce the filtered output block. Used to implement // the second-pass of 2-D separable filter. // // Requires 16-bit input as produced by filter_block2d_bil_first_pass. Two // filter taps should sum to FILTER_WEIGHT. pixel_step defines whether the // filter is applied horizontally (pixel_step = 1) or vertically // (pixel_step = stride). It defines the offset required to move from one input // to the next. Output is 8-bit. void aom_var_filter_block2d_bil_second_pass_c(const uint16_t *a, uint8_t *b, unsigned int src_pixels_per_line, unsigned int pixel_step, unsigned int output_height, unsigned int output_width, const uint8_t *filter) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { b[j] = ROUND_POWER_OF_TWO( (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); ++a; } a += src_pixels_per_line - output_width; b += output_width; } } #define VAR(W, H) \ uint32_t aom_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, \ uint32_t *sse) { \ int sum; \ variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } #define SUBPIX_VAR(W, H) \ uint32_t aom_sub_pixel_variance##W##x##H##_c( \ const uint8_t *a, int a_stride, int xoffset, int yoffset, \ const uint8_t *b, int b_stride, uint32_t *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint8_t temp2[H * W]; \ \ aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \ bilinear_filters_2t[xoffset]); \ aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \ bilinear_filters_2t[yoffset]); \ \ return aom_variance##W##x##H##_c(temp2, W, b, b_stride, sse); \ } #define SUBPIX_AVG_VAR(W, H) \ uint32_t aom_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *a, int a_stride, int xoffset, int yoffset, \ const uint8_t *b, int b_stride, uint32_t *sse, \ const uint8_t *second_pred) { \ uint16_t fdata3[(H + 1) * W]; \ uint8_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \ \ aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \ bilinear_filters_2t[xoffset]); \ aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \ bilinear_filters_2t[yoffset]); \ \ aom_comp_avg_pred(temp3, second_pred, W, H, temp2, W); \ \ return aom_variance##W##x##H##_c(temp3, W, b, b_stride, sse); \ } \ uint32_t aom_jnt_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *a, int a_stride, int xoffset, int yoffset, \ const uint8_t *b, int b_stride, uint32_t *sse, \ const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \ uint16_t fdata3[(H + 1) * W]; \ uint8_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \ \ aom_var_filter_block2d_bil_first_pass_c(a, fdata3, a_stride, 1, H + 1, W, \ bilinear_filters_2t[xoffset]); \ aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \ bilinear_filters_2t[yoffset]); \ \ aom_jnt_comp_avg_pred(temp3, second_pred, W, H, temp2, W, jcp_param); \ \ return aom_variance##W##x##H(temp3, W, b, b_stride, sse); \ } /* Identical to the variance call except it takes an additional parameter, sum, * and returns that value using pass-by-reference instead of returning * sse - sum^2 / w*h */ #define GET_VAR(W, H) \ void aom_get##W##x##H##var_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, uint32_t *sse, \ int *sum) { \ variance(a, a_stride, b, b_stride, W, H, sse, sum); \ } /* Identical to the variance call except it does not calculate the * sse - sum^2 / w*h and returns sse in addtion to modifying the passed in * variable. */ #define MSE(W, H) \ uint32_t aom_mse##W##x##H##_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, \ uint32_t *sse) { \ int sum; \ variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ return *sse; \ } /* All three forms of the variance are available in the same sizes. */ #define VARIANCES(W, H) \ VAR(W, H) \ SUBPIX_VAR(W, H) \ SUBPIX_AVG_VAR(W, H) VARIANCES(128, 128) VARIANCES(128, 64) VARIANCES(64, 128) VARIANCES(64, 64) VARIANCES(64, 32) VARIANCES(32, 64) VARIANCES(32, 32) VARIANCES(32, 16) VARIANCES(16, 32) VARIANCES(16, 16) VARIANCES(16, 8) VARIANCES(8, 16) VARIANCES(8, 8) VARIANCES(8, 4) VARIANCES(4, 8) VARIANCES(4, 4) VARIANCES(4, 2) VARIANCES(2, 4) VARIANCES(2, 2) VARIANCES(4, 16) VARIANCES(16, 4) VARIANCES(8, 32) VARIANCES(32, 8) VARIANCES(16, 64) VARIANCES(64, 16) GET_VAR(16, 16) GET_VAR(8, 8) MSE(16, 16) MSE(16, 8) MSE(8, 16) MSE(8, 8) void aom_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride) { int i, j; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int tmp = pred[j] + ref[j]; comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1); } comp_pred += width; pred += width; ref += ref_stride; } } // Get pred block from up-sampled reference. void aom_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { // Note: This is mostly a copy from the >=8X8 case in // build_inter_predictors() function, with some small tweaks. // Some assumptions. const int plane = 0; // Get pre-requisites. const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; assert(ssx == 0 && ssy == 0); const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; // Calculate subpel_x/y and x/y_step. const int row_start = 0; // Because ss_y is 0. const int col_start = 0; // Because ss_x is 0. const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx; const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy; int orig_pos_y = pre_y << SUBPEL_BITS; orig_pos_y += mv->row * (1 << (1 - ssy)); int orig_pos_x = pre_x << SUBPEL_BITS; orig_pos_x += mv->col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); const uint8_t *const pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, pos_x & SCALE_SUBPEL_MASK, pos_y & SCALE_SUBPEL_MASK }; // Get warp types. const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref_num]]; const int is_global = is_global_mv_block(mi, wm->wmtype); WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global; warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; // Get convolve parameters. ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); const InterpFilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); // Get the inter predictor. const int build_for_obmc = 0; av1_make_inter_predictor(pre, pre_buf->stride, comp_pred, width, &subpel_params, sf, width, height, &conv_params, filters, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref_num, mi, build_for_obmc, xd, cm->allow_warped_motion); return; } } const InterpFilterParams *filter = (subpel_search == 1) ? av1_get_4tap_interp_filter_params(EIGHTTAP_REGULAR) : av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8); if (!subpel_x_q3 && !subpel_y_q3) { for (int i = 0; i < height; i++) { memcpy(comp_pred, ref, width * sizeof(*comp_pred)); comp_pred += width; ref += ref_stride; } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_convolve8_horiz_c(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1, width, height); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_convolve8_vert_c(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16, width, height); } else { DECLARE_ALIGNED(16, uint8_t, temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_convolve8_horiz_c(ref - ref_stride * ((filter->taps >> 1) - 1), ref_stride, temp, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height); aom_convolve8_vert_c(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1), MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16, width, height); } } void aom_comp_avg_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { int i, j; aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { comp_pred[j] = ROUND_POWER_OF_TWO(comp_pred[j] + pred[j], 1); } comp_pred += width; pred += width; } } void aom_jnt_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride, const JNT_COMP_PARAMS *jcp_param) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { int tmp = pred[j] * bck_offset + ref[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint8_t)tmp; } comp_pred += width; pred += width; ref += ref_stride; } } void aom_jnt_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, const JNT_COMP_PARAMS *jcp_param, int subpel_search) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; aom_upsampled_pred_c(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint8_t)tmp; } comp_pred += width; pred += width; } } static void highbd_variance64(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, uint64_t *sse, int64_t *sum) { const uint16_t *a = CONVERT_TO_SHORTPTR(a8); const uint16_t *b = CONVERT_TO_SHORTPTR(b8); int64_t tsum = 0; uint64_t tsse = 0; for (int i = 0; i < h; ++i) { int32_t lsum = 0; for (int j = 0; j < w; ++j) { const int diff = a[j] - b[j]; lsum += diff; tsse += (uint32_t)(diff * diff); } tsum += lsum; a += a_stride; b += b_stride; } *sum = tsum; *sse = tsse; } uint64_t aom_highbd_sse_odd_size(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int w, int h) { uint64_t sse; int64_t sum; highbd_variance64(a, a_stride, b, b_stride, w, h, &sse, &sum); return sse; } static void highbd_8_variance(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, uint32_t *sse, int *sum) { uint64_t sse_long = 0; int64_t sum_long = 0; highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); *sse = (uint32_t)sse_long; *sum = (int)sum_long; } static void highbd_10_variance(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, uint32_t *sse, int *sum) { uint64_t sse_long = 0; int64_t sum_long = 0; highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4); *sum = (int)ROUND_POWER_OF_TWO(sum_long, 2); } static void highbd_12_variance(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, uint32_t *sse, int *sum) { uint64_t sse_long = 0; int64_t sum_long = 0; highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8); *sum = (int)ROUND_POWER_OF_TWO(sum_long, 4); } #define HIGHBD_VAR(W, H) \ uint32_t aom_highbd_8_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, \ uint32_t *sse) { \ int sum; \ highbd_8_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ } \ \ uint32_t aom_highbd_10_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, \ uint32_t *sse) { \ int sum; \ int64_t var; \ highbd_10_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } \ \ uint32_t aom_highbd_12_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ const uint8_t *b, int b_stride, \ uint32_t *sse) { \ int sum; \ int64_t var; \ highbd_12_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } #define HIGHBD_GET_VAR(S) \ void aom_highbd_8_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse, int *sum) { \ highbd_8_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ } \ \ void aom_highbd_10_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse, int *sum) { \ highbd_10_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ } \ \ void aom_highbd_12_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse, int *sum) { \ highbd_12_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ } #define HIGHBD_MSE(W, H) \ uint32_t aom_highbd_8_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse) { \ int sum; \ highbd_8_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ return *sse; \ } \ \ uint32_t aom_highbd_10_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse) { \ int sum; \ highbd_10_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ return *sse; \ } \ \ uint32_t aom_highbd_12_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ uint32_t *sse) { \ int sum; \ highbd_12_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ return *sse; \ } void aom_highbd_var_filter_block2d_bil_first_pass( const uint8_t *src_ptr8, uint16_t *output_ptr, unsigned int src_pixels_per_line, int pixel_step, unsigned int output_height, unsigned int output_width, const uint8_t *filter) { unsigned int i, j; uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src_ptr8); for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = ROUND_POWER_OF_TWO( (int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1], FILTER_BITS); ++src_ptr; } // Next row... src_ptr += src_pixels_per_line - output_width; output_ptr += output_width; } } void aom_highbd_var_filter_block2d_bil_second_pass( const uint16_t *src_ptr, uint16_t *output_ptr, unsigned int src_pixels_per_line, unsigned int pixel_step, unsigned int output_height, unsigned int output_width, const uint8_t *filter) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = ROUND_POWER_OF_TWO( (int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1], FILTER_BITS); ++src_ptr; } src_ptr += src_pixels_per_line - output_width; output_ptr += output_width; } } #define HIGHBD_SUBPIX_VAR(W, H) \ uint32_t aom_highbd_8_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ dst, dst_stride, sse); \ } \ \ uint32_t aom_highbd_10_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ dst, dst_stride, sse); \ } \ \ uint32_t aom_highbd_12_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ dst, dst_stride, sse); \ } #define HIGHBD_SUBPIX_AVG_VAR(W, H) \ uint32_t aom_highbd_8_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W); \ \ return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ dst, dst_stride, sse); \ } \ \ uint32_t aom_highbd_10_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W); \ \ return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ dst, dst_stride, sse); \ } \ \ uint32_t aom_highbd_12_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W); \ \ return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ dst, dst_stride, sse); \ } \ \ uint32_t aom_highbd_8_jnt_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_jnt_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \ \ return aom_highbd_8_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \ dst_stride, sse); \ } \ \ uint32_t aom_highbd_10_jnt_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_jnt_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \ \ return aom_highbd_10_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \ dst_stride, sse); \ } \ \ uint32_t aom_highbd_12_jnt_sub_pixel_avg_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *dst, int dst_stride, uint32_t *sse, \ const uint8_t *second_pred, const JNT_COMP_PARAMS *jcp_param) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_jnt_comp_avg_pred(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, jcp_param); \ \ return aom_highbd_12_variance##W##x##H(CONVERT_TO_BYTEPTR(temp3), W, dst, \ dst_stride, sse); \ } /* All three forms of the variance are available in the same sizes. */ #define HIGHBD_VARIANCES(W, H) \ HIGHBD_VAR(W, H) \ HIGHBD_SUBPIX_VAR(W, H) \ HIGHBD_SUBPIX_AVG_VAR(W, H) HIGHBD_VARIANCES(128, 128) HIGHBD_VARIANCES(128, 64) HIGHBD_VARIANCES(64, 128) HIGHBD_VARIANCES(64, 64) HIGHBD_VARIANCES(64, 32) HIGHBD_VARIANCES(32, 64) HIGHBD_VARIANCES(32, 32) HIGHBD_VARIANCES(32, 16) HIGHBD_VARIANCES(16, 32) HIGHBD_VARIANCES(16, 16) HIGHBD_VARIANCES(16, 8) HIGHBD_VARIANCES(8, 16) HIGHBD_VARIANCES(8, 8) HIGHBD_VARIANCES(8, 4) HIGHBD_VARIANCES(4, 8) HIGHBD_VARIANCES(4, 4) HIGHBD_VARIANCES(4, 2) HIGHBD_VARIANCES(2, 4) HIGHBD_VARIANCES(2, 2) HIGHBD_VARIANCES(4, 16) HIGHBD_VARIANCES(16, 4) HIGHBD_VARIANCES(8, 32) HIGHBD_VARIANCES(32, 8) HIGHBD_VARIANCES(16, 64) HIGHBD_VARIANCES(64, 16) HIGHBD_GET_VAR(8) HIGHBD_GET_VAR(16) HIGHBD_MSE(16, 16) HIGHBD_MSE(16, 8) HIGHBD_MSE(8, 16) HIGHBD_MSE(8, 8) void aom_highbd_comp_avg_pred_c(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride) { int i, j; uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int tmp = pred[j] + ref[j]; comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1); } comp_pred += width; pred += width; ref += ref_stride; } } void aom_highbd_upsampled_pred_c(MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { // Note: This is mostly a copy from the >=8X8 case in // build_inter_predictors() function, with some small tweaks. // Some assumptions. const int plane = 0; // Get pre-requisites. const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; assert(ssx == 0 && ssy == 0); const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; // Calculate subpel_x/y and x/y_step. const int row_start = 0; // Because ss_y is 0. const int col_start = 0; // Because ss_x is 0. const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx; const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy; int orig_pos_y = pre_y << SUBPEL_BITS; orig_pos_y += mv->row * (1 << (1 - ssy)); int orig_pos_x = pre_x << SUBPEL_BITS; orig_pos_x += mv->col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); const uint8_t *const pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, pos_x & SCALE_SUBPEL_MASK, pos_y & SCALE_SUBPEL_MASK }; // Get warp types. const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref_num]]; const int is_global = is_global_mv_block(mi, wm->wmtype); WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global; warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; // Get convolve parameters. ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); const InterpFilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); // Get the inter predictor. const int build_for_obmc = 0; av1_make_inter_predictor(pre, pre_buf->stride, comp_pred8, width, &subpel_params, sf, width, height, &conv_params, filters, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref_num, mi, build_for_obmc, xd, cm->allow_warped_motion); return; } } const InterpFilterParams *filter = (subpel_search == 1) ? av1_get_4tap_interp_filter_params(EIGHTTAP_REGULAR) : av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8); if (!subpel_x_q3 && !subpel_y_q3) { const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); for (int i = 0; i < height; i++) { memcpy(comp_pred, ref, width * sizeof(*comp_pred)); comp_pred += width; ref += ref_stride; } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_highbd_convolve8_horiz(ref8, ref_stride, comp_pred8, width, kernel, 16, NULL, -1, width, height, bd); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_highbd_convolve8_vert(ref8, ref_stride, comp_pred8, width, NULL, -1, kernel, 16, width, height, bd); } else { DECLARE_ALIGNED(16, uint16_t, temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_highbd_convolve8_horiz(ref8 - ref_stride * ((filter->taps >> 1) - 1), ref_stride, CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height, bd); aom_highbd_convolve8_vert( CONVERT_TO_BYTEPTR(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1)), MAX_SB_SIZE, comp_pred8, width, NULL, -1, kernel_y, 16, width, height, bd); } } void aom_highbd_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { int i, j; const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { comp_pred[j] = ROUND_POWER_OF_TWO(pred[j] + comp_pred[j], 1); } comp_pred += width; pred += width; } } void aom_highbd_jnt_comp_avg_pred_c(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const JNT_COMP_PARAMS *jcp_param) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { int tmp = pred[j] * bck_offset + ref[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint16_t)tmp; } comp_pred += width; pred += width; ref += ref_stride; } } void aom_highbd_jnt_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, const JNT_COMP_PARAMS *jcp_param, int subpel_search) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint16_t)tmp; } comp_pred += width; pred += width; } } void aom_comp_mask_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i, j; const uint8_t *src0 = invert_mask ? pred : ref; const uint8_t *src1 = invert_mask ? ref : pred; const int stride0 = invert_mask ? width : ref_stride; const int stride1 = invert_mask ? ref_stride : width; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { comp_pred[j] = AOM_BLEND_A64(mask[j], src0[j], src1[j]); } comp_pred += width; src0 += stride0; src1 += stride1; mask += mask_stride; } } void aom_comp_mask_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask, int subpel_search) { if (subpel_x_q3 | subpel_y_q3) { aom_upsampled_pred_c(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); ref = comp_pred; ref_stride = width; } aom_comp_mask_pred_c(comp_pred, pred, width, height, ref, ref_stride, mask, mask_stride, invert_mask); } #define MASK_SUBPIX_VAR(W, H) \ unsigned int aom_masked_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint8_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \ \ aom_var_filter_block2d_bil_first_pass_c(src, fdata3, src_stride, 1, H + 1, \ W, bilinear_filters_2t[xoffset]); \ aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \ bilinear_filters_2t[yoffset]); \ \ aom_comp_mask_pred_c(temp3, second_pred, W, H, temp2, W, msk, msk_stride, \ invert_mask); \ return aom_variance##W##x##H##_c(temp3, W, ref, ref_stride, sse); \ } MASK_SUBPIX_VAR(4, 4) MASK_SUBPIX_VAR(4, 8) MASK_SUBPIX_VAR(8, 4) MASK_SUBPIX_VAR(8, 8) MASK_SUBPIX_VAR(8, 16) MASK_SUBPIX_VAR(16, 8) MASK_SUBPIX_VAR(16, 16) MASK_SUBPIX_VAR(16, 32) MASK_SUBPIX_VAR(32, 16) MASK_SUBPIX_VAR(32, 32) MASK_SUBPIX_VAR(32, 64) MASK_SUBPIX_VAR(64, 32) MASK_SUBPIX_VAR(64, 64) MASK_SUBPIX_VAR(64, 128) MASK_SUBPIX_VAR(128, 64) MASK_SUBPIX_VAR(128, 128) MASK_SUBPIX_VAR(4, 16) MASK_SUBPIX_VAR(16, 4) MASK_SUBPIX_VAR(8, 32) MASK_SUBPIX_VAR(32, 8) MASK_SUBPIX_VAR(16, 64) MASK_SUBPIX_VAR(64, 16) void aom_highbd_comp_mask_pred_c(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i, j; uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { if (!invert_mask) comp_pred[j] = AOM_BLEND_A64(mask[j], ref[j], pred[j]); else comp_pred[j] = AOM_BLEND_A64(mask[j], pred[j], ref[j]); } comp_pred += width; pred += width; ref += ref_stride; mask += mask_stride; } } void aom_highbd_comp_mask_upsampled_pred( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask, int bd, int subpel_search) { aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); aom_highbd_comp_mask_pred(comp_pred8, pred8, width, height, comp_pred8, width, mask, mask_stride, invert_mask); } #define HIGHBD_MASK_SUBPIX_VAR(W, H) \ unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \ invert_mask); \ \ return aom_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ ref, ref_stride, sse); \ } \ \ unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \ invert_mask); \ \ return aom_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ ref, ref_stride, sse); \ } \ \ unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_c( \ const uint8_t *src, int src_stride, int xoffset, int yoffset, \ const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ const uint8_t *msk, int msk_stride, int invert_mask, \ unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ src, fdata3, src_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ aom_highbd_comp_mask_pred_c(CONVERT_TO_BYTEPTR(temp3), second_pred, W, H, \ CONVERT_TO_BYTEPTR(temp2), W, msk, msk_stride, \ invert_mask); \ \ return aom_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ ref, ref_stride, sse); \ } HIGHBD_MASK_SUBPIX_VAR(4, 4) HIGHBD_MASK_SUBPIX_VAR(4, 8) HIGHBD_MASK_SUBPIX_VAR(8, 4) HIGHBD_MASK_SUBPIX_VAR(8, 8) HIGHBD_MASK_SUBPIX_VAR(8, 16) HIGHBD_MASK_SUBPIX_VAR(16, 8) HIGHBD_MASK_SUBPIX_VAR(16, 16) HIGHBD_MASK_SUBPIX_VAR(16, 32) HIGHBD_MASK_SUBPIX_VAR(32, 16) HIGHBD_MASK_SUBPIX_VAR(32, 32) HIGHBD_MASK_SUBPIX_VAR(32, 64) HIGHBD_MASK_SUBPIX_VAR(64, 32) HIGHBD_MASK_SUBPIX_VAR(64, 64) HIGHBD_MASK_SUBPIX_VAR(64, 128) HIGHBD_MASK_SUBPIX_VAR(128, 64) HIGHBD_MASK_SUBPIX_VAR(128, 128) HIGHBD_MASK_SUBPIX_VAR(4, 16) HIGHBD_MASK_SUBPIX_VAR(16, 4) HIGHBD_MASK_SUBPIX_VAR(8, 32) HIGHBD_MASK_SUBPIX_VAR(32, 8) HIGHBD_MASK_SUBPIX_VAR(16, 64) HIGHBD_MASK_SUBPIX_VAR(64, 16) static INLINE void obmc_variance(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int i, j; *sse = 0; *sum = 0; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12); *sum += diff; *sse += diff * diff; } pre += pre_stride; wsrc += w; mask += w; } } #define OBMC_VAR(W, H) \ unsigned int aom_obmc_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \ } #define OBMC_SUBPIX_VAR(W, H) \ unsigned int aom_obmc_sub_pixel_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \ const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint8_t temp2[H * W]; \ \ aom_var_filter_block2d_bil_first_pass_c(pre, fdata3, pre_stride, 1, H + 1, \ W, bilinear_filters_2t[xoffset]); \ aom_var_filter_block2d_bil_second_pass_c(fdata3, temp2, W, W, H, W, \ bilinear_filters_2t[yoffset]); \ \ return aom_obmc_variance##W##x##H##_c(temp2, W, wsrc, mask, sse); \ } OBMC_VAR(4, 4) OBMC_SUBPIX_VAR(4, 4) OBMC_VAR(4, 8) OBMC_SUBPIX_VAR(4, 8) OBMC_VAR(8, 4) OBMC_SUBPIX_VAR(8, 4) OBMC_VAR(8, 8) OBMC_SUBPIX_VAR(8, 8) OBMC_VAR(8, 16) OBMC_SUBPIX_VAR(8, 16) OBMC_VAR(16, 8) OBMC_SUBPIX_VAR(16, 8) OBMC_VAR(16, 16) OBMC_SUBPIX_VAR(16, 16) OBMC_VAR(16, 32) OBMC_SUBPIX_VAR(16, 32) OBMC_VAR(32, 16) OBMC_SUBPIX_VAR(32, 16) OBMC_VAR(32, 32) OBMC_SUBPIX_VAR(32, 32) OBMC_VAR(32, 64) OBMC_SUBPIX_VAR(32, 64) OBMC_VAR(64, 32) OBMC_SUBPIX_VAR(64, 32) OBMC_VAR(64, 64) OBMC_SUBPIX_VAR(64, 64) OBMC_VAR(64, 128) OBMC_SUBPIX_VAR(64, 128) OBMC_VAR(128, 64) OBMC_SUBPIX_VAR(128, 64) OBMC_VAR(128, 128) OBMC_SUBPIX_VAR(128, 128) OBMC_VAR(4, 16) OBMC_SUBPIX_VAR(4, 16) OBMC_VAR(16, 4) OBMC_SUBPIX_VAR(16, 4) OBMC_VAR(8, 32) OBMC_SUBPIX_VAR(8, 32) OBMC_VAR(32, 8) OBMC_SUBPIX_VAR(32, 8) OBMC_VAR(16, 64) OBMC_SUBPIX_VAR(16, 64) OBMC_VAR(64, 16) OBMC_SUBPIX_VAR(64, 16) static INLINE void highbd_obmc_variance64(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, uint64_t *sse, int64_t *sum) { int i, j; uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); *sse = 0; *sum = 0; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { int diff = ROUND_POWER_OF_TWO_SIGNED(wsrc[j] - pre[j] * mask[j], 12); *sum += diff; *sse += diff * diff; } pre += pre_stride; wsrc += w; mask += w; } } static INLINE void highbd_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64; uint64_t sse64; highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64); *sum = (int)sum64; *sse = (unsigned int)sse64; } static INLINE void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64; uint64_t sse64; highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64); *sum = (int)ROUND_POWER_OF_TWO(sum64, 2); *sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4); } static INLINE void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride, const int32_t *wsrc, const int32_t *mask, int w, int h, unsigned int *sse, int *sum) { int64_t sum64; uint64_t sse64; highbd_obmc_variance64(pre8, pre_stride, wsrc, mask, w, h, &sse64, &sum64); *sum = (int)ROUND_POWER_OF_TWO(sum64, 4); *sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8); } #define HIGHBD_OBMC_VAR(W, H) \ unsigned int aom_highbd_obmc_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ highbd_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \ } \ \ unsigned int aom_highbd_10_obmc_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ int64_t var; \ highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } \ \ unsigned int aom_highbd_12_obmc_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned int *sse) { \ int sum; \ int64_t var; \ highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ return (var >= 0) ? (uint32_t)var : 0; \ } #define HIGHBD_OBMC_SUBPIX_VAR(W, H) \ unsigned int aom_highbd_obmc_sub_pixel_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \ const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ wsrc, mask, sse); \ } \ \ unsigned int aom_highbd_10_obmc_sub_pixel_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \ const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_10_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \ W, wsrc, mask, sse); \ } \ \ unsigned int aom_highbd_12_obmc_sub_pixel_variance##W##x##H##_c( \ const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \ const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \ uint16_t fdata3[(H + 1) * W]; \ uint16_t temp2[H * W]; \ \ aom_highbd_var_filter_block2d_bil_first_pass( \ pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \ aom_highbd_var_filter_block2d_bil_second_pass( \ fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \ \ return aom_highbd_12_obmc_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \ W, wsrc, mask, sse); \ } HIGHBD_OBMC_VAR(4, 4) HIGHBD_OBMC_SUBPIX_VAR(4, 4) HIGHBD_OBMC_VAR(4, 8) HIGHBD_OBMC_SUBPIX_VAR(4, 8) HIGHBD_OBMC_VAR(8, 4) HIGHBD_OBMC_SUBPIX_VAR(8, 4) HIGHBD_OBMC_VAR(8, 8) HIGHBD_OBMC_SUBPIX_VAR(8, 8) HIGHBD_OBMC_VAR(8, 16) HIGHBD_OBMC_SUBPIX_VAR(8, 16) HIGHBD_OBMC_VAR(16, 8) HIGHBD_OBMC_SUBPIX_VAR(16, 8) HIGHBD_OBMC_VAR(16, 16) HIGHBD_OBMC_SUBPIX_VAR(16, 16) HIGHBD_OBMC_VAR(16, 32) HIGHBD_OBMC_SUBPIX_VAR(16, 32) HIGHBD_OBMC_VAR(32, 16) HIGHBD_OBMC_SUBPIX_VAR(32, 16) HIGHBD_OBMC_VAR(32, 32) HIGHBD_OBMC_SUBPIX_VAR(32, 32) HIGHBD_OBMC_VAR(32, 64) HIGHBD_OBMC_SUBPIX_VAR(32, 64) HIGHBD_OBMC_VAR(64, 32) HIGHBD_OBMC_SUBPIX_VAR(64, 32) HIGHBD_OBMC_VAR(64, 64) HIGHBD_OBMC_SUBPIX_VAR(64, 64) HIGHBD_OBMC_VAR(64, 128) HIGHBD_OBMC_SUBPIX_VAR(64, 128) HIGHBD_OBMC_VAR(128, 64) HIGHBD_OBMC_SUBPIX_VAR(128, 64) HIGHBD_OBMC_VAR(128, 128) HIGHBD_OBMC_SUBPIX_VAR(128, 128) HIGHBD_OBMC_VAR(4, 16) HIGHBD_OBMC_SUBPIX_VAR(4, 16) HIGHBD_OBMC_VAR(16, 4) HIGHBD_OBMC_SUBPIX_VAR(16, 4) HIGHBD_OBMC_VAR(8, 32) HIGHBD_OBMC_SUBPIX_VAR(8, 32) HIGHBD_OBMC_VAR(32, 8) HIGHBD_OBMC_SUBPIX_VAR(32, 8) HIGHBD_OBMC_VAR(16, 64) HIGHBD_OBMC_SUBPIX_VAR(16, 64) HIGHBD_OBMC_VAR(64, 16) HIGHBD_OBMC_SUBPIX_VAR(64, 16)