/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/aom_version.h" #include "aom/internal/aom_codec_internal.h" #include "aom/aomdx.h" #include "aom/aom_decoder.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem_ops.h" #include "aom_util/aom_thread.h" #include "av1/common/alloccommon.h" #include "av1/common/frame_buffers.h" #include "av1/common/enums.h" #include "av1/common/obu_util.h" #include "av1/decoder/decoder.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/obu.h" #include "av1/av1_iface_common.h" struct aom_codec_alg_priv { aom_codec_priv_t base; aom_codec_dec_cfg_t cfg; aom_codec_stream_info_t si; int postproc_cfg_set; aom_postproc_cfg_t postproc_cfg; aom_image_t img; int img_avail; int flushed; int invert_tile_order; int last_show_frame; // Index of last output frame. int byte_alignment; int skip_loop_filter; int skip_film_grain; int decode_tile_row; int decode_tile_col; unsigned int tile_mode; unsigned int ext_tile_debug; unsigned int row_mt; EXTERNAL_REFERENCES ext_refs; unsigned int is_annexb; int operating_point; int output_all_layers; AVxWorker *frame_workers; int num_frame_workers; int next_submit_worker_id; int last_submit_worker_id; int next_output_worker_id; int available_threads; aom_image_t *image_with_grain[MAX_NUM_SPATIAL_LAYERS]; int need_resync; // wait for key/intra-only frame // BufferPool that holds all reference frames. Shared by all the FrameWorkers. BufferPool *buffer_pool; // External frame buffer info to save for AV1 common. void *ext_priv; // Private data associated with the external frame buffers. aom_get_frame_buffer_cb_fn_t get_ext_fb_cb; aom_release_frame_buffer_cb_fn_t release_ext_fb_cb; #if CONFIG_INSPECTION aom_inspect_cb inspect_cb; void *inspect_ctx; #endif }; static aom_codec_err_t decoder_init(aom_codec_ctx_t *ctx, aom_codec_priv_enc_mr_cfg_t *data) { // This function only allocates space for the aom_codec_alg_priv_t // structure. More memory may be required at the time the stream // information becomes known. (void)data; if (!ctx->priv) { aom_codec_alg_priv_t *const priv = (aom_codec_alg_priv_t *)aom_calloc(1, sizeof(*priv)); if (priv == NULL) return AOM_CODEC_MEM_ERROR; ctx->priv = (aom_codec_priv_t *)priv; ctx->priv->init_flags = ctx->init_flags; priv->flushed = 0; // TODO(tdaede): this should not be exposed to the API priv->cfg.allow_lowbitdepth = CONFIG_LOWBITDEPTH; if (ctx->config.dec) { priv->cfg = *ctx->config.dec; ctx->config.dec = &priv->cfg; // default values priv->cfg.cfg.ext_partition = 1; } av1_zero(priv->image_with_grain); // Turn row_mt on by default. priv->row_mt = 1; // Turn on normal tile coding mode by default. // 0 is for normal tile coding mode, and 1 is for large scale tile coding // mode(refer to lightfield example). priv->tile_mode = 0; priv->decode_tile_row = -1; priv->decode_tile_col = -1; } return AOM_CODEC_OK; } static aom_codec_err_t decoder_destroy(aom_codec_alg_priv_t *ctx) { if (ctx->frame_workers != NULL) { int i; for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; aom_get_worker_interface()->end(worker); aom_free(frame_worker_data->pbi->common.tpl_mvs); frame_worker_data->pbi->common.tpl_mvs = NULL; av1_remove_common(&frame_worker_data->pbi->common); av1_free_restoration_buffers(&frame_worker_data->pbi->common); av1_decoder_remove(frame_worker_data->pbi); aom_free(frame_worker_data->scratch_buffer); #if CONFIG_MULTITHREAD pthread_mutex_destroy(&frame_worker_data->stats_mutex); pthread_cond_destroy(&frame_worker_data->stats_cond); #endif aom_free(frame_worker_data); } #if CONFIG_MULTITHREAD pthread_mutex_destroy(&ctx->buffer_pool->pool_mutex); #endif } if (ctx->buffer_pool) { av1_free_ref_frame_buffers(ctx->buffer_pool); av1_free_internal_frame_buffers(&ctx->buffer_pool->int_frame_buffers); } aom_free(ctx->frame_workers); aom_free(ctx->buffer_pool); for (int i = 0; i < MAX_NUM_SPATIAL_LAYERS; i++) { if (ctx->image_with_grain[i]) aom_img_free(ctx->image_with_grain[i]); } aom_free(ctx); return AOM_CODEC_OK; } // Parses the operating points (including operating_point_idc, seq_level_idx, // and seq_tier) and then sets si->number_spatial_layers and // si->number_temporal_layers based on operating_point_idc[0]. static aom_codec_err_t parse_operating_points(struct aom_read_bit_buffer *rb, int is_reduced_header, aom_codec_stream_info_t *si) { int operating_point_idc0 = 0; if (is_reduced_header) { aom_rb_read_literal(rb, LEVEL_BITS); // level } else { const uint8_t operating_points_cnt_minus_1 = aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); for (int i = 0; i < operating_points_cnt_minus_1 + 1; i++) { int operating_point_idc; operating_point_idc = aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); if (i == 0) operating_point_idc0 = operating_point_idc; int seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); // level if (seq_level_idx > 7) aom_rb_read_bit(rb); // tier } } if (aom_get_num_layers_from_operating_point_idc( operating_point_idc0, &si->number_spatial_layers, &si->number_temporal_layers) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } return AOM_CODEC_OK; } static aom_codec_err_t decoder_peek_si_internal(const uint8_t *data, size_t data_sz, aom_codec_stream_info_t *si, int *is_intra_only) { int intra_only_flag = 0; int got_sequence_header = 0; int found_keyframe = 0; if (data + data_sz <= data || data_sz < 1) return AOM_CODEC_INVALID_PARAM; si->w = 0; si->h = 0; si->is_kf = 0; // is_kf indicates whether the current packet contains a RAP ObuHeader obu_header; memset(&obu_header, 0, sizeof(obu_header)); size_t payload_size = 0; size_t bytes_read = 0; int reduced_still_picture_hdr = 0; aom_codec_err_t status = aom_read_obu_header_and_size( data, data_sz, si->is_annexb, &obu_header, &payload_size, &bytes_read); if (status != AOM_CODEC_OK) return status; // If the first OBU is a temporal delimiter, skip over it and look at the next // OBU in the bitstream if (obu_header.type == OBU_TEMPORAL_DELIMITER) { // Skip any associated payload (there shouldn't be one, but just in case) if (data_sz < bytes_read + payload_size) return AOM_CODEC_CORRUPT_FRAME; data += bytes_read + payload_size; data_sz -= bytes_read + payload_size; status = aom_read_obu_header_and_size( data, data_sz, si->is_annexb, &obu_header, &payload_size, &bytes_read); if (status != AOM_CODEC_OK) return status; } while (1) { data += bytes_read; data_sz -= bytes_read; if (data_sz < payload_size) return AOM_CODEC_CORRUPT_FRAME; // Check that the selected OBU is a sequence header if (obu_header.type == OBU_SEQUENCE_HEADER) { // Sanity check on sequence header size if (data_sz < 2) return AOM_CODEC_CORRUPT_FRAME; // Read a few values from the sequence header payload struct aom_read_bit_buffer rb = { data, data + data_sz, 0, NULL, NULL }; av1_read_profile(&rb); // profile const int still_picture = aom_rb_read_bit(&rb); reduced_still_picture_hdr = aom_rb_read_bit(&rb); if (!still_picture && reduced_still_picture_hdr) { return AOM_CODEC_UNSUP_BITSTREAM; } if (parse_operating_points(&rb, reduced_still_picture_hdr, si) != AOM_CODEC_OK) { return AOM_CODEC_ERROR; } int num_bits_width = aom_rb_read_literal(&rb, 4) + 1; int num_bits_height = aom_rb_read_literal(&rb, 4) + 1; int max_frame_width = aom_rb_read_literal(&rb, num_bits_width) + 1; int max_frame_height = aom_rb_read_literal(&rb, num_bits_height) + 1; si->w = max_frame_width; si->h = max_frame_height; got_sequence_header = 1; } else if (obu_header.type == OBU_FRAME_HEADER || obu_header.type == OBU_FRAME) { if (got_sequence_header && reduced_still_picture_hdr) { found_keyframe = 1; break; } else { // make sure we have enough bits to get the frame type out if (data_sz < 1) return AOM_CODEC_CORRUPT_FRAME; struct aom_read_bit_buffer rb = { data, data + data_sz, 0, NULL, NULL }; const int show_existing_frame = aom_rb_read_bit(&rb); if (!show_existing_frame) { const FRAME_TYPE frame_type = (FRAME_TYPE)aom_rb_read_literal(&rb, 2); if (frame_type == KEY_FRAME) { found_keyframe = 1; break; // Stop here as no further OBUs will change the outcome. } } } } // skip past any unread OBU header data data += payload_size; data_sz -= payload_size; if (data_sz == 0) break; // exit if we're out of OBUs status = aom_read_obu_header_and_size( data, data_sz, si->is_annexb, &obu_header, &payload_size, &bytes_read); if (status != AOM_CODEC_OK) return status; } if (got_sequence_header && found_keyframe) si->is_kf = 1; if (is_intra_only != NULL) *is_intra_only = intra_only_flag; return AOM_CODEC_OK; } static aom_codec_err_t decoder_peek_si(const uint8_t *data, size_t data_sz, aom_codec_stream_info_t *si) { return decoder_peek_si_internal(data, data_sz, si, NULL); } static aom_codec_err_t decoder_get_si(aom_codec_alg_priv_t *ctx, aom_codec_stream_info_t *si) { memcpy(si, &ctx->si, sizeof(*si)); return AOM_CODEC_OK; } static void set_error_detail(aom_codec_alg_priv_t *ctx, const char *const error) { ctx->base.err_detail = error; } static aom_codec_err_t update_error_state( aom_codec_alg_priv_t *ctx, const struct aom_internal_error_info *error) { if (error->error_code) set_error_detail(ctx, error->has_detail ? error->detail : NULL); return error->error_code; } static void init_buffer_callbacks(aom_codec_alg_priv_t *ctx) { int i; for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; AV1_COMMON *const cm = &frame_worker_data->pbi->common; BufferPool *const pool = cm->buffer_pool; cm->new_fb_idx = INVALID_IDX; cm->byte_alignment = ctx->byte_alignment; cm->skip_loop_filter = ctx->skip_loop_filter; cm->skip_film_grain = ctx->skip_film_grain; if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) { pool->get_fb_cb = ctx->get_ext_fb_cb; pool->release_fb_cb = ctx->release_ext_fb_cb; pool->cb_priv = ctx->ext_priv; } else { pool->get_fb_cb = av1_get_frame_buffer; pool->release_fb_cb = av1_release_frame_buffer; if (av1_alloc_internal_frame_buffers(&pool->int_frame_buffers)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to initialize internal frame buffers"); pool->cb_priv = &pool->int_frame_buffers; } } } static void set_default_ppflags(aom_postproc_cfg_t *cfg) { cfg->post_proc_flag = AOM_DEBLOCK | AOM_DEMACROBLOCK; cfg->deblocking_level = 4; cfg->noise_level = 0; } static int frame_worker_hook(void *arg1, void *arg2) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)arg1; const uint8_t *data = frame_worker_data->data; (void)arg2; int result = av1_receive_compressed_data(frame_worker_data->pbi, frame_worker_data->data_size, &data); frame_worker_data->data_end = data; if (result != 0) { // Check decode result in serial decode. frame_worker_data->pbi->cur_buf->buf.corrupted = 1; frame_worker_data->pbi->need_resync = 1; } return !result; } static aom_codec_err_t init_decoder(aom_codec_alg_priv_t *ctx) { int i; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); ctx->last_show_frame = -1; ctx->next_submit_worker_id = 0; ctx->last_submit_worker_id = 0; ctx->next_output_worker_id = 0; ctx->need_resync = 1; ctx->num_frame_workers = 1; if (ctx->num_frame_workers > MAX_DECODE_THREADS) ctx->num_frame_workers = MAX_DECODE_THREADS; ctx->available_threads = ctx->num_frame_workers; ctx->flushed = 0; ctx->buffer_pool = (BufferPool *)aom_calloc(1, sizeof(BufferPool)); if (ctx->buffer_pool == NULL) return AOM_CODEC_MEM_ERROR; #if CONFIG_MULTITHREAD if (pthread_mutex_init(&ctx->buffer_pool->pool_mutex, NULL)) { set_error_detail(ctx, "Failed to allocate buffer pool mutex"); return AOM_CODEC_MEM_ERROR; } #endif ctx->frame_workers = (AVxWorker *)aom_malloc(ctx->num_frame_workers * sizeof(*ctx->frame_workers)); if (ctx->frame_workers == NULL) { set_error_detail(ctx, "Failed to allocate frame_workers"); return AOM_CODEC_MEM_ERROR; } for (i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *frame_worker_data = NULL; winterface->init(worker); worker->data1 = aom_memalign(32, sizeof(FrameWorkerData)); if (worker->data1 == NULL) { set_error_detail(ctx, "Failed to allocate frame_worker_data"); return AOM_CODEC_MEM_ERROR; } frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi = av1_decoder_create(ctx->buffer_pool); if (frame_worker_data->pbi == NULL) { set_error_detail(ctx, "Failed to allocate frame_worker_data"); return AOM_CODEC_MEM_ERROR; } frame_worker_data->pbi->common.options = &ctx->cfg.cfg; frame_worker_data->pbi->frame_worker_owner = worker; frame_worker_data->worker_id = i; frame_worker_data->scratch_buffer = NULL; frame_worker_data->scratch_buffer_size = 0; frame_worker_data->frame_context_ready = 0; frame_worker_data->received_frame = 0; #if CONFIG_MULTITHREAD if (pthread_mutex_init(&frame_worker_data->stats_mutex, NULL)) { set_error_detail(ctx, "Failed to allocate frame_worker_data mutex"); return AOM_CODEC_MEM_ERROR; } if (pthread_cond_init(&frame_worker_data->stats_cond, NULL)) { set_error_detail(ctx, "Failed to allocate frame_worker_data cond"); return AOM_CODEC_MEM_ERROR; } #endif frame_worker_data->pbi->allow_lowbitdepth = ctx->cfg.allow_lowbitdepth; // If decoding in serial mode, FrameWorker thread could create tile worker // thread or loopfilter thread. frame_worker_data->pbi->max_threads = ctx->cfg.threads; frame_worker_data->pbi->inv_tile_order = ctx->invert_tile_order; frame_worker_data->pbi->common.large_scale_tile = ctx->tile_mode; frame_worker_data->pbi->common.is_annexb = ctx->is_annexb; frame_worker_data->pbi->dec_tile_row = ctx->decode_tile_row; frame_worker_data->pbi->dec_tile_col = ctx->decode_tile_col; frame_worker_data->pbi->operating_point = ctx->operating_point; frame_worker_data->pbi->output_all_layers = ctx->output_all_layers; frame_worker_data->pbi->ext_tile_debug = ctx->ext_tile_debug; frame_worker_data->pbi->row_mt = ctx->row_mt; worker->hook = frame_worker_hook; if (!winterface->reset(worker)) { set_error_detail(ctx, "Frame Worker thread creation failed"); return AOM_CODEC_MEM_ERROR; } } // If postprocessing was enabled by the application and a // configuration has not been provided, default it. if (!ctx->postproc_cfg_set && (ctx->base.init_flags & AOM_CODEC_USE_POSTPROC)) set_default_ppflags(&ctx->postproc_cfg); init_buffer_callbacks(ctx); return AOM_CODEC_OK; } static INLINE void check_resync(aom_codec_alg_priv_t *const ctx, const AV1Decoder *const pbi) { // Clear resync flag if worker got a key frame or intra only frame. if (ctx->need_resync == 1 && pbi->need_resync == 0 && (pbi->common.intra_only || pbi->common.frame_type == KEY_FRAME)) ctx->need_resync = 0; } static aom_codec_err_t decode_one(aom_codec_alg_priv_t *ctx, const uint8_t **data, size_t data_sz, void *user_priv) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); // Determine the stream parameters. Note that we rely on peek_si to // validate that we have a buffer that does not wrap around the top // of the heap. if (!ctx->si.h) { int is_intra_only = 0; ctx->si.is_annexb = ctx->is_annexb; const aom_codec_err_t res = decoder_peek_si_internal(*data, data_sz, &ctx->si, &is_intra_only); if (res != AOM_CODEC_OK) return res; if (!ctx->si.is_kf && !is_intra_only) return AOM_CODEC_ERROR; } AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->data = *data; frame_worker_data->data_size = data_sz; frame_worker_data->user_priv = user_priv; frame_worker_data->received_frame = 1; #if CONFIG_INSPECTION frame_worker_data->pbi->inspect_cb = ctx->inspect_cb; frame_worker_data->pbi->inspect_ctx = ctx->inspect_ctx; #endif frame_worker_data->pbi->common.large_scale_tile = ctx->tile_mode; frame_worker_data->pbi->dec_tile_row = ctx->decode_tile_row; frame_worker_data->pbi->dec_tile_col = ctx->decode_tile_col; frame_worker_data->pbi->ext_tile_debug = ctx->ext_tile_debug; frame_worker_data->pbi->row_mt = ctx->row_mt; frame_worker_data->pbi->ext_refs = ctx->ext_refs; frame_worker_data->pbi->common.is_annexb = ctx->is_annexb; worker->had_error = 0; winterface->execute(worker); // Update data pointer after decode. *data = frame_worker_data->data_end; if (worker->had_error) return update_error_state(ctx, &frame_worker_data->pbi->common.error); check_resync(ctx, frame_worker_data->pbi); return AOM_CODEC_OK; } static aom_codec_err_t decoder_decode(aom_codec_alg_priv_t *ctx, const uint8_t *data, size_t data_sz, void *user_priv) { aom_codec_err_t res = AOM_CODEC_OK; // Release any pending output frames from the previous decoder_decode call. // We need to do this even if the decoder is being flushed or the input // arguments are invalid. if (ctx->frame_workers) { BufferPool *const pool = ctx->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; lock_buffer_pool(pool); for (int i = 0; i < ctx->num_frame_workers; ++i) { AVxWorker *const worker = &ctx->frame_workers[i]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; struct AV1Decoder *pbi = frame_worker_data->pbi; for (size_t j = 0; j < pbi->num_output_frames; j++) { decrease_ref_count((int)pbi->output_frame_index[j], frame_bufs, pool); } pbi->num_output_frames = 0; } unlock_buffer_pool(ctx->buffer_pool); } /* Sanity checks */ /* NULL data ptr allowed if data_sz is 0 too */ if (data == NULL && data_sz == 0) { ctx->flushed = 1; return AOM_CODEC_OK; } if (data == NULL || data_sz == 0) return AOM_CODEC_INVALID_PARAM; // Reset flushed when receiving a valid frame. ctx->flushed = 0; // Initialize the decoder workers on the first frame. if (ctx->frame_workers == NULL) { res = init_decoder(ctx); if (res != AOM_CODEC_OK) return res; } const uint8_t *data_start = data; const uint8_t *data_end = data + data_sz; if (ctx->is_annexb) { // read the size of this temporal unit size_t length_of_size; uint64_t temporal_unit_size; if (aom_uleb_decode(data_start, data_sz, &temporal_unit_size, &length_of_size) != 0) { return AOM_CODEC_CORRUPT_FRAME; } data_start += length_of_size; if (temporal_unit_size > (size_t)(data_end - data_start)) return AOM_CODEC_CORRUPT_FRAME; data_end = data_start + temporal_unit_size; } // Decode in serial mode. while (data_start < data_end) { uint64_t frame_size; if (ctx->is_annexb) { // read the size of this frame unit size_t length_of_size; if (aom_uleb_decode(data_start, (size_t)(data_end - data_start), &frame_size, &length_of_size) != 0) { return AOM_CODEC_CORRUPT_FRAME; } data_start += length_of_size; if (frame_size > (size_t)(data_end - data_start)) return AOM_CODEC_CORRUPT_FRAME; } else { frame_size = (uint64_t)(data_end - data_start); } res = decode_one(ctx, &data_start, (size_t)frame_size, user_priv); if (res != AOM_CODEC_OK) return res; // Allow extra zero bytes after the frame end while (data_start < data_end) { const uint8_t marker = data_start[0]; if (marker) break; ++data_start; } } return res; } // If grain_params->apply_grain is false, returns img. Otherwise, adds film // grain to img, saves the result in *grain_img_ptr (allocating *grain_img_ptr // if necessary), and returns *grain_img_ptr. static aom_image_t *add_grain_if_needed(aom_image_t *img, aom_image_t **grain_img_ptr, aom_film_grain_t *grain_params) { if (!grain_params->apply_grain) return img; aom_image_t *grain_img_buf = *grain_img_ptr; const int w_even = ALIGN_POWER_OF_TWO(img->d_w, 1); const int h_even = ALIGN_POWER_OF_TWO(img->d_h, 1); if (grain_img_buf) { const int alloc_w = ALIGN_POWER_OF_TWO(grain_img_buf->d_w, 1); const int alloc_h = ALIGN_POWER_OF_TWO(grain_img_buf->d_h, 1); if (w_even != alloc_w || h_even != alloc_h || img->fmt != grain_img_buf->fmt) { aom_img_free(grain_img_buf); grain_img_buf = NULL; *grain_img_ptr = NULL; } } if (!grain_img_buf) { grain_img_buf = aom_img_alloc(NULL, img->fmt, w_even, h_even, 16); *grain_img_ptr = grain_img_buf; } if (grain_img_buf) { grain_img_buf->user_priv = img->user_priv; if (av1_add_film_grain(grain_params, img, grain_img_buf)) { aom_img_free(grain_img_buf); grain_img_buf = NULL; *grain_img_ptr = NULL; } } return grain_img_buf; } static aom_image_t *decoder_get_frame(aom_codec_alg_priv_t *ctx, aom_codec_iter_t *iter) { aom_image_t *img = NULL; if (!iter) { return NULL; } // To avoid having to allocate any extra storage, treat 'iter' as // simply a pointer to an integer index uintptr_t *index = (uintptr_t *)iter; if (ctx->frame_workers != NULL) { do { YV12_BUFFER_CONFIG *sd; // NOTE(david.barker): This code does not support multiple worker threads // yet. We should probably move the iteration over threads into *iter // instead of using ctx->next_output_worker_id. const AVxWorkerInterface *const winterface = aom_get_worker_interface(); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; ctx->next_output_worker_id = (ctx->next_output_worker_id + 1) % ctx->num_frame_workers; // Wait for the frame from worker thread. if (winterface->sync(worker)) { // Check if worker has received any frames. if (frame_worker_data->received_frame == 1) { ++ctx->available_threads; frame_worker_data->received_frame = 0; check_resync(ctx, frame_worker_data->pbi); } aom_film_grain_t *grain_params; if (av1_get_raw_frame(frame_worker_data->pbi, *index, &sd, &grain_params) == 0) { AV1Decoder *const pbi = frame_worker_data->pbi; AV1_COMMON *const cm = &pbi->common; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; ctx->last_show_frame = cm->new_fb_idx; if (ctx->need_resync) return NULL; yuvconfig2image(&ctx->img, sd, frame_worker_data->user_priv); if (!pbi->ext_tile_debug && cm->large_scale_tile) { *index += 1; // Advance the iterator to point to the next image img = &ctx->img; img->img_data = pbi->tile_list_output; img->sz = pbi->tile_list_size; return img; } const int num_planes = av1_num_planes(cm); if (pbi->ext_tile_debug && cm->single_tile_decoding && pbi->dec_tile_row >= 0) { const int tile_row = AOMMIN(pbi->dec_tile_row, cm->tile_rows - 1); const int mi_row = tile_row * cm->tile_height; const int ssy = ctx->img.y_chroma_shift; int plane; ctx->img.planes[0] += mi_row * MI_SIZE * ctx->img.stride[0]; if (num_planes > 1) { for (plane = 1; plane < MAX_MB_PLANE; ++plane) { ctx->img.planes[plane] += mi_row * (MI_SIZE >> ssy) * ctx->img.stride[plane]; } } ctx->img.d_h = AOMMIN(cm->tile_height, cm->mi_rows - mi_row) * MI_SIZE; } if (pbi->ext_tile_debug && cm->single_tile_decoding && pbi->dec_tile_col >= 0) { const int tile_col = AOMMIN(pbi->dec_tile_col, cm->tile_cols - 1); const int mi_col = tile_col * cm->tile_width; const int ssx = ctx->img.x_chroma_shift; const int is_hbd = (ctx->img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 1 : 0; int plane; ctx->img.planes[0] += mi_col * MI_SIZE * (1 + is_hbd); if (num_planes > 1) { for (plane = 1; plane < MAX_MB_PLANE; ++plane) { ctx->img.planes[plane] += mi_col * (MI_SIZE >> ssx) * (1 + is_hbd); } } ctx->img.d_w = AOMMIN(cm->tile_width, cm->mi_cols - mi_col) * MI_SIZE; } ctx->img.fb_priv = frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv; img = &ctx->img; img->temporal_id = cm->temporal_layer_id; img->spatial_id = cm->spatial_layer_id; if (cm->skip_film_grain) grain_params->apply_grain = 0; aom_image_t *res = add_grain_if_needed( img, &ctx->image_with_grain[*index], grain_params); if (!res) { aom_internal_error(&pbi->common.error, AOM_CODEC_CORRUPT_FRAME, "Grain systhesis failed\n"); } *index += 1; // Advance the iterator to point to the next image return res; } } else { // Decoding failed. Release the worker thread. frame_worker_data->received_frame = 0; ++ctx->available_threads; ctx->need_resync = 1; if (ctx->flushed != 1) return NULL; } } while (ctx->next_output_worker_id != ctx->next_submit_worker_id); } return NULL; } static aom_codec_err_t decoder_set_fb_fn( aom_codec_alg_priv_t *ctx, aom_get_frame_buffer_cb_fn_t cb_get, aom_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) { if (cb_get == NULL || cb_release == NULL) { return AOM_CODEC_INVALID_PARAM; } else if (ctx->frame_workers == NULL) { // If the decoder has already been initialized, do not accept changes to // the frame buffer functions. ctx->get_ext_fb_cb = cb_get; ctx->release_ext_fb_cb = cb_release; ctx->ext_priv = cb_priv; return AOM_CODEC_OK; } return AOM_CODEC_ERROR; } static aom_codec_err_t ctrl_set_reference(aom_codec_alg_priv_t *ctx, va_list args) { av1_ref_frame_t *const data = va_arg(args, av1_ref_frame_t *); if (data) { av1_ref_frame_t *const frame = data; YV12_BUFFER_CONFIG sd; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; image2yuvconfig(&frame->img, &sd); return av1_set_reference_dec(&frame_worker_data->pbi->common, frame->idx, frame->use_external_ref, &sd); } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_copy_reference(aom_codec_alg_priv_t *ctx, va_list args) { const av1_ref_frame_t *const frame = va_arg(args, av1_ref_frame_t *); if (frame) { YV12_BUFFER_CONFIG sd; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; image2yuvconfig(&frame->img, &sd); return av1_copy_reference_dec(frame_worker_data->pbi, frame->idx, &sd); } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_get_reference(aom_codec_alg_priv_t *ctx, va_list args) { av1_ref_frame_t *data = va_arg(args, av1_ref_frame_t *); if (data) { YV12_BUFFER_CONFIG *fb; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; fb = get_ref_frame(&frame_worker_data->pbi->common, data->idx); if (fb == NULL) return AOM_CODEC_ERROR; yuvconfig2image(&data->img, fb, NULL); return AOM_CODEC_OK; } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_get_new_frame_image(aom_codec_alg_priv_t *ctx, va_list args) { aom_image_t *new_img = va_arg(args, aom_image_t *); if (new_img) { YV12_BUFFER_CONFIG new_frame; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; if (av1_get_frame_to_show(frame_worker_data->pbi, &new_frame) == 0) { yuvconfig2image(new_img, &new_frame, NULL); return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_copy_new_frame_image(aom_codec_alg_priv_t *ctx, va_list args) { aom_image_t *img = va_arg(args, aom_image_t *); if (img) { YV12_BUFFER_CONFIG new_frame; AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; if (av1_get_frame_to_show(frame_worker_data->pbi, &new_frame) == 0) { YV12_BUFFER_CONFIG sd; image2yuvconfig(img, &sd); return av1_copy_new_frame_dec(&frame_worker_data->pbi->common, &new_frame, &sd); } else { return AOM_CODEC_ERROR; } } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_set_postproc(aom_codec_alg_priv_t *ctx, va_list args) { (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; } static aom_codec_err_t ctrl_set_dbg_options(aom_codec_alg_priv_t *ctx, va_list args) { (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; } static aom_codec_err_t ctrl_get_last_ref_updates(aom_codec_alg_priv_t *ctx, va_list args) { int *const update_info = va_arg(args, int *); if (update_info) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; *update_info = frame_worker_data->pbi->refresh_frame_flags; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_last_quantizer(aom_codec_alg_priv_t *ctx, va_list args) { int *const arg = va_arg(args, int *); if (arg == NULL) return AOM_CODEC_INVALID_PARAM; *arg = ((FrameWorkerData *)ctx->frame_workers[0].data1)->pbi->common.base_qindex; return AOM_CODEC_OK; } static aom_codec_err_t ctrl_get_frame_corrupted(aom_codec_alg_priv_t *ctx, va_list args) { int *corrupted = va_arg(args, int *); if (corrupted) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; AV1Decoder *const pbi = frame_worker_data->pbi; RefCntBuffer *const frame_bufs = pbi->common.buffer_pool->frame_bufs; if (pbi->seen_frame_header && pbi->num_output_frames == 0) return AOM_CODEC_ERROR; if (ctx->last_show_frame >= 0) *corrupted = frame_bufs[ctx->last_show_frame].buf.corrupted; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_frame_size(aom_codec_alg_priv_t *ctx, va_list args) { int *const frame_size = va_arg(args, int *); if (frame_size) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; frame_size[0] = cm->width; frame_size[1] = cm->height; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_frame_header_info(aom_codec_alg_priv_t *ctx, va_list args) { aom_tile_data *const frame_header_info = va_arg(args, aom_tile_data *); if (frame_header_info) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1Decoder *pbi = frame_worker_data->pbi; frame_header_info->coded_tile_data_size = pbi->obu_size_hdr.size; frame_header_info->coded_tile_data = pbi->obu_size_hdr.data; frame_header_info->extra_size = pbi->frame_header_size; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_tile_data(aom_codec_alg_priv_t *ctx, va_list args) { aom_tile_data *const tile_data = va_arg(args, aom_tile_data *); if (tile_data) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1Decoder *pbi = frame_worker_data->pbi; tile_data->coded_tile_data_size = pbi->tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size; tile_data->coded_tile_data = pbi->tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_set_ext_ref_ptr(aom_codec_alg_priv_t *ctx, va_list args) { av1_ext_ref_frame_t *const data = va_arg(args, av1_ext_ref_frame_t *); if (data) { av1_ext_ref_frame_t *const ext_frames = data; ctx->ext_refs.num = ext_frames->num; for (int i = 0; i < ctx->ext_refs.num; i++) { image2yuvconfig(ext_frames->img++, &ctx->ext_refs.refs[i]); } return AOM_CODEC_OK; } else { return AOM_CODEC_INVALID_PARAM; } } static aom_codec_err_t ctrl_get_render_size(aom_codec_alg_priv_t *ctx, va_list args) { int *const render_size = va_arg(args, int *); if (render_size) { if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; render_size[0] = cm->render_width; render_size[1] = cm->render_height; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_bit_depth(aom_codec_alg_priv_t *ctx, va_list args) { unsigned int *const bit_depth = va_arg(args, unsigned int *); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; if (bit_depth) { if (worker) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; *bit_depth = cm->seq_params.bit_depth; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_img_fmt_t get_img_format(int subsampling_x, int subsampling_y, int use_highbitdepth) { aom_img_fmt_t fmt = 0; if (subsampling_x == 0 && subsampling_y == 0) fmt = AOM_IMG_FMT_I444; else if (subsampling_x == 1 && subsampling_y == 0) fmt = AOM_IMG_FMT_I422; else if (subsampling_x == 1 && subsampling_y == 1) fmt = AOM_IMG_FMT_I420; if (use_highbitdepth) fmt |= AOM_IMG_FMT_HIGHBITDEPTH; return fmt; } static aom_codec_err_t ctrl_get_img_format(aom_codec_alg_priv_t *ctx, va_list args) { aom_img_fmt_t *const img_fmt = va_arg(args, aom_img_fmt_t *); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; if (img_fmt) { if (worker) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; *img_fmt = get_img_format(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, cm->seq_params.use_highbitdepth); return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_get_tile_size(aom_codec_alg_priv_t *ctx, va_list args) { unsigned int *const tile_size = va_arg(args, unsigned int *); AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id]; if (tile_size) { if (worker) { FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; const AV1_COMMON *const cm = &frame_worker_data->pbi->common; *tile_size = ((cm->tile_width * MI_SIZE) << 16) + cm->tile_height * MI_SIZE; return AOM_CODEC_OK; } else { return AOM_CODEC_ERROR; } } return AOM_CODEC_INVALID_PARAM; } static aom_codec_err_t ctrl_set_invert_tile_order(aom_codec_alg_priv_t *ctx, va_list args) { ctx->invert_tile_order = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_byte_alignment(aom_codec_alg_priv_t *ctx, va_list args) { const int legacy_byte_alignment = 0; const int min_byte_alignment = 32; const int max_byte_alignment = 1024; const int byte_alignment = va_arg(args, int); if (byte_alignment != legacy_byte_alignment && (byte_alignment < min_byte_alignment || byte_alignment > max_byte_alignment || (byte_alignment & (byte_alignment - 1)) != 0)) return AOM_CODEC_INVALID_PARAM; ctx->byte_alignment = byte_alignment; if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi->common.byte_alignment = byte_alignment; } return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_skip_loop_filter(aom_codec_alg_priv_t *ctx, va_list args) { ctx->skip_loop_filter = va_arg(args, int); if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi->common.skip_loop_filter = ctx->skip_loop_filter; } return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_skip_film_grain(aom_codec_alg_priv_t *ctx, va_list args) { ctx->skip_film_grain = va_arg(args, int); if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; frame_worker_data->pbi->common.skip_film_grain = ctx->skip_film_grain; } return AOM_CODEC_OK; } static aom_codec_err_t ctrl_get_accounting(aom_codec_alg_priv_t *ctx, va_list args) { #if !CONFIG_ACCOUNTING (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; #else if (ctx->frame_workers) { AVxWorker *const worker = ctx->frame_workers; FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1; AV1Decoder *pbi = frame_worker_data->pbi; Accounting **acct = va_arg(args, Accounting **); *acct = &pbi->accounting; return AOM_CODEC_OK; } return AOM_CODEC_ERROR; #endif } static aom_codec_err_t ctrl_set_decode_tile_row(aom_codec_alg_priv_t *ctx, va_list args) { ctx->decode_tile_row = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_decode_tile_col(aom_codec_alg_priv_t *ctx, va_list args) { ctx->decode_tile_col = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_tile_mode(aom_codec_alg_priv_t *ctx, va_list args) { ctx->tile_mode = va_arg(args, unsigned int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_is_annexb(aom_codec_alg_priv_t *ctx, va_list args) { ctx->is_annexb = va_arg(args, unsigned int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_operating_point(aom_codec_alg_priv_t *ctx, va_list args) { ctx->operating_point = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_output_all_layers(aom_codec_alg_priv_t *ctx, va_list args) { ctx->output_all_layers = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_inspection_callback(aom_codec_alg_priv_t *ctx, va_list args) { #if !CONFIG_INSPECTION (void)ctx; (void)args; return AOM_CODEC_INCAPABLE; #else aom_inspect_init *init = va_arg(args, aom_inspect_init *); ctx->inspect_cb = init->inspect_cb; ctx->inspect_ctx = init->inspect_ctx; return AOM_CODEC_OK; #endif } static aom_codec_err_t ctrl_ext_tile_debug(aom_codec_alg_priv_t *ctx, va_list args) { ctx->ext_tile_debug = va_arg(args, int); return AOM_CODEC_OK; } static aom_codec_err_t ctrl_set_row_mt(aom_codec_alg_priv_t *ctx, va_list args) { ctx->row_mt = va_arg(args, unsigned int); return AOM_CODEC_OK; } static aom_codec_ctrl_fn_map_t decoder_ctrl_maps[] = { { AV1_COPY_REFERENCE, ctrl_copy_reference }, // Setters { AV1_SET_REFERENCE, ctrl_set_reference }, { AOM_SET_POSTPROC, ctrl_set_postproc }, { AOM_SET_DBG_COLOR_REF_FRAME, ctrl_set_dbg_options }, { AOM_SET_DBG_COLOR_MB_MODES, ctrl_set_dbg_options }, { AOM_SET_DBG_COLOR_B_MODES, ctrl_set_dbg_options }, { AOM_SET_DBG_DISPLAY_MV, ctrl_set_dbg_options }, { AV1_INVERT_TILE_DECODE_ORDER, ctrl_set_invert_tile_order }, { AV1_SET_BYTE_ALIGNMENT, ctrl_set_byte_alignment }, { AV1_SET_SKIP_LOOP_FILTER, ctrl_set_skip_loop_filter }, { AV1_SET_DECODE_TILE_ROW, ctrl_set_decode_tile_row }, { AV1_SET_DECODE_TILE_COL, ctrl_set_decode_tile_col }, { AV1_SET_TILE_MODE, ctrl_set_tile_mode }, { AV1D_SET_IS_ANNEXB, ctrl_set_is_annexb }, { AV1D_SET_OPERATING_POINT, ctrl_set_operating_point }, { AV1D_SET_OUTPUT_ALL_LAYERS, ctrl_set_output_all_layers }, { AV1_SET_INSPECTION_CALLBACK, ctrl_set_inspection_callback }, { AV1D_EXT_TILE_DEBUG, ctrl_ext_tile_debug }, { AV1D_SET_ROW_MT, ctrl_set_row_mt }, { AV1D_SET_EXT_REF_PTR, ctrl_set_ext_ref_ptr }, { AV1D_SET_SKIP_FILM_GRAIN, ctrl_set_skip_film_grain }, // Getters { AOMD_GET_FRAME_CORRUPTED, ctrl_get_frame_corrupted }, { AOMD_GET_LAST_QUANTIZER, ctrl_get_last_quantizer }, { AOMD_GET_LAST_REF_UPDATES, ctrl_get_last_ref_updates }, { AV1D_GET_BIT_DEPTH, ctrl_get_bit_depth }, { AV1D_GET_IMG_FORMAT, ctrl_get_img_format }, { AV1D_GET_TILE_SIZE, ctrl_get_tile_size }, { AV1D_GET_DISPLAY_SIZE, ctrl_get_render_size }, { AV1D_GET_FRAME_SIZE, ctrl_get_frame_size }, { AV1_GET_ACCOUNTING, ctrl_get_accounting }, { AV1_GET_NEW_FRAME_IMAGE, ctrl_get_new_frame_image }, { AV1_COPY_NEW_FRAME_IMAGE, ctrl_copy_new_frame_image }, { AV1_GET_REFERENCE, ctrl_get_reference }, { AV1D_GET_FRAME_HEADER_INFO, ctrl_get_frame_header_info }, { AV1D_GET_TILE_DATA, ctrl_get_tile_data }, { -1, NULL }, }; #ifndef VERSION_STRING #define VERSION_STRING #endif CODEC_INTERFACE(aom_codec_av1_dx) = { "AOMedia Project AV1 Decoder" VERSION_STRING, AOM_CODEC_INTERNAL_ABI_VERSION, AOM_CODEC_CAP_DECODER | AOM_CODEC_CAP_EXTERNAL_FRAME_BUFFER, // aom_codec_caps_t decoder_init, // aom_codec_init_fn_t decoder_destroy, // aom_codec_destroy_fn_t decoder_ctrl_maps, // aom_codec_ctrl_fn_map_t { // NOLINT decoder_peek_si, // aom_codec_peek_si_fn_t decoder_get_si, // aom_codec_get_si_fn_t decoder_decode, // aom_codec_decode_fn_t decoder_get_frame, // aom_codec_get_frame_fn_t decoder_set_fb_fn, // aom_codec_set_fb_fn_t }, { // NOLINT 0, NULL, // aom_codec_enc_cfg_map_t NULL, // aom_codec_encode_fn_t NULL, // aom_codec_get_cx_data_fn_t NULL, // aom_codec_enc_config_set_fn_t NULL, // aom_codec_get_global_headers_fn_t NULL, // aom_codec_get_preview_frame_fn_t NULL // aom_codec_enc_mr_get_mem_loc_fn_t } };