/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/av1_rtcd.h" #include "av1/common/cfl.h" static INLINE void vldsubstq_s16(int16_t *dst, const uint16_t *src, int offset, int16x8_t sub) { vst1q_s16(dst + offset, vsubq_s16(vreinterpretq_s16_u16(vld1q_u16(src + offset)), sub)); } static INLINE uint16x8_t vldaddq_u16(const uint16_t *buf, size_t offset) { return vaddq_u16(vld1q_u16(buf), vld1q_u16(buf + offset)); } // Load half of a vector and duplicated in other half static INLINE uint8x8_t vldh_dup_u8(const uint8_t *ptr) { return vreinterpret_u8_u32(vld1_dup_u32((const uint32_t *)ptr)); } // Store half of a vector. static INLINE void vsth_u16(uint16_t *ptr, uint16x4_t val) { *((uint32_t *)ptr) = vreinterpret_u32_u16(val)[0]; } // Store half of a vector. static INLINE void vsth_u8(uint8_t *ptr, uint8x8_t val) { *((uint32_t *)ptr) = vreinterpret_u32_u8(val)[0]; } static void cfl_luma_subsampling_420_lbd_neon(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE; const int luma_stride = input_stride << 1; do { if (width == 4) { const uint16x4_t top = vpaddl_u8(vldh_dup_u8(input)); const uint16x4_t sum = vpadal_u8(top, vldh_dup_u8(input + input_stride)); vsth_u16(pred_buf_q3, vshl_n_u16(sum, 1)); } else if (width == 8) { const uint16x4_t top = vpaddl_u8(vld1_u8(input)); const uint16x4_t sum = vpadal_u8(top, vld1_u8(input + input_stride)); vst1_u16(pred_buf_q3, vshl_n_u16(sum, 1)); } else if (width == 16) { const uint16x8_t top = vpaddlq_u8(vld1q_u8(input)); const uint16x8_t sum = vpadalq_u8(top, vld1q_u8(input + input_stride)); vst1q_u16(pred_buf_q3, vshlq_n_u16(sum, 1)); } else { const uint8x8x4_t top = vld4_u8(input); const uint8x8x4_t bot = vld4_u8(input + input_stride); // equivalent to a vpaddlq_u8 (because vld4q interleaves) const uint16x8_t top_0 = vaddl_u8(top.val[0], top.val[1]); // equivalent to a vpaddlq_u8 (because vld4q interleaves) const uint16x8_t bot_0 = vaddl_u8(bot.val[0], bot.val[1]); // equivalent to a vpaddlq_u8 (because vld4q interleaves) const uint16x8_t top_1 = vaddl_u8(top.val[2], top.val[3]); // equivalent to a vpaddlq_u8 (because vld4q interleaves) const uint16x8_t bot_1 = vaddl_u8(bot.val[2], bot.val[3]); uint16x8x2_t sum; sum.val[0] = vshlq_n_u16(vaddq_u16(top_0, bot_0), 1); sum.val[1] = vshlq_n_u16(vaddq_u16(top_1, bot_1), 1); vst2q_u16(pred_buf_q3, sum); } input += luma_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } static void cfl_luma_subsampling_422_lbd_neon(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { if (width == 4) { const uint16x4_t top = vpaddl_u8(vldh_dup_u8(input)); vsth_u16(pred_buf_q3, vshl_n_u16(top, 2)); } else if (width == 8) { const uint16x4_t top = vpaddl_u8(vld1_u8(input)); vst1_u16(pred_buf_q3, vshl_n_u16(top, 2)); } else if (width == 16) { const uint16x8_t top = vpaddlq_u8(vld1q_u8(input)); vst1q_u16(pred_buf_q3, vshlq_n_u16(top, 2)); } else { const uint8x8x4_t top = vld4_u8(input); uint16x8x2_t sum; // vaddl_u8 is equivalent to a vpaddlq_u8 (because vld4q interleaves) sum.val[0] = vshlq_n_u16(vaddl_u8(top.val[0], top.val[1]), 2); sum.val[1] = vshlq_n_u16(vaddl_u8(top.val[2], top.val[3]), 2); vst2q_u16(pred_buf_q3, sum); } input += input_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } static void cfl_luma_subsampling_444_lbd_neon(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { if (width == 4) { const uint16x8_t top = vshll_n_u8(vldh_dup_u8(input), 3); vst1_u16(pred_buf_q3, vget_low_u16(top)); } else if (width == 8) { const uint16x8_t top = vshll_n_u8(vld1_u8(input), 3); vst1q_u16(pred_buf_q3, top); } else { const uint8x16_t top = vld1q_u8(input); vst1q_u16(pred_buf_q3, vshll_n_u8(vget_low_u8(top), 3)); vst1q_u16(pred_buf_q3 + 8, vshll_n_u8(vget_high_u8(top), 3)); if (width == 32) { const uint8x16_t next_top = vld1q_u8(input + 16); vst1q_u16(pred_buf_q3 + 16, vshll_n_u8(vget_low_u8(next_top), 3)); vst1q_u16(pred_buf_q3 + 24, vshll_n_u8(vget_high_u8(next_top), 3)); } } input += input_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } #ifndef __aarch64__ uint16x8_t vpaddq_u16(uint16x8_t a, uint16x8_t b) { return vcombine_u16(vpadd_u16(vget_low_u16(a), vget_high_u16(a)), vpadd_u16(vget_low_u16(b), vget_high_u16(b))); } #endif static void cfl_luma_subsampling_420_hbd_neon(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE; const int luma_stride = input_stride << 1; do { if (width == 4) { const uint16x4_t top = vld1_u16(input); const uint16x4_t bot = vld1_u16(input + input_stride); const uint16x4_t sum = vadd_u16(top, bot); const uint16x4_t hsum = vpadd_u16(sum, sum); vsth_u16(pred_buf_q3, vshl_n_u16(hsum, 1)); } else if (width < 32) { const uint16x8_t top = vld1q_u16(input); const uint16x8_t bot = vld1q_u16(input + input_stride); const uint16x8_t sum = vaddq_u16(top, bot); if (width == 8) { const uint16x4_t hsum = vget_low_u16(vpaddq_u16(sum, sum)); vst1_u16(pred_buf_q3, vshl_n_u16(hsum, 1)); } else { const uint16x8_t top_1 = vld1q_u16(input + 8); const uint16x8_t bot_1 = vld1q_u16(input + 8 + input_stride); const uint16x8_t sum_1 = vaddq_u16(top_1, bot_1); const uint16x8_t hsum = vpaddq_u16(sum, sum_1); vst1q_u16(pred_buf_q3, vshlq_n_u16(hsum, 1)); } } else { const uint16x8x4_t top = vld4q_u16(input); const uint16x8x4_t bot = vld4q_u16(input + input_stride); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t top_0 = vaddq_u16(top.val[0], top.val[1]); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t bot_0 = vaddq_u16(bot.val[0], bot.val[1]); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t top_1 = vaddq_u16(top.val[2], top.val[3]); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t bot_1 = vaddq_u16(bot.val[2], bot.val[3]); uint16x8x2_t sum; sum.val[0] = vshlq_n_u16(vaddq_u16(top_0, bot_0), 1); sum.val[1] = vshlq_n_u16(vaddq_u16(top_1, bot_1), 1); vst2q_u16(pred_buf_q3, sum); } input += luma_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } static void cfl_luma_subsampling_422_hbd_neon(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { if (width == 4) { const uint16x4_t top = vld1_u16(input); const uint16x4_t hsum = vpadd_u16(top, top); vsth_u16(pred_buf_q3, vshl_n_u16(hsum, 2)); } else if (width == 8) { const uint16x4x2_t top = vld2_u16(input); // equivalent to a vpadd_u16 (because vld2 interleaves) const uint16x4_t hsum = vadd_u16(top.val[0], top.val[1]); vst1_u16(pred_buf_q3, vshl_n_u16(hsum, 2)); } else if (width == 16) { const uint16x8x2_t top = vld2q_u16(input); // equivalent to a vpaddq_u16 (because vld2q interleaves) const uint16x8_t hsum = vaddq_u16(top.val[0], top.val[1]); vst1q_u16(pred_buf_q3, vshlq_n_u16(hsum, 2)); } else { const uint16x8x4_t top = vld4q_u16(input); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t hsum_0 = vaddq_u16(top.val[0], top.val[1]); // equivalent to a vpaddq_u16 (because vld4q interleaves) const uint16x8_t hsum_1 = vaddq_u16(top.val[2], top.val[3]); uint16x8x2_t result = { { vshlq_n_u16(hsum_0, 2), vshlq_n_u16(hsum_1, 2) } }; vst2q_u16(pred_buf_q3, result); } input += input_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } static void cfl_luma_subsampling_444_hbd_neon(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { if (width == 4) { const uint16x4_t top = vld1_u16(input); vst1_u16(pred_buf_q3, vshl_n_u16(top, 3)); } else if (width == 8) { const uint16x8_t top = vld1q_u16(input); vst1q_u16(pred_buf_q3, vshlq_n_u16(top, 3)); } else if (width == 16) { uint16x8x2_t top = vld2q_u16(input); top.val[0] = vshlq_n_u16(top.val[0], 3); top.val[1] = vshlq_n_u16(top.val[1], 3); vst2q_u16(pred_buf_q3, top); } else { uint16x8x4_t top = vld4q_u16(input); top.val[0] = vshlq_n_u16(top.val[0], 3); top.val[1] = vshlq_n_u16(top.val[1], 3); top.val[2] = vshlq_n_u16(top.val[2], 3); top.val[3] = vshlq_n_u16(top.val[3], 3); vst4q_u16(pred_buf_q3, top); } input += input_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } CFL_GET_SUBSAMPLE_FUNCTION(neon) static INLINE void subtract_average_neon(const uint16_t *src, int16_t *dst, int width, int height, int round_offset, const int num_pel_log2) { const uint16_t *const end = src + height * CFL_BUF_LINE; // Round offset is not needed, because NEON will handle the rounding. (void)round_offset; // To optimize the use of the CPU pipeline, we process 4 rows per iteration const int step = 4 * CFL_BUF_LINE; // At this stage, the prediction buffer contains scaled reconstructed luma // pixels, which are positive integer and only require 15 bits. By using // unsigned integer for the sum, we can do one addition operation inside 16 // bits (8 lanes) before having to convert to 32 bits (4 lanes). const uint16_t *sum_buf = src; uint32x4_t sum_32x4 = { 0, 0, 0, 0 }; do { // For all widths, we load, add and combine the data so it fits in 4 lanes. if (width == 4) { const uint16x4_t a0 = vadd_u16(vld1_u16(sum_buf), vld1_u16(sum_buf + CFL_BUF_LINE)); const uint16x4_t a1 = vadd_u16(vld1_u16(sum_buf + 2 * CFL_BUF_LINE), vld1_u16(sum_buf + 3 * CFL_BUF_LINE)); sum_32x4 = vaddq_u32(sum_32x4, vaddl_u16(a0, a1)); } else if (width == 8) { const uint16x8_t a0 = vldaddq_u16(sum_buf, CFL_BUF_LINE); const uint16x8_t a1 = vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE, CFL_BUF_LINE); sum_32x4 = vpadalq_u16(sum_32x4, a0); sum_32x4 = vpadalq_u16(sum_32x4, a1); } else { const uint16x8_t row0 = vldaddq_u16(sum_buf, 8); const uint16x8_t row1 = vldaddq_u16(sum_buf + CFL_BUF_LINE, 8); const uint16x8_t row2 = vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE, 8); const uint16x8_t row3 = vldaddq_u16(sum_buf + 3 * CFL_BUF_LINE, 8); sum_32x4 = vpadalq_u16(sum_32x4, row0); sum_32x4 = vpadalq_u16(sum_32x4, row1); sum_32x4 = vpadalq_u16(sum_32x4, row2); sum_32x4 = vpadalq_u16(sum_32x4, row3); if (width == 32) { const uint16x8_t row0_1 = vldaddq_u16(sum_buf + 16, 8); const uint16x8_t row1_1 = vldaddq_u16(sum_buf + CFL_BUF_LINE + 16, 8); const uint16x8_t row2_1 = vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE + 16, 8); const uint16x8_t row3_1 = vldaddq_u16(sum_buf + 3 * CFL_BUF_LINE + 16, 8); sum_32x4 = vpadalq_u16(sum_32x4, row0_1); sum_32x4 = vpadalq_u16(sum_32x4, row1_1); sum_32x4 = vpadalq_u16(sum_32x4, row2_1); sum_32x4 = vpadalq_u16(sum_32x4, row3_1); } } sum_buf += step; } while (sum_buf < end); // Permute and add in such a way that each lane contains the block sum. // [A+C+B+D, B+D+A+C, C+A+D+B, D+B+C+A] #ifdef __aarch64__ sum_32x4 = vpaddq_u32(sum_32x4, sum_32x4); sum_32x4 = vpaddq_u32(sum_32x4, sum_32x4); #else uint32x4_t flip = vcombine_u32(vget_high_u32(sum_32x4), vget_low_u32(sum_32x4)); sum_32x4 = vaddq_u32(sum_32x4, flip); sum_32x4 = vaddq_u32(sum_32x4, vrev64q_u32(sum_32x4)); #endif // Computing the average could be done using scalars, but getting off the NEON // engine introduces latency, so we use vqrshrn. int16x4_t avg_16x4; // Constant propagation makes for some ugly code. switch (num_pel_log2) { case 4: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 4)); break; case 5: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 5)); break; case 6: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 6)); break; case 7: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 7)); break; case 8: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 8)); break; case 9: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 9)); break; case 10: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 10)); break; default: assert(0); } if (width == 4) { do { vst1_s16(dst, vsub_s16(vreinterpret_s16_u16(vld1_u16(src)), avg_16x4)); src += CFL_BUF_LINE; dst += CFL_BUF_LINE; } while (src < end); } else { const int16x8_t avg_16x8 = vcombine_s16(avg_16x4, avg_16x4); do { vldsubstq_s16(dst, src, 0, avg_16x8); vldsubstq_s16(dst, src, CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 2 * CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 3 * CFL_BUF_LINE, avg_16x8); if (width > 8) { vldsubstq_s16(dst, src, 8, avg_16x8); vldsubstq_s16(dst, src, 8 + CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 8 + 2 * CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 8 + 3 * CFL_BUF_LINE, avg_16x8); } if (width == 32) { vldsubstq_s16(dst, src, 16, avg_16x8); vldsubstq_s16(dst, src, 16 + CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 16 + 2 * CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 16 + 3 * CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 24, avg_16x8); vldsubstq_s16(dst, src, 24 + CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 24 + 2 * CFL_BUF_LINE, avg_16x8); vldsubstq_s16(dst, src, 24 + 3 * CFL_BUF_LINE, avg_16x8); } src += step; dst += step; } while (src < end); } } CFL_SUB_AVG_FN(neon) // Saturating negate 16-bit integers in a when the corresponding signed 16-bit // integer in b is negative. // Notes: // * Negating INT16_MIN results in INT16_MIN. However, this cannot occur in // practice, as scaled_luma is the multiplication of two absolute values. // * In the Intel equivalent, elements in a are zeroed out when the // corresponding elements in b are zero. Because vsign is used twice in a // row, with b in the first call becoming a in the second call, there's no // impact from not zeroing out. static int16x4_t vsign_s16(int16x4_t a, int16x4_t b) { const int16x4_t mask = vshr_n_s16(b, 15); return veor_s16(vadd_s16(a, mask), mask); } // Saturating negate 16-bit integers in a when the corresponding signed 16-bit // integer in b is negative. // Notes: // * Negating INT16_MIN results in INT16_MIN. However, this cannot occur in // practice, as scaled_luma is the multiplication of two absolute values. // * In the Intel equivalent, elements in a are zeroed out when the // corresponding elements in b are zero. Because vsignq is used twice in a // row, with b in the first call becoming a in the second call, there's no // impact from not zeroing out. static int16x8_t vsignq_s16(int16x8_t a, int16x8_t b) { const int16x8_t mask = vshrq_n_s16(b, 15); return veorq_s16(vaddq_s16(a, mask), mask); } static INLINE int16x4_t predict_w4(const int16_t *pred_buf_q3, int16x4_t alpha_sign, int abs_alpha_q12, int16x4_t dc) { const int16x4_t ac_q3 = vld1_s16(pred_buf_q3); const int16x4_t ac_sign = veor_s16(alpha_sign, ac_q3); int16x4_t scaled_luma = vqrdmulh_n_s16(vabs_s16(ac_q3), abs_alpha_q12); return vadd_s16(vsign_s16(scaled_luma, ac_sign), dc); } static INLINE int16x8_t predict_w8(const int16_t *pred_buf_q3, int16x8_t alpha_sign, int abs_alpha_q12, int16x8_t dc) { const int16x8_t ac_q3 = vld1q_s16(pred_buf_q3); const int16x8_t ac_sign = veorq_s16(alpha_sign, ac_q3); int16x8_t scaled_luma = vqrdmulhq_n_s16(vabsq_s16(ac_q3), abs_alpha_q12); return vaddq_s16(vsignq_s16(scaled_luma, ac_sign), dc); } static INLINE int16x8x2_t predict_w16(const int16_t *pred_buf_q3, int16x8_t alpha_sign, int abs_alpha_q12, int16x8_t dc) { // vld2q_s16 interleaves, which is not useful for prediction. vst1q_s16_x2 // does not interleave, but is not currently available in the compilier used // by the AOM build system. const int16x8x2_t ac_q3 = vld2q_s16(pred_buf_q3); const int16x8_t ac_sign_0 = veorq_s16(alpha_sign, ac_q3.val[0]); const int16x8_t ac_sign_1 = veorq_s16(alpha_sign, ac_q3.val[1]); const int16x8_t scaled_luma_0 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[0]), abs_alpha_q12); const int16x8_t scaled_luma_1 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[1]), abs_alpha_q12); int16x8x2_t result; result.val[0] = vaddq_s16(vsignq_s16(scaled_luma_0, ac_sign_0), dc); result.val[1] = vaddq_s16(vsignq_s16(scaled_luma_1, ac_sign_1), dc); return result; } static INLINE int16x8x4_t predict_w32(const int16_t *pred_buf_q3, int16x8_t alpha_sign, int abs_alpha_q12, int16x8_t dc) { // vld4q_s16 interleaves, which is not useful for prediction. vst1q_s16_x4 // does not interleave, but is not currently available in the compilier used // by the AOM build system. const int16x8x4_t ac_q3 = vld4q_s16(pred_buf_q3); const int16x8_t ac_sign_0 = veorq_s16(alpha_sign, ac_q3.val[0]); const int16x8_t ac_sign_1 = veorq_s16(alpha_sign, ac_q3.val[1]); const int16x8_t ac_sign_2 = veorq_s16(alpha_sign, ac_q3.val[2]); const int16x8_t ac_sign_3 = veorq_s16(alpha_sign, ac_q3.val[3]); const int16x8_t scaled_luma_0 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[0]), abs_alpha_q12); const int16x8_t scaled_luma_1 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[1]), abs_alpha_q12); const int16x8_t scaled_luma_2 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[2]), abs_alpha_q12); const int16x8_t scaled_luma_3 = vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[3]), abs_alpha_q12); int16x8x4_t result; result.val[0] = vaddq_s16(vsignq_s16(scaled_luma_0, ac_sign_0), dc); result.val[1] = vaddq_s16(vsignq_s16(scaled_luma_1, ac_sign_1), dc); result.val[2] = vaddq_s16(vsignq_s16(scaled_luma_2, ac_sign_2), dc); result.val[3] = vaddq_s16(vsignq_s16(scaled_luma_3, ac_sign_3), dc); return result; } static INLINE void cfl_predict_lbd_neon(const int16_t *pred_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3, int width, int height) { const int16_t abs_alpha_q12 = abs(alpha_q3) << 9; const int16_t *const end = pred_buf_q3 + height * CFL_BUF_LINE; if (width == 4) { const int16x4_t alpha_sign = vdup_n_s16(alpha_q3); const int16x4_t dc = vdup_n_s16(*dst); do { const int16x4_t pred = predict_w4(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); vsth_u8(dst, vqmovun_s16(vcombine_s16(pred, pred))); dst += dst_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } else { const int16x8_t alpha_sign = vdupq_n_s16(alpha_q3); const int16x8_t dc = vdupq_n_s16(*dst); do { if (width == 8) { vst1_u8(dst, vqmovun_s16(predict_w8(pred_buf_q3, alpha_sign, abs_alpha_q12, dc))); } else if (width == 16) { const int16x8x2_t pred = predict_w16(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); const uint8x8x2_t predun = { { vqmovun_s16(pred.val[0]), vqmovun_s16(pred.val[1]) } }; vst2_u8(dst, predun); } else { const int16x8x4_t pred = predict_w32(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); const uint8x8x4_t predun = { { vqmovun_s16(pred.val[0]), vqmovun_s16(pred.val[1]), vqmovun_s16(pred.val[2]), vqmovun_s16(pred.val[3]) } }; vst4_u8(dst, predun); } dst += dst_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } } CFL_PREDICT_FN(neon, lbd) static INLINE uint16x4_t clamp_s16(int16x4_t a, int16x4_t max) { return vreinterpret_u16_s16(vmax_s16(vmin_s16(a, max), vdup_n_s16(0))); } static INLINE uint16x8_t clampq_s16(int16x8_t a, int16x8_t max) { return vreinterpretq_u16_s16(vmaxq_s16(vminq_s16(a, max), vdupq_n_s16(0))); } static INLINE uint16x8x2_t clamp2q_s16(int16x8x2_t a, int16x8_t max) { uint16x8x2_t result; result.val[0] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[0], max), vdupq_n_s16(0))); result.val[1] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[1], max), vdupq_n_s16(0))); return result; } static INLINE uint16x8x4_t clamp4q_s16(int16x8x4_t a, int16x8_t max) { uint16x8x4_t result; result.val[0] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[0], max), vdupq_n_s16(0))); result.val[1] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[1], max), vdupq_n_s16(0))); result.val[2] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[2], max), vdupq_n_s16(0))); result.val[3] = vreinterpretq_u16_s16( vmaxq_s16(vminq_s16(a.val[3], max), vdupq_n_s16(0))); return result; } static INLINE void cfl_predict_hbd_neon(const int16_t *pred_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bd, int width, int height) { const int max = (1 << bd) - 1; const int16_t abs_alpha_q12 = abs(alpha_q3) << 9; const int16_t *const end = pred_buf_q3 + height * CFL_BUF_LINE; if (width == 4) { const int16x4_t alpha_sign = vdup_n_s16(alpha_q3); const int16x4_t dc = vdup_n_s16(*dst); const int16x4_t max_16x4 = vdup_n_s16(max); do { const int16x4_t scaled_luma = predict_w4(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); vst1_u16(dst, clamp_s16(scaled_luma, max_16x4)); dst += dst_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } else { const int16x8_t alpha_sign = vdupq_n_s16(alpha_q3); const int16x8_t dc = vdupq_n_s16(*dst); const int16x8_t max_16x8 = vdupq_n_s16(max); do { if (width == 8) { const int16x8_t pred = predict_w8(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); vst1q_u16(dst, clampq_s16(pred, max_16x8)); } else if (width == 16) { const int16x8x2_t pred = predict_w16(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); vst2q_u16(dst, clamp2q_s16(pred, max_16x8)); } else { const int16x8x4_t pred = predict_w32(pred_buf_q3, alpha_sign, abs_alpha_q12, dc); vst4q_u16(dst, clamp4q_s16(pred, max_16x8)); } dst += dst_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } } CFL_PREDICT_FN(neon, hbd)