/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "av1/common/enums.h" #include "av1/common/av1_txfm.h" #include "av1/common/av1_inv_txfm1d.h" #include "av1/common/av1_inv_txfm1d_cfg.h" void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_low_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = a1; op[1] = b1; op[2] = c1; op[3] = d1; ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; range_check_value(a1, bd + 1); range_check_value(b1, bd + 1); range_check_value(c1, bd + 1); range_check_value(d1, bd + 1); dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd); dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd); dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd); dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd); ip++; dest++; } } void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8, int dest_stride, int bd) { int i; tran_low_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); (void)bd; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = a1; op[1] = op[2] = op[3] = e1; ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd); dest[dest_stride * 1] = highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd); dest[dest_stride * 2] = highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd); dest[dest_stride * 3] = highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd); ip++; dest++; } } static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { switch (txfm_type) { case TXFM_TYPE_DCT4: return av1_idct4_new; case TXFM_TYPE_DCT8: return av1_idct8_new; case TXFM_TYPE_DCT16: return av1_idct16_new; case TXFM_TYPE_DCT32: return av1_idct32_new; case TXFM_TYPE_DCT64: return av1_idct64_new; case TXFM_TYPE_ADST4: return av1_iadst4_new; case TXFM_TYPE_ADST8: return av1_iadst8_new; case TXFM_TYPE_ADST16: return av1_iadst16_new; case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c; case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c; case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c; case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c; default: assert(0); return NULL; } } static const int8_t inv_shift_4x4[2] = { 0, -4 }; static const int8_t inv_shift_8x8[2] = { -1, -4 }; static const int8_t inv_shift_16x16[2] = { -2, -4 }; static const int8_t inv_shift_32x32[2] = { -2, -4 }; static const int8_t inv_shift_64x64[2] = { -2, -4 }; static const int8_t inv_shift_4x8[2] = { 0, -4 }; static const int8_t inv_shift_8x4[2] = { 0, -4 }; static const int8_t inv_shift_8x16[2] = { -1, -4 }; static const int8_t inv_shift_16x8[2] = { -1, -4 }; static const int8_t inv_shift_16x32[2] = { -1, -4 }; static const int8_t inv_shift_32x16[2] = { -1, -4 }; static const int8_t inv_shift_32x64[2] = { -1, -4 }; static const int8_t inv_shift_64x32[2] = { -1, -4 }; static const int8_t inv_shift_4x16[2] = { -1, -4 }; static const int8_t inv_shift_16x4[2] = { -1, -4 }; static const int8_t inv_shift_8x32[2] = { -2, -4 }; static const int8_t inv_shift_32x8[2] = { -2, -4 }; static const int8_t inv_shift_16x64[2] = { -2, -4 }; static const int8_t inv_shift_64x16[2] = { -2, -4 }; const int8_t *inv_txfm_shift_ls[TX_SIZES_ALL] = { inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32, inv_shift_64x64, inv_shift_4x8, inv_shift_8x4, inv_shift_8x16, inv_shift_16x8, inv_shift_16x32, inv_shift_32x16, inv_shift_32x64, inv_shift_64x32, inv_shift_4x16, inv_shift_16x4, inv_shift_8x32, inv_shift_32x8, inv_shift_16x64, inv_shift_64x16, }; /* clang-format off */ const int8_t inv_cos_bit_col[MAX_TXWH_IDX] // txw_idx [MAX_TXWH_IDX] = { // txh_idx { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0, 0 }, { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0 }, { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }, { 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }, { 0, 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT } }; const int8_t inv_cos_bit_row[MAX_TXWH_IDX] // txw_idx [MAX_TXWH_IDX] = { // txh_idx { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0, 0 }, { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, 0 }, { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }, { 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }, { 0, 0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT } }; /* clang-format on */ const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 }; void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, TXFM_2D_FLIP_CFG *cfg) { assert(cfg != NULL); cfg->tx_size = tx_size; set_flip_cfg(tx_type, cfg); av1_zero(cfg->stage_range_col); av1_zero(cfg->stage_range_row); set_flip_cfg(tx_type, cfg); const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; cfg->shift = inv_txfm_shift_ls[tx_size]; const int txw_idx = get_txw_idx(tx_size); const int txh_idx = get_txh_idx(tx_size); cfg->cos_bit_col = inv_cos_bit_col[txw_idx][txh_idx]; cfg->cos_bit_row = inv_cos_bit_row[txw_idx][txh_idx]; cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col]; if (cfg->txfm_type_col == TXFM_TYPE_ADST4) { memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range)); } cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row]; if (cfg->txfm_type_row == TXFM_TYPE_ADST4) { memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range)); } cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col]; cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row]; } void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size, int bd) { const int fwd_shift = inv_start_range[tx_size]; const int8_t *shift = cfg->shift; int8_t opt_range_row, opt_range_col; if (bd == 8) { opt_range_row = 16; opt_range_col = 16; } else if (bd == 10) { opt_range_row = 18; opt_range_col = 16; } else { assert(bd == 12); opt_range_row = 20; opt_range_col = 18; } // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) { int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1; (void)real_range_row; if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) { // the adst4 may use 1 extra bit on top of opt_range_row at stage 1 // so opt_range_col >= real_range_col will not hold stage_range_row[i] = opt_range_row; } else { assert(opt_range_row >= real_range_row); stage_range_row[i] = opt_range_row; } } // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) { int real_range_col = cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1; (void)real_range_col; if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) { // the adst4 may use 1 extra bit on top of opt_range_row at stage 1 // so opt_range_col >= real_range_col will not hold stage_range_col[i] = opt_range_col; } else { assert(opt_range_col >= real_range_col); stage_range_col[i] = opt_range_col; } } } static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output, int stride, TXFM_2D_FLIP_CFG *cfg, int32_t *txfm_buf, TX_SIZE tx_size, int bd) { // Note when assigning txfm_size_col, we use the txfm_size from the // row configuration and vice versa. This is intentionally done to // accurately perform rectangular transforms. When the transform is // rectangular, the number of columns will be the same as the // txfm_size stored in the row cfg struct. It will make no difference // for square transforms. const int txfm_size_col = tx_size_wide[cfg->tx_size]; const int txfm_size_row = tx_size_high[cfg->tx_size]; // Take the shift from the larger dimension in the rectangular case. const int8_t *shift = cfg->shift; const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row); int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM); assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM); av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd); const int8_t cos_bit_col = cfg->cos_bit_col; const int8_t cos_bit_row = cfg->cos_bit_row; const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col); const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row); // txfm_buf's length is txfm_size_row * txfm_size_col + 2 * // AOMMAX(txfm_size_row, txfm_size_col) // it is used for intermediate data buffering const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col); int32_t *temp_in = txfm_buf; int32_t *temp_out = temp_in + buf_offset; int32_t *buf = temp_out + buf_offset; int32_t *buf_ptr = buf; int c, r; // Rows for (r = 0; r < txfm_size_row; ++r) { if (abs(rect_type) == 1) { for (c = 0; c < txfm_size_col; ++c) { temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits); } clamp_buf(temp_in, txfm_size_col, bd + 8); txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row); } else { for (c = 0; c < txfm_size_col; ++c) { temp_in[c] = input[c]; } clamp_buf(temp_in, txfm_size_col, bd + 8); txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row); } av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]); input += txfm_size_col; buf_ptr += txfm_size_col; } // Columns for (c = 0; c < txfm_size_col; ++c) { if (cfg->lr_flip == 0) { for (r = 0; r < txfm_size_row; ++r) temp_in[r] = buf[r * txfm_size_col + c]; } else { // flip left right for (r = 0; r < txfm_size_row; ++r) temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)]; } clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16)); txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); av1_round_shift_array(temp_out, txfm_size_row, -shift[1]); if (cfg->ud_flip == 0) { for (r = 0; r < txfm_size_row; ++r) { output[r * stride + c] = highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd); } } else { // flip upside down for (r = 0; r < txfm_size_row; ++r) { output[r * stride + c] = highbd_clip_pixel_add( output[r * stride + c], temp_out[txfm_size_row - r - 1], bd); } } } } static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output, int stride, int32_t *txfm_buf, TX_TYPE tx_type, TX_SIZE tx_size, int bd) { TXFM_2D_FLIP_CFG cfg; av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg); // Forward shift sum uses larger square size, to be consistent with what // av1_gen_inv_stage_range() does for inverse shifts. inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd); } void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd); } void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd); } void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd); } void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd); } void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd); } void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd); } void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd); } void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd); } void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd); } void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd); } void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { // TODO(urvang): Can the same array be reused, instead of using a new array? // Remap 32x32 input into a modified 64x64 by: // - Copying over these values in top-left 32x32 locations. // - Setting the rest of the locations to 0. int32_t mod_input[64 * 64]; for (int row = 0; row < 32; ++row) { memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); } memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input)); DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]); inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64, bd); } void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { // Remap 32x32 input into a modified 64x32 by: // - Copying over these values in top-left 32x32 locations. // - Setting the rest of the locations to 0. int32_t mod_input[64 * 32]; for (int row = 0; row < 32; ++row) { memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); } DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]); inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32, bd); } void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { // Remap 32x32 input into a modified 32x64 input by: // - Copying over these values in top-left 32x32 locations. // - Setting the rest of the locations to 0. int32_t mod_input[32 * 64]; memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input)); memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input)); DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]); inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64, bd); } void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { // Remap 16x32 input into a modified 16x64 input by: // - Copying over these values in top-left 16x32 locations. // - Setting the rest of the locations to 0. int32_t mod_input[16 * 64]; memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input)); memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input)); DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]); inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64, bd); } void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { // Remap 32x16 input into a modified 64x16 by: // - Copying over these values in top-left 32x16 locations. // - Setting the rest of the locations to 0. int32_t mod_input[64 * 16]; for (int row = 0; row < 16; ++row) { memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); } DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]); inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16, bd); } void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd); } void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd); } void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd); } void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]); inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd); }