/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/onyxc_int.h" #include "av1/common/reconinter.h" #include "av1/common/seg_common.h" static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } }; static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { { 0, 1 }, { 2, 2 }, { 3, 3 } }; typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR; static const int mode_lf_lut[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) }; #if LOOP_FILTER_BITMASK // 256 bit masks (64x64 / 4x4) for left transform size for Y plane. // We use 4 uint64_t to represent the 256 bit. // Each 1 represents a position where we should apply a loop filter // across the left border of an 4x4 block boundary. // // In the case of TX_8x8-> ( in low order byte first we end up with // a mask that looks like this (-- and | are used for better view) // // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // ----------------- // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // 10101010|10101010 // // A loopfilter should be applied to every other 4x4 horizontally. // 256 bit masks (64x64 / 4x4) for above transform size for Y plane. // We use 4 uint64_t to represent the 256 bit. // Each 1 represents a position where we should apply a loop filter // across the top border of an 4x4 block boundary. // // In the case of TX_8x8-> ( in low order byte first we end up with // a mask that looks like this // // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // ----------------- // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // 11111111|11111111 // 00000000|00000000 // // A loopfilter should be applied to every other 4x4 horizontally. const int mask_id_table_tx_4x4[BLOCK_SIZES_ALL] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, 13, 14, 15, 16, 17, 18 }; const int mask_id_table_tx_8x8[BLOCK_SIZES_ALL] = { -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, 10, 11, 12, 13 }; const int mask_id_table_tx_16x16[BLOCK_SIZES_ALL] = { -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, 7, 8 }; const int mask_id_table_tx_32x32[BLOCK_SIZES_ALL] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; const FilterMask left_mask_univariant_reordered[67] = { // TX_4X4 { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X4, TX_4X4 { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X8, TX_4X4 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X4, TX_4X4 { { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X8, TX_4X4 { { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_4X4 { { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_4X4 { { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_4X4 { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4 { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_4X4 { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } }, // block size 64X64, TX_4X4 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X4 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_4X4 { { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_4X4 { { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_4X4 { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL } }, // block size 16X64, TX_4X4 { { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_4X4 // TX_8X8 { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X8, TX_8X8 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_8X8 { { 0x0000000000050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_8X8 { { 0x0005000500050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_8X8 { { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_8X8 { { 0x0055005500550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_8X8 { { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_8X8 { { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0055005500550055ULL } }, // block size 32X64, TX_8X8 { { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_8X8 { { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL } }, // block size 64X64, TX_8X8 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X8 { { 0x0000000000550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_8X8 { { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0005000500050005ULL } }, // block size 16X64, TX_8X8 { { 0x5555555555555555ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_8X8 // TX_16X16 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_16X16 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_16X16 { { 0x0011001100110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_16X16 { { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_16X16 { { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0011001100110011ULL } }, // block size 32X64, TX_16X16 { { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_16X16 { { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL } }, // block size 64X64, TX_16X16 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, // block size 16X64, TX_16X16 { { 0x1111111111111111ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_16X16 // TX_32X32 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_32X32 { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL } }, // block size 32X64, TX_32X32 { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_32X32 { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL } }, // block size 64X64, TX_32X32 // TX_64X64 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, // block size 64X64, TX_64X64 // 2:1, 1:2 transform sizes. { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X8, TX_4X8 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X8 { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X4, TX_8X4 { { 0x0000000000000005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_8X4 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_8X16 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X16 { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_16X8 { { 0x0000000000110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_16X8 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_16X32 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, // block size 16X64, TX_16X32 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_32X16 { { 0x0101010101010101ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_32X16 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, // block size 32X64, TX_32X64 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_64X32 // 4:1, 1:4 transform sizes. { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X16 { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_16X4 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X32 { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_32X8 { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, // block size 16X64, TX_16X64 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_64X16 }; const FilterMask above_mask_univariant_reordered[67] = { // TX_4X4 { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X4, TX_4X4 { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X8, TX_4X4 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X4, TX_4X4 { { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X8, TX_4X4 { { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_4X4 { { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_4X4 { { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_4X4 { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_4X4 { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4 { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_4X4 { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } }, // block size 64X64, TX_4x4 { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X4 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_4X4 { { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_4X4 { { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_4X4 { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL } }, // block size 16X64, TX_4X4 { { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_4X4 // TX_8X8 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X8, TX_8X8 { { 0x0000000300000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_8X8 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_8X8 { { 0x0000000f0000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_8X8 { { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_8X8 { { 0x000000ff000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_8X8 { { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_8X8 { { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x000000ff000000ffULL } }, // block size 32X64, TX_8X8 { { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_8X8 { { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL } }, // block size 64X64, TX_8X8 { { 0x0000000300000003ULL, 0x0000000300000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X8 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_8X8 { { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000f0000000fULL } }, // block size 16X64, TX_8X8 { { 0x0000ffff0000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_8X8 // TX_16X16 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X16, TX_16X16 { { 0x000000000000000fULL, 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_16X16 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_16X16 { { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_16X16 { { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x00000000000000ffULL, 0x00000000000000ffULL } }, // block size 32X64, TX_16X16 { { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_16X16 { { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL } }, // block size 64X64, TX_16X16 { { 0x000000000000000fULL, 0x000000000000000fULL, 0x000000000000000fULL, 0x000000000000000fULL } }, // block size 16X64, TX_16X16 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_16X16 // TX_32X32 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X32, TX_32X32 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x00000000000000ffULL, 0x0000000000000000ULL } }, // block size 32X64, TX_32X32 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_32X32 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x000000000000ffffULL, 0x0000000000000000ULL } }, // block size 64X64, TX_32X32 // TX_64X64 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X64, TX_64X64 // 2:1, 1:2 transform sizes. { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X8, TX_4X8 { { 0x0000000100000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X8 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X4, TX_8X4 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_8X4 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X16, TX_8X16 { { 0x0000000000000003ULL, 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X16 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X8, TX_16X8 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_16X8 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X32, TX_16X32 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x000000000000000fULL, 0x0000000000000000ULL } }, // block size 16X64, TX_16X32 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X16, TX_32X16 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_32X16 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X64, TX_32X64 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X32, TX_64X32 // 4:1, 1:4 transform sizes. { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 4X16, TX_4X16 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X4, TX_16X4 { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 8X32, TX_8X32 { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 32X8, TX_32X8 { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 16X64, TX_16X64 { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, // block size 64X16, TX_64X16 }; LoopFilterMask *get_loop_filter_mask(const AV1_COMMON *const cm, int mi_row, int mi_col) { assert(cm->lf.lfm != NULL); const int row = mi_row >> MIN_MIB_SIZE_LOG2; // 64x64 const int col = mi_col >> MIN_MIB_SIZE_LOG2; return &cm->lf.lfm[row * cm->lf.lfm_stride + col]; } typedef void (*LpfFunc)(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh); typedef void (*LpfDualFunc)(uint8_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1); typedef void (*HbdLpfFunc)(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd); typedef void (*HbdLpfDualFunc)(uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd); #endif // LOOP_FILTER_BITMASK static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int lvl; // For each possible value for the loop filter fill out limits for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { // Set loop filter parameters that control sharpness. int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), SIMD_WIDTH); } } uint8_t get_filter_level(const AV1_COMMON *cm, const loop_filter_info_n *lfi_n, const int dir_idx, int plane, const MB_MODE_INFO *mbmi) { const int segment_id = mbmi->segment_id; if (cm->delta_lf_present_flag) { int delta_lf; if (cm->delta_lf_multi) { const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; delta_lf = mbmi->delta_lf[delta_lf_idx]; } else { delta_lf = mbmi->delta_lf_from_base; } int base_level; if (plane == 0) base_level = cm->lf.filter_level[dir_idx]; else if (plane == 1) base_level = cm->lf.filter_level_u; else base_level = cm->lf.filter_level_v; int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER); assert(plane >= 0 && plane <= 2); const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); } if (cm->lf.mode_ref_delta_enabled) { const int scale = 1 << (lvl_seg >> 5); lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; if (mbmi->ref_frame[0] > INTRA_FRAME) lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); } return lvl_seg; } else { return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]] [mode_lf_lut[mbmi->mode]]; } } void av1_loop_filter_init(AV1_COMMON *cm) { assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); loop_filter_info_n *lfi = &cm->lf_info; struct loopfilter *lf = &cm->lf; int lvl; lf->combine_vert_horz_lf = 1; // init limits for given sharpness update_sharpness(lfi, lf->sharpness_level); // init hev threshold const vectors for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); } // Update the loop filter for the current frame. // This should be called before loop_filter_rows(), // av1_loop_filter_frame() calls this function directly. void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start, int plane_end) { int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE]; int plane; int seg_id; // n_shift is the multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 loop_filter_info_n *const lfi = &cm->lf_info; struct loopfilter *const lf = &cm->lf; const struct segmentation *const seg = &cm->seg; // update sharpness limits update_sharpness(lfi, lf->sharpness_level); filt_lvl[0] = cm->lf.filter_level[0]; filt_lvl[1] = cm->lf.filter_level_u; filt_lvl[2] = cm->lf.filter_level_v; filt_lvl_r[0] = cm->lf.filter_level[1]; filt_lvl_r[1] = cm->lf.filter_level_u; filt_lvl_r[2] = cm->lf.filter_level_v; for (plane = plane_start; plane < plane_end; plane++) { if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0]) break; else if (plane == 1 && !filt_lvl[1]) continue; else if (plane == 2 && !filt_lvl[2]) continue; for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { for (int dir = 0; dir < 2; ++dir) { int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane]; assert(plane >= 0 && plane <= 2); const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); } if (!lf->mode_ref_delta_enabled) { // we could get rid of this if we assume that deltas are set to // zero when not in use; encoder always uses deltas memset(lfi->lvl[plane][seg_id][dir], lvl_seg, sizeof(lfi->lvl[plane][seg_id][dir])); } else { int ref, mode; const int scale = 1 << (lvl_seg >> 5); const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) { for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + lf->mode_deltas[mode] * scale; lfi->lvl[plane][seg_id][dir][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); } } } } } } } #if LOOP_FILTER_BITMASK // A 64x64 tx block requires 256 bits to represent each 4x4 tx block. // Every 4 rows is represented by one uint64_t mask. Hence, // there are 4 uint64_t bitmask[4] to represent the 64x64 block. // // Given a location by (mi_col, mi_row), This function returns the index // 0, 1, 2, 3 to select which bitmask[] to use, and the shift value. // // For example, mi_row is the offset of pixels in mi size (4), // (mi_row / 4) returns which uint64_t. // After locating which uint64_t, mi_row % 4 is the // row offset, and each row has 16 = 1 << stride_log2 4x4 units. // Therefore, shift = (row << stride_log2) + mi_col; int get_index_shift(int mi_col, int mi_row, int *index) { // *index = mi_row >> 2; // rows = mi_row % 4; // stride_log2 = 4; // shift = (rows << stride_log2) + mi_col; *index = mi_row >> 2; return ((mi_row & 3) << 4) | mi_col; } static void check_mask(const FilterMask *lfm) { #ifndef NDEBUG for (int i = 0; i < 4; ++i) { assert(!(lfm[TX_4X4].bits[i] & lfm[TX_8X8].bits[i])); assert(!(lfm[TX_4X4].bits[i] & lfm[TX_16X16].bits[i])); assert(!(lfm[TX_4X4].bits[i] & lfm[TX_32X32].bits[i])); assert(!(lfm[TX_4X4].bits[i] & lfm[TX_64X64].bits[i])); assert(!(lfm[TX_8X8].bits[i] & lfm[TX_16X16].bits[i])); assert(!(lfm[TX_8X8].bits[i] & lfm[TX_32X32].bits[i])); assert(!(lfm[TX_8X8].bits[i] & lfm[TX_64X64].bits[i])); assert(!(lfm[TX_16X16].bits[i] & lfm[TX_32X32].bits[i])); assert(!(lfm[TX_16X16].bits[i] & lfm[TX_64X64].bits[i])); assert(!(lfm[TX_32X32].bits[i] & lfm[TX_64X64].bits[i])); } #else (void)lfm; #endif } static void check_loop_filter_masks(const LoopFilterMask *lfm, int plane) { if (plane == 0) { // Assert if we try to apply 2 different loop filters at the same // position. check_mask(lfm->left_y); check_mask(lfm->above_y); } else if (plane == 1) { check_mask(lfm->left_u); check_mask(lfm->above_u); } else { check_mask(lfm->left_v); check_mask(lfm->above_v); } } static void update_masks(EDGE_DIR dir, int plane, uint64_t *mask, TX_SIZE sqr_tx_size, LoopFilterMask *lfm) { if (dir == VERT_EDGE) { switch (plane) { case 0: for (int i = 0; i < 4; ++i) lfm->left_y[sqr_tx_size].bits[i] |= mask[i]; break; case 1: for (int i = 0; i < 4; ++i) lfm->left_u[sqr_tx_size].bits[i] |= mask[i]; break; case 2: for (int i = 0; i < 4; ++i) lfm->left_v[sqr_tx_size].bits[i] |= mask[i]; break; default: assert(plane <= 2); } } else { switch (plane) { case 0: for (int i = 0; i < 4; ++i) lfm->above_y[sqr_tx_size].bits[i] |= mask[i]; break; case 1: for (int i = 0; i < 4; ++i) lfm->above_u[sqr_tx_size].bits[i] |= mask[i]; break; case 2: for (int i = 0; i < 4; ++i) lfm->above_v[sqr_tx_size].bits[i] |= mask[i]; break; default: assert(plane <= 2); } } } static int is_frame_boundary(AV1_COMMON *const cm, int plane, int mi_row, int mi_col, int ssx, int ssy, EDGE_DIR dir) { if (plane && (ssx || ssy)) { if (ssx && ssy) { // format 420 if ((mi_row << MI_SIZE_LOG2) > cm->height || (mi_col << MI_SIZE_LOG2) > cm->width) return 1; } else if (ssx) { // format 422 if ((mi_row << MI_SIZE_LOG2) >= cm->height || (mi_col << MI_SIZE_LOG2) > cm->width) return 1; } } else { if ((mi_row << MI_SIZE_LOG2) >= cm->height || (mi_col << MI_SIZE_LOG2) >= cm->width) return 1; } int row_or_col; if (plane == 0) { row_or_col = dir == VERT_EDGE ? mi_col : mi_row; } else { // chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block. // So if mi_col == 1, it is actually the frame boundary. if (dir == VERT_EDGE) { row_or_col = ssx ? (mi_col & 0x0FFFFFFE) : mi_col; } else { row_or_col = ssy ? (mi_row & 0x0FFFFFFE) : mi_row; } } return row_or_col == 0; } static void setup_masks(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, int ssx, int ssy, TX_SIZE tx_size) { LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); const int x = (mi_col << (MI_SIZE_LOG2 - ssx)); const int y = (mi_row << (MI_SIZE_LOG2 - ssy)); // decide whether current vertical/horizontal edge needs loop filtering for (EDGE_DIR dir = VERT_EDGE; dir <= HORZ_EDGE; ++dir) { // chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block. mi_row |= ssy; mi_col |= ssx; MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; const MB_MODE_INFO *const mbmi = mi[0]; const int curr_skip = mbmi->skip && is_inter_block(mbmi); const BLOCK_SIZE bsize = mbmi->sb_type; const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy); const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy]; const uint8_t level = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi); const int prediction_masks = dir == VERT_EDGE ? block_size_wide[plane_bsize] - 1 : block_size_high[plane_bsize] - 1; const int is_coding_block_border = dir == VERT_EDGE ? !(x & prediction_masks) : !(y & prediction_masks); // TODO(chengchen): step can be optimized. const int row_step = mi_size_high[TX_4X4] << ssy; const int col_step = mi_size_wide[TX_4X4] << ssx; const int mi_height = dir == VERT_EDGE ? tx_size_high_unit[tx_size] << ssy : row_step; const int mi_width = dir == VERT_EDGE ? col_step : tx_size_wide_unit[tx_size] << ssx; // assign filter levels for (int r = mi_row; r < mi_row + mi_height; r += row_step) { for (int c = mi_col; c < mi_col + mi_width; c += col_step) { // do not filter frame boundary // Note: when chroma planes' size are half of luma plane, // chroma plane mi corresponds to even position. // If frame size is not even, we still need to filter this chroma // position. Therefore the boundary condition check needs to be // separated to two cases. if (plane && (ssx || ssy)) { if (ssx && ssy) { // format 420 if ((r << MI_SIZE_LOG2) > cm->height || (c << MI_SIZE_LOG2) > cm->width) continue; } else if (ssx) { // format 422 if ((r << MI_SIZE_LOG2) >= cm->height || (c << MI_SIZE_LOG2) > cm->width) continue; } } else { if ((r << MI_SIZE_LOG2) >= cm->height || (c << MI_SIZE_LOG2) >= cm->width) continue; } const int row = r % MI_SIZE_64X64; const int col = c % MI_SIZE_64X64; if (plane == 0) { if (dir == VERT_EDGE) lfm->lfl_y_ver[row][col] = level; else lfm->lfl_y_hor[row][col] = level; } else if (plane == 1) { lfm->lfl_u[row][col] = level; } else { lfm->lfl_v[row][col] = level; } } } for (int r = mi_row; r < mi_row + mi_height; r += row_step) { for (int c = mi_col; c < mi_col + mi_width; c += col_step) { // do not filter frame boundary if (is_frame_boundary(cm, plane, r, c, ssx, ssy, dir)) continue; uint64_t mask[4] = { 0 }; const int prev_row = dir == VERT_EDGE ? r : r - (1 << ssy); const int prev_col = dir == VERT_EDGE ? c - (1 << ssx) : c; MB_MODE_INFO **mi_prev = cm->mi_grid_visible + prev_row * cm->mi_stride + prev_col; const MB_MODE_INFO *const mbmi_prev = mi_prev[0]; const int prev_skip = mbmi_prev->skip && is_inter_block(mbmi_prev); const uint8_t level_prev = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi_prev); const int is_edge = (level || level_prev) && (!curr_skip || !prev_skip || is_coding_block_border); if (is_edge) { const TX_SIZE prev_tx_size = plane ? av1_get_max_uv_txsize(mbmi_prev->sb_type, ssx, ssy) : mbmi_prev->tx_size; TX_SIZE min_tx_size = (dir == VERT_EDGE) ? AOMMIN(txsize_horz_map[tx_size], txsize_horz_map[prev_tx_size]) : AOMMIN(txsize_vert_map[tx_size], txsize_vert_map[prev_tx_size]); min_tx_size = AOMMIN(min_tx_size, TX_16X16); assert(min_tx_size < TX_SIZES); const int row = r % MI_SIZE_64X64; const int col = c % MI_SIZE_64X64; int index = 0; const int shift = get_index_shift(col, row, &index); assert(index < 4 && index >= 0); mask[index] |= ((uint64_t)1 << shift); // set mask on corresponding bit update_masks(dir, plane, mask, min_tx_size, lfm); } } } } } static void setup_tx_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int plane, int ssx, int ssy) { blk_row <<= ssy; blk_col <<= ssx; if (((mi_row + blk_row) << MI_SIZE_LOG2) >= cm->height || ((mi_col + blk_col) << MI_SIZE_LOG2) >= cm->width) return; // U/V plane, tx_size is always the largest size if (plane) { assert(tx_size_wide[tx_size] <= 32 && tx_size_high[tx_size] <= 32); setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy, tx_size); return; } MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; const MB_MODE_INFO *const mbmi = mi[0]; // For Y plane: // If intra block, tx size is univariant. // If inter block, tx size follows inter_tx_size. TX_SIZE plane_tx_size = tx_size; const int is_inter = is_inter_block(mbmi); if (plane == 0) { if (is_inter) { if (mbmi->skip) { // TODO(chengchen): change av1_get_transform_size() to be consistant. // plane_tx_size = get_max_rect_tx_size(plane_bsize); plane_tx_size = mbmi->tx_size; } else { plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( plane_bsize, blk_row, blk_col)]; } } else { MB_MODE_INFO **mi_this = cm->mi_grid_visible + (mi_row + blk_row) * cm->mi_stride + mi_col + blk_col; const MB_MODE_INFO *const mbmi_this = mi_this[0]; plane_tx_size = mbmi_this->tx_size; } } assert(txsize_to_bsize[plane_tx_size] <= plane_bsize); if (plane || plane_tx_size == tx_size) { setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy, tx_size); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { const int offsetr = blk_row + row; const int offsetc = blk_col + col; setup_tx_block_mask(cm, mi_row, mi_col, offsetr, offsetc, plane_bsize, sub_txs, plane, ssx, ssy); } } } } static void setup_fix_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, int ssx, int ssy) { MB_MODE_INFO **mi = cm->mi_grid_visible + (mi_row | ssy) * cm->mi_stride + (mi_col | ssx); const MB_MODE_INFO *const mbmi = mi[0]; const BLOCK_SIZE bsize = mbmi->sb_type; const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy); const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy]; const int block_width = mi_size_wide[plane_bsize]; const int block_height = mi_size_high[plane_bsize]; TX_SIZE max_txsize = max_txsize_rect_lookup[plane_bsize]; // The decoder is designed so that it can process 64x64 luma pixels at a // time. If this is a chroma plane with subsampling and bsize corresponds to // a subsampled BLOCK_128X128 then the lookup above will give TX_64X64. That // mustn't be used for the subsampled plane (because it would be bigger than // a 64x64 luma block) so we round down to TX_32X32. if (plane && txsize_sqr_up_map[max_txsize] == TX_64X64) { if (max_txsize == TX_16X64) max_txsize = TX_16X32; else if (max_txsize == TX_64X16) max_txsize = TX_32X16; else max_txsize = TX_32X32; } const BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; const BLOCK_SIZE max_unit_bsize = ss_size_lookup[BLOCK_64X64][ssx][ssy]; int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(block_width, mu_blocks_wide); mu_blocks_high = AOMMIN(block_height, mu_blocks_high); // Y: Largest tx_size is 64x64, while superblock size can be 128x128. // Here we ensure that setup_tx_block_mask process at most a 64x64 block. // U/V: largest tx size is 32x32. for (int idy = 0; idy < block_height; idy += mu_blocks_high) { for (int idx = 0; idx < block_width; idx += mu_blocks_wide) { const int unit_height = AOMMIN(mu_blocks_high + idy, block_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, block_width); for (int blk_row = idy; blk_row < unit_height; blk_row += bh) { for (int blk_col = idx; blk_col < unit_width; blk_col += bw) { setup_tx_block_mask(cm, mi_row, mi_col, blk_row, blk_col, plane_bsize, max_txsize, plane, ssx, ssy); } } } } } static void setup_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane, int ssx, int ssy) { if ((mi_row << MI_SIZE_LOG2) >= cm->height || (mi_col << MI_SIZE_LOG2) >= cm->width) return; const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); const int hbs = mi_size_wide[bsize] / 2; const int quarter_step = mi_size_wide[bsize] / 4; const int allow_sub8x8 = (ssx || ssy) ? bsize > BLOCK_8X8 : 1; const int has_next_row = (((mi_row + hbs) << MI_SIZE_LOG2) < cm->height) & allow_sub8x8; const int has_next_col = (((mi_col + hbs) << MI_SIZE_LOG2) < cm->width) & allow_sub8x8; int i; switch (partition) { case PARTITION_NONE: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); break; case PARTITION_HORZ: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); break; case PARTITION_VERT: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_col) setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); break; case PARTITION_SPLIT: setup_block_mask(cm, mi_row, mi_col, subsize, plane, ssx, ssy); if (has_next_col) setup_block_mask(cm, mi_row, mi_col + hbs, subsize, plane, ssx, ssy); if (has_next_row) setup_block_mask(cm, mi_row + hbs, mi_col, subsize, plane, ssx, ssy); if (has_next_col & has_next_row) setup_block_mask(cm, mi_row + hbs, mi_col + hbs, subsize, plane, ssx, ssy); break; case PARTITION_HORZ_A: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_col) setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); if (has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); break; case PARTITION_HORZ_B: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); if (has_next_col & has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy); break; case PARTITION_VERT_A: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); if (has_next_col) setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); break; case PARTITION_VERT_B: setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); if (has_next_col) setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); if (has_next_row) setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy); break; case PARTITION_HORZ_4: for (i = 0; i < 4; ++i) { int this_mi_row = mi_row + i * quarter_step; if (i > 0 && (this_mi_row << MI_SIZE_LOG2) >= cm->height) break; // chroma plane filter the odd location if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue; setup_fix_block_mask(cm, this_mi_row, mi_col, plane, ssx, ssy); } break; case PARTITION_VERT_4: for (i = 0; i < 4; ++i) { int this_mi_col = mi_col + i * quarter_step; if (i > 0 && this_mi_col >= cm->mi_cols) break; // chroma plane filter the odd location if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue; setup_fix_block_mask(cm, mi_row, this_mi_col, plane, ssx, ssy); } break; default: assert(0); } } // TODO(chengchen): if lossless, do not need to setup mask. But when // segments enabled, each segment has different lossless settings. void av1_setup_bitmask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, int subsampling_x, int subsampling_y, int row_end, int col_end) { const int num_64x64 = cm->seq_params.mib_size >> MIN_MIB_SIZE_LOG2; for (int y = 0; y < num_64x64; ++y) { for (int x = 0; x < num_64x64; ++x) { const int row = mi_row + y * MI_SIZE_64X64; const int col = mi_col + x * MI_SIZE_64X64; if (row >= row_end || col >= col_end) continue; if ((row << MI_SIZE_LOG2) >= cm->height || (col << MI_SIZE_LOG2) >= cm->width) continue; LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col); if (lfm == NULL) return; // init mask to zero if (plane == 0) { av1_zero(lfm->left_y); av1_zero(lfm->above_y); av1_zero(lfm->lfl_y_ver); av1_zero(lfm->lfl_y_hor); } else if (plane == 1) { av1_zero(lfm->left_u); av1_zero(lfm->above_u); av1_zero(lfm->lfl_u); } else { av1_zero(lfm->left_v); av1_zero(lfm->above_v); av1_zero(lfm->lfl_v); } } } // set up bitmask for each superblock setup_block_mask(cm, mi_row, mi_col, cm->seq_params.sb_size, plane, subsampling_x, subsampling_y); for (int y = 0; y < num_64x64; ++y) { for (int x = 0; x < num_64x64; ++x) { const int row = mi_row + y * MI_SIZE_64X64; const int col = mi_col + x * MI_SIZE_64X64; if (row >= row_end || col >= col_end) continue; if ((row << MI_SIZE_LOG2) >= cm->height || (col << MI_SIZE_LOG2) >= cm->width) continue; LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col); if (lfm == NULL) return; // check if the mask is valid check_loop_filter_masks(lfm, plane); { // Let 16x16 hold 32x32 (Y/U/V) and 64x64(Y only). // Even tx size is greater, we only apply max length filter, which // is 16. if (plane == 0) { for (int j = 0; j < 4; ++j) { lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_32X32].bits[j]; lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_64X64].bits[j]; lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_32X32].bits[j]; lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_64X64].bits[j]; // set 32x32 and 64x64 to 0 lfm->left_y[TX_32X32].bits[j] = 0; lfm->left_y[TX_64X64].bits[j] = 0; lfm->above_y[TX_32X32].bits[j] = 0; lfm->above_y[TX_64X64].bits[j] = 0; } } else if (plane == 1) { for (int j = 0; j < 4; ++j) { lfm->left_u[TX_16X16].bits[j] |= lfm->left_u[TX_32X32].bits[j]; lfm->above_u[TX_16X16].bits[j] |= lfm->above_u[TX_32X32].bits[j]; // set 32x32 to 0 lfm->left_u[TX_32X32].bits[j] = 0; lfm->above_u[TX_32X32].bits[j] = 0; } } else { for (int j = 0; j < 4; ++j) { lfm->left_v[TX_16X16].bits[j] |= lfm->left_v[TX_32X32].bits[j]; lfm->above_v[TX_16X16].bits[j] |= lfm->above_v[TX_32X32].bits[j]; // set 32x32 to 0 lfm->left_v[TX_32X32].bits[j] = 0; lfm->above_v[TX_32X32].bits[j] = 0; } } } // check if the mask is valid check_loop_filter_masks(lfm, plane); } } } static void filter_selectively_vert_row2( int subsampling_factor, uint8_t *s, int pitch, int plane, uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0, uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1, const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2) { uint64_t mask; const int step = 1 << subsampling_factor; for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 | mask_8x8_1 | mask_4x4_1; mask; mask >>= step) { const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2; if (mask & 1) { if ((mask_16x16_0 | mask_16x16_1) & 1) { // chroma plane filters less pixels introduced in deblock_13tap // experiment LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_14; if ((mask_16x16_0 & mask_16x16_1) & 1) { if (plane) { aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else { aom_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } else if (mask_16x16_0 & 1) { lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } if ((mask_8x8_0 | mask_8x8_1) & 1) { // chroma plane filters less pixels introduced in deblock_13tap // experiment LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_8; if ((mask_8x8_0 & mask_8x8_1) & 1) { if (plane) { aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else { aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } else if (mask_8x8_0 & 1) { lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } if ((mask_4x4_0 | mask_4x4_1) & 1) { if ((mask_4x4_0 & mask_4x4_1) & 1) { aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } else if (mask_4x4_0 & 1) { aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); } else { aom_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr); } } } s += 4; lfl += step; lfl2 += step; mask_16x16_0 >>= step; mask_8x8_0 >>= step; mask_4x4_0 >>= step; mask_16x16_1 >>= step; mask_8x8_1 >>= step; mask_4x4_1 >>= step; } } static void highbd_filter_selectively_vert_row2( int subsampling_factor, uint16_t *s, int pitch, int plane, uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0, uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1, const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2, int bd) { uint64_t mask; const int step = 1 << subsampling_factor; for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 | mask_8x8_1 | mask_4x4_1; mask; mask >>= step) { const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2; if (mask & 1) { if ((mask_16x16_0 | mask_16x16_1) & 1) { // chroma plane filters less pixels introduced in deblock_13tap // experiment HbdLpfFunc highbd_lpf_vertical = plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_14; if ((mask_16x16_0 & mask_16x16_1) & 1) { if (plane) { aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else { aom_highbd_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } else if (mask_16x16_0 & 1) { highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } if ((mask_8x8_0 | mask_8x8_1) & 1) { HbdLpfFunc highbd_lpf_vertical = plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_8; if ((mask_8x8_0 & mask_8x8_1) & 1) { if (plane) { aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else { aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } else if (mask_8x8_0 & 1) { highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } if ((mask_4x4_0 | mask_4x4_1) & 1) { if ((mask_4x4_0 & mask_4x4_1) & 1) { aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } else if (mask_4x4_0 & 1) { aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, bd); } else { aom_highbd_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, lfi1->hev_thr, bd); } } } s += 4; lfl += step; lfl2 += step; mask_16x16_0 >>= step; mask_8x8_0 >>= step; mask_4x4_0 >>= step; mask_16x16_1 >>= step; mask_8x8_1 >>= step; mask_4x4_1 >>= step; } } static void filter_selectively_horiz(uint8_t *s, int pitch, int plane, int subsampling, uint64_t mask_16x16, uint64_t mask_8x8, uint64_t mask_4x4, const loop_filter_info_n *lfi_n, const uint8_t *lfl) { uint64_t mask; int count; const int step = 1 << subsampling; const unsigned int two_block_mask = subsampling ? 5 : 3; for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + step); count = 1; if (mask & 1) { if (mask_16x16 & 1) { // chroma plane filters less pixels introduced in deblock_13tap // experiment LpfFunc lpf_horizontal = plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_14; if ((mask_16x16 & two_block_mask) == two_block_mask) { if (plane) { aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } else { aom_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } count = 2; } else { lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } else if (mask_8x8 & 1) { // chroma plane filters less pixels introduced in deblock_13tap // experiment LpfFunc lpf_horizontal = plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_8; if ((mask_8x8 & two_block_mask) == two_block_mask) { if (plane) { aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } else { aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); } count = 2; } else { lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } else if (mask_4x4 & 1) { if ((mask_4x4 & two_block_mask) == two_block_mask) { aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr); count = 2; } else { aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); } } } s += 4 * count; lfl += step * count; mask_16x16 >>= step * count; mask_8x8 >>= step * count; mask_4x4 >>= step * count; } } static void highbd_filter_selectively_horiz( uint16_t *s, int pitch, int plane, int subsampling, uint64_t mask_16x16, uint64_t mask_8x8, uint64_t mask_4x4, const loop_filter_info_n *lfi_n, uint8_t *lfl, int bd) { uint64_t mask; int count; const int step = 1 << subsampling; const unsigned int two_block_mask = subsampling ? 5 : 3; for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) { const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; // Next block's thresholds. const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + step); count = 1; if (mask & 1) { if (mask_16x16 & 1) { HbdLpfFunc highbd_lpf_horizontal = plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_14; if ((mask_16x16 & two_block_mask) == two_block_mask) { if (plane) { aom_highbd_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } else { aom_highbd_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } count = 2; } else { highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } else if (mask_8x8 & 1) { HbdLpfFunc highbd_lpf_horizontal = plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_8; if ((mask_8x8 & two_block_mask) == two_block_mask) { if (plane) { aom_highbd_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } else { aom_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); } count = 2; } else { highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } else if (mask_4x4 & 1) { if ((mask_4x4 & two_block_mask) == two_block_mask) { aom_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, lfin->mblim, lfin->lim, lfin->hev_thr, bd); count = 2; } else { aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, bd); } } } s += 4 * count; lfl += step * count; mask_16x16 >>= step * count; mask_8x8 >>= step * count; mask_4x4 >>= step * count; } } void av1_build_bitmask_vert_info( AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr, int plane) { const int subsampling_x = plane_ptr->subsampling_x; const int subsampling_y = plane_ptr->subsampling_y; const int row_step = (MI_SIZE >> MI_SIZE_LOG2); const int is_uv = plane > 0; TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16; uint8_t level, prev_level = 1; int skip, prev_skip = 0; int is_coding_block_border; for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height; r += row_step) { const int mi_row = r << subsampling_y; const int row = mi_row % MI_SIZE_64X64; int index = 0; const int shift = get_index_shift(0, row, &index); for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width; c += (tx_size_wide_unit[TX_64X64] >> subsampling_x)) { const int mi_col = c << subsampling_x; LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); for (int col_in_unit = 0; col_in_unit < (tx_size_wide_unit[TX_64X64] >> subsampling_x);) { const int x = (c + col_in_unit) << MI_SIZE_LOG2; if (x >= plane_ptr->dst.width) break; const int col = col_in_unit << subsampling_x; const uint64_t mask = ((uint64_t)1 << (shift | col)); skip = lfm->skip.bits[index] & mask; is_coding_block_border = lfm->is_vert_border.bits[index] & mask; switch (plane) { case 0: level = lfm->lfl_y_ver[row][col]; break; case 1: level = lfm->lfl_u[row][col]; break; case 2: level = lfm->lfl_v[row][col]; break; default: assert(plane >= 0 && plane <= 2); return; } for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) { if (is_uv && ts == TX_64X64) continue; if (lfm->tx_size_ver[is_uv][ts].bits[index] & mask) { tx_size = ts; break; } } if ((c + col_in_unit > 0) && (level || prev_level) && (!prev_skip || !skip || is_coding_block_border)) { const TX_SIZE min_tx_size = AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size)); const int tmp_row = (mi_row | subsampling_y) % MI_SIZE_64X64; const int tmp_col = (col | subsampling_x) % MI_SIZE_64X64; const int shift_1 = get_index_shift(tmp_col, tmp_row, &index); const uint64_t mask_1 = ((uint64_t)1 << shift_1); switch (plane) { case 0: lfm->left_y[min_tx_size].bits[index] |= mask_1; break; case 1: lfm->left_u[min_tx_size].bits[index] |= mask_1; break; case 2: lfm->left_v[min_tx_size].bits[index] |= mask_1; break; default: assert(plane >= 0 && plane <= 2); return; } } // update prev info prev_level = level; prev_skip = skip; prev_tx_size = tx_size; // advance col_in_unit += tx_size_wide_unit[tx_size]; } } } } void av1_build_bitmask_horz_info( AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr, int plane) { const int subsampling_x = plane_ptr->subsampling_x; const int subsampling_y = plane_ptr->subsampling_y; const int col_step = (MI_SIZE >> MI_SIZE_LOG2); const int is_uv = plane > 0; TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16; uint8_t level, prev_level = 1; int skip, prev_skip = 0; int is_coding_block_border; for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width; c += col_step) { const int mi_col = c << subsampling_x; const int col = mi_col % MI_SIZE_64X64; for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height; r += (tx_size_high_unit[TX_64X64] >> subsampling_y)) { const int mi_row = r << subsampling_y; LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); for (int r_in_unit = 0; r_in_unit < (tx_size_high_unit[TX_64X64] >> subsampling_y);) { const int y = (r + r_in_unit) << MI_SIZE_LOG2; if (y >= plane_ptr->dst.height) break; const int row = r_in_unit << subsampling_y; int index = 0; const int shift = get_index_shift(col, row, &index); const uint64_t mask = ((uint64_t)1 << shift); skip = lfm->skip.bits[index] & mask; is_coding_block_border = lfm->is_horz_border.bits[index] & mask; switch (plane) { case 0: level = lfm->lfl_y_hor[row][col]; break; case 1: level = lfm->lfl_u[row][col]; break; case 2: level = lfm->lfl_v[row][col]; break; default: assert(plane >= 0 && plane <= 2); return; } for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) { if (is_uv && ts == TX_64X64) continue; if (lfm->tx_size_hor[is_uv][ts].bits[index] & mask) { tx_size = ts; break; } } if ((r + r_in_unit > 0) && (level || prev_level) && (!prev_skip || !skip || is_coding_block_border)) { const TX_SIZE min_tx_size = AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size)); const int tmp_row = (row | subsampling_y) % MI_SIZE_64X64; const int tmp_col = (mi_col | subsampling_x) % MI_SIZE_64X64; const int shift_1 = get_index_shift(tmp_col, tmp_row, &index); const uint64_t mask_1 = ((uint64_t)1 << shift_1); switch (plane) { case 0: lfm->above_y[min_tx_size].bits[index] |= mask_1; break; case 1: lfm->above_u[min_tx_size].bits[index] |= mask_1; break; case 2: lfm->above_v[min_tx_size].bits[index] |= mask_1; break; default: assert(plane >= 0 && plane <= 2); return; } } // update prev info prev_level = level; prev_skip = skip; prev_tx_size = tx_size; // advance r_in_unit += tx_size_high_unit[tx_size]; } } } } void av1_filter_block_plane_bitmask_vert( AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, int mi_row, int mi_col) { struct buf_2d *const dst = &plane_ptr->dst; uint8_t *const buf0 = dst->buf; const int ssx = plane_ptr->subsampling_x; const int ssy = plane_ptr->subsampling_y; const int mask_cutoff = 0xffff; const int row_step = 1 << ssy; const int two_row_step = 2 << ssy; const int row_stride = dst->stride << MI_SIZE_LOG2; const int two_row_stride = row_stride << 1; uint64_t mask_16x16 = 0; uint64_t mask_8x8 = 0; uint64_t mask_4x4 = 0; uint8_t *lfl; uint8_t *lfl2; LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); assert(lfm); // 1. vertical filtering. filter two rows at a time for (int r = 0; ((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64; r += two_row_step) { const int row = r | ssy; const int row_next = row + row_step; const int col = ssx; int index = 0; const int shift = get_index_shift(col, row, &index); int index_next = 0; const int shift_next = get_index_shift(col, row_next, &index_next); switch (pl) { case 0: mask_16x16 = lfm->left_y[TX_16X16].bits[index]; mask_8x8 = lfm->left_y[TX_8X8].bits[index]; mask_4x4 = lfm->left_y[TX_4X4].bits[index]; lfl = &lfm->lfl_y_ver[row][col]; lfl2 = &lfm->lfl_y_ver[row_next][col]; break; case 1: mask_16x16 = lfm->left_u[TX_16X16].bits[index]; mask_8x8 = lfm->left_u[TX_8X8].bits[index]; mask_4x4 = lfm->left_u[TX_4X4].bits[index]; lfl = &lfm->lfl_u[row][col]; lfl2 = &lfm->lfl_u[row_next][col]; break; case 2: mask_16x16 = lfm->left_v[TX_16X16].bits[index]; mask_8x8 = lfm->left_v[TX_8X8].bits[index]; mask_4x4 = lfm->left_v[TX_4X4].bits[index]; lfl = &lfm->lfl_v[row][col]; lfl2 = &lfm->lfl_v[row_next][col]; break; default: assert(pl >= 0 && pl <= 2); return; } uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff; uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff; uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff; uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff; uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff; uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff; if (cm->seq_params.use_highbitdepth) highbd_filter_selectively_vert_row2( ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth); else filter_selectively_vert_row2( ssx, dst->buf, dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2); dst->buf += two_row_stride; } // reset buf pointer for horizontal filtering dst->buf = buf0; } void av1_filter_block_plane_bitmask_horz( AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, int mi_row, int mi_col) { struct buf_2d *const dst = &plane_ptr->dst; uint8_t *const buf0 = dst->buf; const int ssx = plane_ptr->subsampling_x; const int ssy = plane_ptr->subsampling_y; const int mask_cutoff = 0xffff; const int row_step = 1 << ssy; const int row_stride = dst->stride << MI_SIZE_LOG2; uint64_t mask_16x16 = 0; uint64_t mask_8x8 = 0; uint64_t mask_4x4 = 0; uint8_t *lfl; LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); assert(lfm); for (int r = 0; ((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64; r += row_step) { if (mi_row + r == 0) { dst->buf += row_stride; continue; } const int row = r | ssy; const int col = ssx; int index = 0; const int shift = get_index_shift(col, row, &index); switch (pl) { case 0: mask_16x16 = lfm->above_y[TX_16X16].bits[index]; mask_8x8 = lfm->above_y[TX_8X8].bits[index]; mask_4x4 = lfm->above_y[TX_4X4].bits[index]; lfl = &lfm->lfl_y_hor[row][col]; break; case 1: mask_16x16 = lfm->above_u[TX_16X16].bits[index]; mask_8x8 = lfm->above_u[TX_8X8].bits[index]; mask_4x4 = lfm->above_u[TX_4X4].bits[index]; lfl = &lfm->lfl_u[row][col]; break; case 2: mask_16x16 = lfm->above_v[TX_16X16].bits[index]; mask_8x8 = lfm->above_v[TX_8X8].bits[index]; mask_4x4 = lfm->above_v[TX_4X4].bits[index]; lfl = &lfm->lfl_v[row][col]; break; default: assert(pl >= 0 && pl <= 2); return; } mask_16x16 = (mask_16x16 >> shift) & mask_cutoff; mask_8x8 = (mask_8x8 >> shift) & mask_cutoff; mask_4x4 = (mask_4x4 >> shift) & mask_cutoff; if (cm->seq_params.use_highbitdepth) highbd_filter_selectively_horiz( CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, ssx, mask_16x16, mask_8x8, mask_4x4, &cm->lf_info, lfl, (int)cm->seq_params.bit_depth); else filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16, mask_8x8, mask_4x4, &cm->lf_info, lfl); dst->buf += row_stride; } // reset buf pointer for next block dst->buf = buf0; } void av1_filter_block_plane_ver(AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, int mi_row, int mi_col) { struct buf_2d *const dst = &plane_ptr->dst; int r, c; const int ssx = plane_ptr->subsampling_x; const int ssy = plane_ptr->subsampling_y; const int mask_cutoff = 0xffff; const int single_step = 1 << ssy; const int r_step = 2 << ssy; uint64_t mask_16x16 = 0; uint64_t mask_8x8 = 0; uint64_t mask_4x4 = 0; uint8_t *lfl; uint8_t *lfl2; // filter two rows at a time for (r = 0; r < cm->seq_params.mib_size && ((mi_row + r) << MI_SIZE_LOG2 < cm->height); r += r_step) { for (c = 0; c < cm->seq_params.mib_size && ((mi_col + c) << MI_SIZE_LOG2 < cm->width); c += MI_SIZE_64X64) { dst->buf += ((c << MI_SIZE_LOG2) >> ssx); LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c); assert(lfm); const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64; const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64; int index = 0; const int shift = get_index_shift(col, row, &index); // current and next row should belong to the same mask_idx and index // next row's shift const int row_next = row + single_step; int index_next = 0; const int shift_next = get_index_shift(col, row_next, &index_next); switch (pl) { case 0: mask_16x16 = lfm->left_y[TX_16X16].bits[index]; mask_8x8 = lfm->left_y[TX_8X8].bits[index]; mask_4x4 = lfm->left_y[TX_4X4].bits[index]; lfl = &lfm->lfl_y_ver[row][col]; lfl2 = &lfm->lfl_y_ver[row_next][col]; break; case 1: mask_16x16 = lfm->left_u[TX_16X16].bits[index]; mask_8x8 = lfm->left_u[TX_8X8].bits[index]; mask_4x4 = lfm->left_u[TX_4X4].bits[index]; lfl = &lfm->lfl_u[row][col]; lfl2 = &lfm->lfl_u[row_next][col]; break; case 2: mask_16x16 = lfm->left_v[TX_16X16].bits[index]; mask_8x8 = lfm->left_v[TX_8X8].bits[index]; mask_4x4 = lfm->left_v[TX_4X4].bits[index]; lfl = &lfm->lfl_v[row][col]; lfl2 = &lfm->lfl_v[row_next][col]; break; default: assert(pl >= 0 && pl <= 2); return; } uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff; uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff; uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff; uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff; uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff; uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff; if (cm->seq_params.use_highbitdepth) highbd_filter_selectively_vert_row2( ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth); else filter_selectively_vert_row2(ssx, dst->buf, dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2); dst->buf -= ((c << MI_SIZE_LOG2) >> ssx); } dst->buf += 2 * MI_SIZE * dst->stride; } } void av1_filter_block_plane_hor(AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, int mi_row, int mi_col) { struct buf_2d *const dst = &plane_ptr->dst; int r, c; const int ssx = plane_ptr->subsampling_x; const int ssy = plane_ptr->subsampling_y; const int mask_cutoff = 0xffff; const int r_step = 1 << ssy; uint64_t mask_16x16 = 0; uint64_t mask_8x8 = 0; uint64_t mask_4x4 = 0; uint8_t *lfl; for (r = 0; r < cm->seq_params.mib_size && ((mi_row + r) << MI_SIZE_LOG2 < cm->height); r += r_step) { for (c = 0; c < cm->seq_params.mib_size && ((mi_col + c) << MI_SIZE_LOG2 < cm->width); c += MI_SIZE_64X64) { if (mi_row + r == 0) continue; dst->buf += ((c << MI_SIZE_LOG2) >> ssx); LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c); assert(lfm); const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64; const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64; int index = 0; const int shift = get_index_shift(col, row, &index); switch (pl) { case 0: mask_16x16 = lfm->above_y[TX_16X16].bits[index]; mask_8x8 = lfm->above_y[TX_8X8].bits[index]; mask_4x4 = lfm->above_y[TX_4X4].bits[index]; lfl = &lfm->lfl_y_hor[row][col]; break; case 1: mask_16x16 = lfm->above_u[TX_16X16].bits[index]; mask_8x8 = lfm->above_u[TX_8X8].bits[index]; mask_4x4 = lfm->above_u[TX_4X4].bits[index]; lfl = &lfm->lfl_u[row][col]; break; case 2: mask_16x16 = lfm->above_v[TX_16X16].bits[index]; mask_8x8 = lfm->above_v[TX_8X8].bits[index]; mask_4x4 = lfm->above_v[TX_4X4].bits[index]; lfl = &lfm->lfl_v[row][col]; break; default: assert(pl >= 0 && pl <= 2); return; } mask_16x16 = (mask_16x16 >> shift) & mask_cutoff; mask_8x8 = (mask_8x8 >> shift) & mask_cutoff; mask_4x4 = (mask_4x4 >> shift) & mask_cutoff; if (cm->seq_params.use_highbitdepth) highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, ssx, mask_16x16, mask_8x8, mask_4x4, &cm->lf_info, lfl, (int)cm->seq_params.bit_depth); else filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16, mask_8x8, mask_4x4, &cm->lf_info, lfl); dst->buf -= ((c << MI_SIZE_LOG2) >> ssx); } dst->buf += MI_SIZE * dst->stride; } } #endif // LOOP_FILTER_BITMASK static TX_SIZE get_transform_size(const MACROBLOCKD *const xd, const MB_MODE_INFO *const mbmi, const EDGE_DIR edge_dir, const int mi_row, const int mi_col, const int plane, const struct macroblockd_plane *plane_ptr) { assert(mbmi != NULL); if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4; TX_SIZE tx_size = (plane == AOM_PLANE_Y) ? mbmi->tx_size : av1_get_max_uv_txsize(mbmi->sb_type, plane_ptr->subsampling_x, plane_ptr->subsampling_y); assert(tx_size < TX_SIZES_ALL); if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) { const BLOCK_SIZE sb_type = mbmi->sb_type; const int blk_row = mi_row & (mi_size_high[sb_type] - 1); const int blk_col = mi_col & (mi_size_wide[sb_type] - 1); const TX_SIZE mb_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)]; assert(mb_tx_size < TX_SIZES_ALL); tx_size = mb_tx_size; } // since in case of chrominance or non-square transorm need to convert // transform size into transform size in particular direction. // for vertical edge, filter direction is horizontal, for horizontal // edge, filter direction is vertical. tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size] : txsize_vert_map[tx_size]; return tx_size; } typedef struct AV1_DEBLOCKING_PARAMETERS { // length of the filter applied to the outer edge uint32_t filter_length; // deblocking limits const uint8_t *lim; const uint8_t *mblim; const uint8_t *hev_thr; } AV1_DEBLOCKING_PARAMETERS; // Return TX_SIZE from get_transform_size(), so it is plane and direction // awared static TX_SIZE set_lpf_parameters( AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y, const int plane, const struct macroblockd_plane *const plane_ptr) { // reset to initial values params->filter_length = 0; // no deblocking is required const uint32_t width = plane_ptr->dst.width; const uint32_t height = plane_ptr->dst.height; if ((width <= x) || (height <= y)) { // just return the smallest transform unit size return TX_4X4; } const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; // for sub8x8 block, chroma prediction mode is obtained from the bottom/right // mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row // and mi_col should map to the bottom/right mi structure, i.e, both mi_row // and mi_col should be odd number for chroma plane. const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2); const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2); MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; const MB_MODE_INFO *mbmi = mi[0]; // If current mbmi is not correctly setup, return an invalid value to stop // filtering. One example is that if this tile is not coded, then its mbmi // it not set up. if (mbmi == NULL) return TX_INVALID; const TX_SIZE ts = get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr); { const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); const uint32_t transform_masks = edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; const int32_t tu_edge = (coord & transform_masks) ? (0) : (1); if (!tu_edge) return ts; // prepare outer edge parameters. deblock the edge if it's an edge of a TU { const uint32_t curr_level = get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); const int curr_skipped = mbmi->skip && is_inter_block(mbmi); uint32_t level = curr_level; if (coord) { { const MB_MODE_INFO *const mi_prev = *(mi - mode_step); if (mi_prev == NULL) return TX_INVALID; const int pv_row = (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); const int pv_col = (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); const TX_SIZE pv_ts = get_transform_size( xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr); const uint32_t pv_lvl = get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); const int pv_skip = mi_prev->skip && is_inter_block(mi_prev); const BLOCK_SIZE bsize = get_plane_block_size(mbmi->sb_type, plane_ptr->subsampling_x, plane_ptr->subsampling_y); const int prediction_masks = edge_dir == VERT_EDGE ? block_size_wide[bsize] - 1 : block_size_high[bsize] - 1; const int32_t pu_edge = !(coord & prediction_masks); // if the current and the previous blocks are skipped, // deblock the edge if the edge belongs to a PU's edge only. if ((curr_level || pv_lvl) && (!pv_skip || !curr_skipped || pu_edge)) { const TX_SIZE min_ts = AOMMIN(ts, pv_ts); if (TX_4X4 >= min_ts) { params->filter_length = 4; } else if (TX_8X8 == min_ts) { if (plane != 0) params->filter_length = 6; else params->filter_length = 8; } else { params->filter_length = 14; // No wide filtering for chroma plane if (plane != 0) { params->filter_length = 6; } } // update the level if the current block is skipped, // but the previous one is not level = (curr_level) ? (curr_level) : (pv_lvl); } } } // prepare common parameters if (params->filter_length) { const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; params->lim = limits->lim; params->mblim = limits->mblim; params->hev_thr = limits->hev_thr; } } } return ts; } void av1_filter_block_plane_vert(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const int plane, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col) { const int row_step = MI_SIZE >> MI_SIZE_LOG2; const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; const int y_range = (MAX_MIB_SIZE >> scale_vert); const int x_range = (MAX_MIB_SIZE >> scale_horz); const int use_highbitdepth = cm->seq_params.use_highbitdepth; const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; for (int y = 0; y < y_range; y += row_step) { uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; for (int x = 0; x < x_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will filter the vertical edge aligned with a 8x8 block. // If 4x4 trasnform is used, it will then filter the internal edge // aligned with a 4x4 block const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; uint32_t advance_units; TX_SIZE tx_size; AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); tx_size = set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, VERT_EDGE, curr_x, curr_y, plane, plane_ptr); if (tx_size == TX_INVALID) { params.filter_length = 0; tx_size = TX_4X4; } switch (params.filter_length) { // apply 4-tap filtering case 4: if (use_highbitdepth) aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; case 6: // apply 6-tap filter for chroma plane only assert(plane != 0); if (use_highbitdepth) aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // apply 8-tap filtering case 8: if (use_highbitdepth) aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // apply 14-tap filtering case 14: if (use_highbitdepth) aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // no filtering default: break; } // advance the destination pointer advance_units = tx_size_wide_unit[tx_size]; x += advance_units; p += advance_units * MI_SIZE; } } } void av1_filter_block_plane_horz(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, const int plane, const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, const uint32_t mi_col) { const int col_step = MI_SIZE >> MI_SIZE_LOG2; const uint32_t scale_horz = plane_ptr->subsampling_x; const uint32_t scale_vert = plane_ptr->subsampling_y; uint8_t *const dst_ptr = plane_ptr->dst.buf; const int dst_stride = plane_ptr->dst.stride; const int y_range = (MAX_MIB_SIZE >> scale_vert); const int x_range = (MAX_MIB_SIZE >> scale_horz); const int use_highbitdepth = cm->seq_params.use_highbitdepth; const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; for (int x = 0; x < x_range; x += col_step) { uint8_t *p = dst_ptr + x * MI_SIZE; for (int y = 0; y < y_range;) { // inner loop always filter vertical edges in a MI block. If MI size // is 8x8, it will first filter the vertical edge aligned with a 8x8 // block. If 4x4 trasnform is used, it will then filter the internal // edge aligned with a 4x4 block const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; uint32_t advance_units; TX_SIZE tx_size; AV1_DEBLOCKING_PARAMETERS params; memset(¶ms, 0, sizeof(params)); tx_size = set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); if (tx_size == TX_INVALID) { params.filter_length = 0; tx_size = TX_4X4; } switch (params.filter_length) { // apply 4-tap filtering case 4: if (use_highbitdepth) aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // apply 6-tap filtering case 6: assert(plane != 0); if (use_highbitdepth) aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // apply 8-tap filtering case 8: if (use_highbitdepth) aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // apply 14-tap filtering case 14: if (use_highbitdepth) aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, params.hev_thr, bit_depth); else aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim, params.hev_thr); break; // no filtering default: break; } // advance the destination pointer advance_units = tx_size_high_unit[tx_size]; y += advance_units; p += advance_units * dst_stride * MI_SIZE; } } } static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, MACROBLOCKD *xd, int start, int stop, #if LOOP_FILTER_BITMASK int is_decoding, #endif int plane_start, int plane_end) { struct macroblockd_plane *pd = xd->plane; const int col_start = 0; const int col_end = cm->mi_cols; int mi_row, mi_col; int plane; #if LOOP_FILTER_BITMASK if (is_decoding) { for (plane = plane_start; plane < plane_end; plane++) { if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) break; else if (plane == 1 && !(cm->lf.filter_level_u)) continue; else if (plane == 2 && !(cm->lf.filter_level_v)) continue; av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, 0, 0, plane, plane + 1); av1_build_bitmask_vert_info(cm, &pd[plane], plane); av1_build_bitmask_horz_info(cm, &pd[plane], plane); // apply loop filtering which only goes through buffer once for (mi_row = start; mi_row < stop; mi_row += MI_SIZE_64X64) { for (mi_col = col_start; mi_col < col_end; mi_col += MI_SIZE_64X64) { av1_setup_dst_planes(pd, MI_SIZE_64X64, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_bitmask_vert(cm, &pd[plane], plane, mi_row, mi_col); if (mi_col - MI_SIZE_64X64 >= 0) { av1_setup_dst_planes(pd, MI_SIZE_64X64, frame_buffer, mi_row, mi_col - MI_SIZE_64X64, plane, plane + 1); av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row, mi_col - MI_SIZE_64X64); } } av1_setup_dst_planes(pd, MI_SIZE_64X64, frame_buffer, mi_row, mi_col - MI_SIZE_64X64, plane, plane + 1); av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row, mi_col - MI_SIZE_64X64); } } return; } #endif for (plane = plane_start; plane < plane_end; plane++) { if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) break; else if (plane == 1 && !(cm->lf.filter_level_u)) continue; else if (plane == 2 && !(cm->lf.filter_level_v)) continue; #if LOOP_FILTER_BITMASK // filter all vertical edges every superblock (could be 128x128 or 64x64) for (mi_row = start; mi_row < stop; mi_row += cm->seq_params.mib_size) { for (mi_col = col_start; mi_col < col_end; mi_col += cm->seq_params.mib_size) { av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_setup_bitmask(cm, mi_row, mi_col, plane, pd[plane].subsampling_x, pd[plane].subsampling_y, stop, col_end); av1_filter_block_plane_ver(cm, &pd[plane], plane, mi_row, mi_col); } } // filter all horizontal edges every superblock for (mi_row = start; mi_row < stop; mi_row += cm->seq_params.mib_size) { for (mi_col = col_start; mi_col < col_end; mi_col += cm->seq_params.mib_size) { av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_hor(cm, &pd[plane], plane, mi_row, mi_col); } } #else if (cm->lf.combine_vert_horz_lf) { // filter all vertical and horizontal edges in every 128x128 super block for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { // filter vertical edges av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col); // filter horizontal edges if (mi_col - MAX_MIB_SIZE >= 0) { av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col - MAX_MIB_SIZE, plane, plane + 1); av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, mi_col - MAX_MIB_SIZE); } } // filter horizontal edges av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col - MAX_MIB_SIZE, plane, plane + 1); av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, mi_col - MAX_MIB_SIZE); } } else { // filter all vertical edges in every 128x128 super block for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col); } } // filter all horizontal edges in every 128x128 super block for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, mi_col); } } } #endif // LOOP_FILTER_BITMASK } } void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, MACROBLOCKD *xd, #if LOOP_FILTER_BITMASK int is_decoding, #endif int plane_start, int plane_end, int partial_frame) { int start_mi_row, end_mi_row, mi_rows_to_filter; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; av1_loop_filter_frame_init(cm, plane_start, plane_end); loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, #if LOOP_FILTER_BITMASK is_decoding, #endif plane_start, plane_end); }