/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_AV1_TXFM_H_ #define AOM_AV1_COMMON_AV1_TXFM_H_ #include #include #include #include "config/aom_config.h" #include "av1/common/enums.h" #include "av1/common/blockd.h" #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #ifdef __cplusplus extern "C" { #endif #if !defined(DO_RANGE_CHECK_CLAMP) #define DO_RANGE_CHECK_CLAMP 0 #endif extern const int32_t av1_cospi_arr_data[7][64]; extern const int32_t av1_sinpi_arr_data[7][5]; #define MAX_TXFM_STAGE_NUM 12 static const int cos_bit_min = 10; static const int cos_bit_max = 16; #define NewSqrt2Bits ((int32_t)12) // 2^12 * sqrt(2) static const int32_t NewSqrt2 = 5793; // 2^12 / sqrt(2) static const int32_t NewInvSqrt2 = 2896; static INLINE const int32_t *cospi_arr(int n) { return av1_cospi_arr_data[n - cos_bit_min]; } static INLINE const int32_t *sinpi_arr(int n) { return av1_sinpi_arr_data[n - cos_bit_min]; } static INLINE int32_t range_check_value(int32_t value, int8_t bit) { #if CONFIG_COEFFICIENT_RANGE_CHECKING const int64_t max_value = (1LL << (bit - 1)) - 1; const int64_t min_value = -(1LL << (bit - 1)); if (value < min_value || value > max_value) { fprintf(stderr, "coeff out of bit range, value: %d bit %d\n", value, bit); assert(0); } #endif // CONFIG_COEFFICIENT_RANGE_CHECKING #if DO_RANGE_CHECK_CLAMP bit = AOMMIN(bit, 31); return clamp(value, -(1 << (bit - 1)), (1 << (bit - 1)) - 1); #endif // DO_RANGE_CHECK_CLAMP (void)bit; return value; } static INLINE int32_t round_shift(int64_t value, int bit) { assert(bit >= 1); return (int32_t)((value + (1ll << (bit - 1))) >> bit); } static INLINE int32_t half_btf(int32_t w0, int32_t in0, int32_t w1, int32_t in1, int bit) { int64_t result_64 = (int64_t)(w0 * in0) + (int64_t)(w1 * in1); int64_t intermediate = result_64 + (1LL << (bit - 1)); // NOTE(david.barker): The value 'result_64' may not necessarily fit // into 32 bits. However, the result of this function is nominally // ROUND_POWER_OF_TWO_64(result_64, bit) // and that is required to fit into stage_range[stage] many bits // (checked by range_check_buf()). // // Here we've unpacked that rounding operation, and it can be shown // that the value of 'intermediate' here *does* fit into 32 bits // for any conformant bitstream. // The upshot is that, if you do all this calculation using // wrapping 32-bit arithmetic instead of (non-wrapping) 64-bit arithmetic, // then you'll still get the correct result. // To provide a check on this logic, we assert that 'intermediate' // would fit into an int32 if range checking is enabled. #if CONFIG_COEFFICIENT_RANGE_CHECKING assert(intermediate >= INT32_MIN && intermediate <= INT32_MAX); #endif return (int32_t)(intermediate >> bit); } static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans, int bd) { return clip_pixel_highbd(dest + (int)trans, bd); } typedef void (*TxfmFunc)(const int32_t *input, int32_t *output, int8_t cos_bit, const int8_t *stage_range); typedef void (*FwdTxfm2dFunc)(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd); typedef enum TXFM_TYPE { TXFM_TYPE_DCT4, TXFM_TYPE_DCT8, TXFM_TYPE_DCT16, TXFM_TYPE_DCT32, TXFM_TYPE_DCT64, TXFM_TYPE_ADST4, TXFM_TYPE_ADST8, TXFM_TYPE_ADST16, TXFM_TYPE_IDENTITY4, TXFM_TYPE_IDENTITY8, TXFM_TYPE_IDENTITY16, TXFM_TYPE_IDENTITY32, TXFM_TYPES, TXFM_TYPE_INVALID, } TXFM_TYPE; typedef struct TXFM_2D_FLIP_CFG { TX_SIZE tx_size; int ud_flip; // flip upside down int lr_flip; // flip left to right const int8_t *shift; int8_t cos_bit_col; int8_t cos_bit_row; int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; TXFM_TYPE txfm_type_col; TXFM_TYPE txfm_type_row; int stage_num_col; int stage_num_row; } TXFM_2D_FLIP_CFG; static INLINE void get_flip_cfg(TX_TYPE tx_type, int *ud_flip, int *lr_flip) { switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: *ud_flip = 0; *lr_flip = 0; break; case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: *ud_flip = 0; *lr_flip = 0; break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: *ud_flip = 1; *lr_flip = 0; break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: *ud_flip = 0; *lr_flip = 1; break; case FLIPADST_FLIPADST: *ud_flip = 1; *lr_flip = 1; break; default: *ud_flip = 0; *lr_flip = 0; assert(0); } } static INLINE void set_flip_cfg(TX_TYPE tx_type, TXFM_2D_FLIP_CFG *cfg) { get_flip_cfg(tx_type, &cfg->ud_flip, &cfg->lr_flip); } // Utility function that returns the log of the ratio of the col and row // sizes. static INLINE int get_rect_tx_log_ratio(int col, int row) { if (col == row) return 0; if (col > row) { if (col == row * 2) return 1; if (col == row * 4) return 2; assert(0 && "Unsupported transform size"); } else { if (row == col * 2) return -1; if (row == col * 4) return -2; assert(0 && "Unsupported transform size"); } return 0; // Invalid } void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, const TXFM_2D_FLIP_CFG *cfg, int bd); void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size, int bd); void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, TXFM_2D_FLIP_CFG *cfg); void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, TXFM_2D_FLIP_CFG *cfg); extern const TXFM_TYPE av1_txfm_type_ls[5][TX_TYPES_1D]; extern const int8_t av1_txfm_stage_num_list[TXFM_TYPES]; static INLINE int get_txw_idx(TX_SIZE tx_size) { return tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]; } static INLINE int get_txh_idx(TX_SIZE tx_size) { return tx_size_high_log2[tx_size] - tx_size_high_log2[0]; } void av1_range_check_buf(int32_t stage, const int32_t *input, const int32_t *buf, int32_t size, int8_t bit); #define MAX_TXWH_IDX 5 #ifdef __cplusplus } #endif // __cplusplus #endif // AOM_AV1_COMMON_AV1_TXFM_H_