/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/cfl.h" #include "av1/common/common_data.h" #include "av1/common/onyxc_int.h" #include "config/av1_rtcd.h" void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) { assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3)); memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3)); cfl->subsampling_x = seq_params->subsampling_x; cfl->subsampling_y = seq_params->subsampling_y; cfl->are_parameters_computed = 0; cfl->store_y = 0; // The DC_PRED cache is disabled by default and is only enabled in // cfl_rd_pick_alpha cfl->use_dc_pred_cache = 0; cfl->dc_pred_is_cached[CFL_PRED_U] = 0; cfl->dc_pred_is_cached[CFL_PRED_V] = 0; } void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input, CFL_PRED_TYPE pred_plane, int width) { assert(pred_plane < CFL_PRED_PLANES); assert(width <= CFL_BUF_LINE); if (get_bitdepth_data_path_index(xd)) { uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input); memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1); return; } memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width); } static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst, int dst_stride, int width, int height) { for (int j = 0; j < height; j++) { memcpy(dst, dc_pred_cache, width); dst += dst_stride; } } static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst, int dst_stride, int width, int height) { const size_t num_bytes = width << 1; for (int j = 0; j < height; j++) { memcpy(dst, dc_pred_cache, num_bytes); dst += dst_stride; } } void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) { const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; assert(pred_plane < CFL_PRED_PLANES); assert(width <= CFL_BUF_LINE); assert(height <= CFL_BUF_LINE); if (get_bitdepth_data_path_index(xd)) { uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride, width, height); return; } cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride, width, height); } // Due to frame boundary issues, it is possible that the total area covered by // chroma exceeds that of luma. When this happens, we fill the missing pixels by // repeating the last columns and/or rows. static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) { const int diff_width = width - cfl->buf_width; const int diff_height = height - cfl->buf_height; if (diff_width > 0) { const int min_height = height - diff_height; uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width); for (int j = 0; j < min_height; j++) { const uint16_t last_pixel = recon_buf_q3[-1]; assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); for (int i = 0; i < diff_width; i++) { recon_buf_q3[i] = last_pixel; } recon_buf_q3 += CFL_BUF_LINE; } cfl->buf_width = width; } if (diff_height > 0) { uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE); for (int j = 0; j < diff_height; j++) { const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE; assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); for (int i = 0; i < width; i++) { recon_buf_q3[i] = last_row_q3[i]; } recon_buf_q3 += CFL_BUF_LINE; } cfl->buf_height = height; } } static void subtract_average_c(const uint16_t *src, int16_t *dst, int width, int height, int round_offset, int num_pel_log2) { int sum = round_offset; const uint16_t *recon = src; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { sum += recon[i]; } recon += CFL_BUF_LINE; } const int avg = sum >> num_pel_log2; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { dst[i] = src[i] - avg; } src += CFL_BUF_LINE; dst += CFL_BUF_LINE; } } CFL_SUB_AVG_FN(c) static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign, CFL_PRED_TYPE pred_type) { const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) : CFL_SIGN_V(joint_sign); if (alpha_sign == CFL_SIGN_ZERO) return 0; const int abs_alpha_q3 = (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; } static INLINE void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3, int width, int height) { for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]); } dst += dst_stride; ac_buf_q3 += CFL_BUF_LINE; } } // Null function used for invalid tx_sizes void cfl_predict_lbd_null(const int16_t *ac_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3) { (void)ac_buf_q3; (void)dst; (void)dst_stride; (void)alpha_q3; assert(0); } CFL_PREDICT_FN(c, lbd) void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bit_depth, int width, int height) { for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { dst[i] = clip_pixel_highbd( get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth); } dst += dst_stride; ac_buf_q3 += CFL_BUF_LINE; } } // Null function used for invalid tx_sizes void cfl_predict_hbd_null(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bd) { (void)ac_buf_q3; (void)dst; (void)dst_stride; (void)alpha_q3; (void)bd; assert(0); } CFL_PREDICT_FN(c, hbd) static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { CFL_CTX *const cfl = &xd->cfl; // Do not call cfl_compute_parameters multiple time on the same values. assert(cfl->are_parameters_computed == 0); cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]); get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3); cfl->are_parameters_computed = 1; } void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, TX_SIZE tx_size, int plane) { CFL_CTX *const cfl = &xd->cfl; MB_MODE_INFO *mbmi = xd->mi[0]; assert(is_cfl_allowed(xd)); if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size); const int alpha_q3 = cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <= CFL_BUF_SQUARE); if (get_bitdepth_data_path_index(xd)) { uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride, alpha_q3, xd->bd); return; } get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3); } // Null function used for invalid tx_sizes void cfl_subsample_lbd_null(const uint8_t *input, int input_stride, uint16_t *output_q3) { (void)input; (void)input_stride; (void)output_q3; assert(0); } // Null function used for invalid tx_sizes void cfl_subsample_hbd_null(const uint16_t *input, int input_stride, uint16_t *output_q3) { (void)input; (void)input_stride; (void)output_q3; assert(0); } static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input, int input_stride, uint16_t *output_q3, int width, int height) { for (int j = 0; j < height; j += 2) { for (int i = 0; i < width; i += 2) { const int bot = i + input_stride; output_q3[i >> 1] = (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; } input += input_stride << 1; output_q3 += CFL_BUF_LINE; } } static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input, int input_stride, uint16_t *output_q3, int width, int height) { assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i += 2) { output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; } input += input_stride; output_q3 += CFL_BUF_LINE; } } static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input, int input_stride, uint16_t *output_q3, int width, int height) { assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { output_q3[i] = input[i] << 3; } input += input_stride; output_q3 += CFL_BUF_LINE; } } static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input, int input_stride, uint16_t *output_q3, int width, int height) { for (int j = 0; j < height; j += 2) { for (int i = 0; i < width; i += 2) { const int bot = i + input_stride; output_q3[i >> 1] = (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; } input += input_stride << 1; output_q3 += CFL_BUF_LINE; } } static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input, int input_stride, uint16_t *output_q3, int width, int height) { assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i += 2) { output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; } input += input_stride; output_q3 += CFL_BUF_LINE; } } static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input, int input_stride, uint16_t *output_q3, int width, int height) { assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { output_q3[i] = input[i] << 3; } input += input_stride; output_q3 += CFL_BUF_LINE; } } CFL_GET_SUBSAMPLE_FUNCTION(c) static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size, int sub_x, int sub_y) { if (sub_x == 1) { if (sub_y == 1) { return cfl_get_luma_subsampling_420_hbd(tx_size); } return cfl_get_luma_subsampling_422_hbd(tx_size); } return cfl_get_luma_subsampling_444_hbd(tx_size); } static INLINE cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size, int sub_x, int sub_y) { if (sub_x == 1) { if (sub_y == 1) { return cfl_get_luma_subsampling_420_lbd(tx_size); } return cfl_get_luma_subsampling_422_lbd(tx_size); } return cfl_get_luma_subsampling_444_lbd(tx_size); } static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, int col, TX_SIZE tx_size, int use_hbd) { const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; const int tx_off_log2 = tx_size_wide_log2[0]; const int sub_x = cfl->subsampling_x; const int sub_y = cfl->subsampling_y; const int store_row = row << (tx_off_log2 - sub_y); const int store_col = col << (tx_off_log2 - sub_x); const int store_height = height >> sub_y; const int store_width = width >> sub_x; // Invalidate current parameters cfl->are_parameters_computed = 0; // Store the surface of the pixel buffer that was written to, this way we // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the // frame boundary) if (col == 0 && row == 0) { cfl->buf_width = store_width; cfl->buf_height = store_height; } else { cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); } // Check that we will remain inside the pixel buffer. assert(store_row + store_height <= CFL_BUF_LINE); assert(store_col + store_width <= CFL_BUF_LINE); // Store the input into the CfL pixel buffer uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col); if (use_hbd) { cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input), input_stride, recon_buf_q3); } else { cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, recon_buf_q3); } } // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced // and non-chroma-referenced blocks are stored together in the CfL buffer. static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out, int *col_out) { // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s. if ((cfl->mi_row & 0x01) && cfl->subsampling_y) { assert(*row_out == 0); (*row_out)++; } // Increment col index for right: 4x8, 4x16 or both right 4x4s. if ((cfl->mi_col & 0x01) && cfl->subsampling_x) { assert(*col_out == 0); (*col_out)++; } } void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, BLOCK_SIZE bsize) { CFL_CTX *const cfl = &xd->cfl; struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { // Only dimensions of size 4 can have an odd offset. assert(!((col & 1) && tx_size_wide[tx_size] != 4)); assert(!((row & 1) && tx_size_high[tx_size] != 4)); sub8x8_adjust_offset(cfl, &row, &col); } cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size, get_bitdepth_data_path_index(xd)); } void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) { CFL_CTX *const cfl = &xd->cfl; struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; int row = 0; int col = 0; if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { sub8x8_adjust_offset(cfl, &row, &col); } const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size); const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size); tx_size = get_tx_size(width, height); cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size, get_bitdepth_data_path_index(xd)); }