/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" // Returns a context number for the given MB prediction signal static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi, const MACROBLOCKD *xd, int dir, MV_REFERENCE_FRAME ref_frame) { (void)xd; return ((ref_mbmi->ref_frame[0] == ref_frame || ref_mbmi->ref_frame[1] == ref_frame) ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01) : SWITCHABLE_FILTERS); } int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { const MB_MODE_INFO *const mbmi = xd->mi[0]; const int ctx_offset = (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET; assert(dir == 0 || dir == 1); const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; int left_type = SWITCHABLE_FILTERS; int above_type = SWITCHABLE_FILTERS; if (xd->left_available) left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); if (xd->up_available) above_type = get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); if (left_type == above_type) { filter_type_ctx += left_type; } else if (left_type == SWITCHABLE_FILTERS) { assert(above_type != SWITCHABLE_FILTERS); filter_type_ctx += above_type; } else if (above_type == SWITCHABLE_FILTERS) { assert(left_type != SWITCHABLE_FILTERS); filter_type_ctx += left_type; } else { filter_type_ctx += SWITCHABLE_FILTERS; } return filter_type_ctx; } static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) { // Do not add an already existing value if (*n > 0 && val == cache[*n - 1]) return; cache[(*n)++] = val; } int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, uint16_t *cache) { const int row = -xd->mb_to_top_edge >> 3; // Do not refer to above SB row when on SB boundary. const MB_MODE_INFO *const above_mi = (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL; const MB_MODE_INFO *const left_mi = xd->left_mbmi; int above_n = 0, left_n = 0; if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0]; if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0]; if (above_n == 0 && left_n == 0) return 0; int above_idx = plane * PALETTE_MAX_SIZE; int left_idx = plane * PALETTE_MAX_SIZE; int n = 0; const uint16_t *above_colors = above_mi ? above_mi->palette_mode_info.palette_colors : NULL; const uint16_t *left_colors = left_mi ? left_mi->palette_mode_info.palette_colors : NULL; // Merge the sorted lists of base colors from above and left to get // combined sorted color cache. while (above_n > 0 && left_n > 0) { uint16_t v_above = above_colors[above_idx]; uint16_t v_left = left_colors[left_idx]; if (v_left < v_above) { palette_add_to_cache(cache, &n, v_left); ++left_idx, --left_n; } else { palette_add_to_cache(cache, &n, v_above); ++above_idx, --above_n; if (v_left == v_above) ++left_idx, --left_n; } } while (above_n-- > 0) { uint16_t val = above_colors[above_idx++]; palette_add_to_cache(cache, &n, val); } while (left_n-- > 0) { uint16_t val = left_colors[left_idx++]; palette_add_to_cache(cache, &n, val); } assert(n <= 2 * PALETTE_MAX_SIZE); return n; } // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - inter/inter, inter/--, --/inter, --/-- // 1 - intra/inter, inter/intra // 2 - intra/--, --/intra // 3 - intra/intra int av1_get_intra_inter_context(const MACROBLOCKD *xd) { const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); return left_intra && above_intra ? 3 : left_intra || above_intra; } else if (has_above || has_left) { // one edge available return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); } else { return 0; } } #define CHECK_BACKWARD_REFS(ref_frame) \ (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) int av1_get_reference_mode_context(const MACROBLOCKD *xd) { int ctx; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int has_above = xd->up_available; const int has_left = xd->left_available; // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. if (has_above && has_left) { // both edges available if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) // neither edge uses comp pred (0/1) ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); else if (!has_second_ref(above_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || !is_inter_block(above_mbmi)); else if (!has_second_ref(left_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || !is_inter_block(left_mbmi)); else // both edges use comp pred (4) ctx = 4; } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!has_second_ref(edge_mbmi)) // edge does not use comp pred (0/1) ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); else // edge uses comp pred (3) ctx = 3; } else { // no edges available (1) ctx = 1; } assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); return ctx; } int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(inter_mbmi)) // single pred pred_context = 2; else // comp pred pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); } else { // inter/inter const int a_sg = !has_second_ref(above_mbmi); const int l_sg = !has_second_ref(left_mbmi); const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; if (a_sg && l_sg) { // single/single pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ IS_BACKWARD_REF_FRAME(frfl))); } else if (l_sg || a_sg) { // single/comp const int uni_rfc = a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); if (!uni_rfc) // comp bidir pred_context = 1; else // comp unidir pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ IS_BACKWARD_REF_FRAME(frfl))); } else { // comp/comp const int a_uni_rfc = has_uni_comp_refs(above_mbmi); const int l_uni_rfc = has_uni_comp_refs(left_mbmi); if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir pred_context = 0; else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir pred_context = 2; else // unidir/unidir pred_context = 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { // intra pred_context = 2; } else { // inter if (!has_second_ref(edge_mbmi)) // single pred pred_context = 2; else // comp pred pred_context = 4 * has_uni_comp_refs(edge_mbmi); } } else { // no edges available pred_context = 2; } assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // // Signal the uni-directional compound reference frame pair as either // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), // conditioning on the pair is known as uni-directional. // // 3 contexts: Voting is used to compare the count of forward references with // that of backward references from the spatial neighbors. int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of forward references (L, L2, L3, or G) const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; // Count of backward references (B or A) const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + ref_counts[ALTREF_FRAME]; const int pred_context = (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // // Signal the uni-directional compound reference frame pair as // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), // conditioning on the pair is known as one of the above three. // // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the // total count of LAST3/GOLDEN from the spatial neighbors. int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of LAST2 const int last2_count = ref_counts[LAST2_FRAME]; // Count of LAST3 or GOLDEN const int last3_or_gld_count = ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; const int pred_context = (last2_count == last3_or_gld_count) ? 1 : ((last2_count < last3_or_gld_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // // Signal the uni-directional compound reference frame pair as // either (LAST, LAST3) or (LAST, GOLDEN), // conditioning on the pair is known as one of the above two. // // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the // total count of GOLDEN_FRAME from the spatial neighbors. int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of LAST3 const int last3_count = ref_counts[LAST3_FRAME]; // Count of GOLDEN const int gld_count = ref_counts[GOLDEN_FRAME]; const int pred_context = (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); return pred_context; } // == Common context functions for both comp and single ref == // // Obtain contexts to signal a reference frame to be either LAST/LAST2 or // LAST3/GOLDEN. static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of LAST + LAST2 const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME]; // Count of LAST3 + GOLDEN const int last3_gld_count = ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; const int pred_context = (last_last2_count == last3_gld_count) ? 1 : ((last_last2_count < last3_gld_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Obtain contexts to signal a reference frame to be either LAST or LAST2. static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of LAST const int last_count = ref_counts[LAST_FRAME]; // Count of LAST2 const int last2_count = ref_counts[LAST2_FRAME]; const int pred_context = (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN. static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of LAST3 const int last3_count = ref_counts[LAST3_FRAME]; // Count of GOLDEN const int gld_count = ref_counts[GOLDEN_FRAME]; const int pred_context = (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or // ALTREF. static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) const int brfarf2_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME]; const int arf_count = ref_counts[ALTREF_FRAME]; const int pred_context = (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of BWDREF frames (B) const int brf_count = ref_counts[BWDREF_FRAME]; // Count of ALTREF2 frames (A2) const int arf2_count = ref_counts[ALTREF2_FRAME]; const int pred_context = (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // == Context functions for comp ref == // // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be either // GOLDEN/LAST3, or LAST/LAST2. int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) { return get_pred_context_ll2_or_l3gld(xd); } // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be LAST, // conditioning on that it is known either LAST/LAST2. int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) { return get_pred_context_last_or_last2(xd); } // Returns a context number for the given MB prediction signal // Signal the first reference frame for a compound mode be GOLDEN, // conditioning on that it is known either GOLDEN or LAST3. int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) { return get_pred_context_last3_or_gld(xd); } // Signal the 2nd reference frame for a compound mode be either // ALTREF, or ALTREF2/BWDREF. int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) { return get_pred_context_brfarf2_or_arf(xd); } // Signal the 2nd reference frame for a compound mode be either // ALTREF2 or BWDREF. int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) { return get_pred_context_brf_or_arf2(xd); } // == Context functions for single ref == // // For the bit to signal whether the single reference is a forward reference // frame or a backward reference frame. int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; // Count of forward reference frames const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; // Count of backward reference frames const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + ref_counts[ALTREF_FRAME]; const int pred_context = (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2); assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // For the bit to signal whether the single reference is ALTREF_FRAME or // non-ALTREF backward reference frame, knowing that it shall be either of // these 2 choices. int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { return get_pred_context_brfarf2_or_arf(xd); } // For the bit to signal whether the single reference is LAST3/GOLDEN or // LAST2/LAST, knowing that it shall be either of these 2 choices. int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { return get_pred_context_ll2_or_l3gld(xd); } // For the bit to signal whether the single reference is LAST2_FRAME or // LAST_FRAME, knowing that it shall be either of these 2 choices. int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { return get_pred_context_last_or_last2(xd); } // For the bit to signal whether the single reference is GOLDEN_FRAME or // LAST3_FRAME, knowing that it shall be either of these 2 choices. int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { return get_pred_context_last3_or_gld(xd); } // For the bit to signal whether the single reference is ALTREF2_FRAME or // BWDREF_FRAME, knowing that it shall be either of these 2 choices. int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { return get_pred_context_brf_or_arf2(xd); }