/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_RECONINTER_H_ #define AOM_AV1_COMMON_RECONINTER_H_ #include "av1/common/filter.h" #include "av1/common/onyxc_int.h" #include "av1/common/convolve.h" #include "av1/common/warped_motion.h" #include "aom/aom_integer.h" // Work out how many pixels off the edge of a reference frame we're allowed // to go when forming an inter prediction. // The outermost row/col of each referernce frame is extended by // (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep // at least AOM_INTERP_EXTEND pixels within that to account for filtering. // // We have to break this up into two macros to keep both clang-format and // tools/lint-hunks.py happy. #define AOM_LEFT_TOP_MARGIN_PX(subsampling) \ ((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND) #define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \ (AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS) #ifdef __cplusplus extern "C" { #endif // Set to (1 << 5) if the 32-ary codebooks are used for any bock size #define MAX_WEDGE_TYPES (1 << 4) #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) #define WEDGE_WEIGHT_BITS 6 #define WEDGE_NONE -1 // Angles are with respect to horizontal anti-clockwise typedef enum { WEDGE_HORIZONTAL = 0, WEDGE_VERTICAL = 1, WEDGE_OBLIQUE27 = 2, WEDGE_OBLIQUE63 = 3, WEDGE_OBLIQUE117 = 4, WEDGE_OBLIQUE153 = 5, WEDGE_DIRECTIONS } WedgeDirectionType; // 3-tuple: {direction, x_offset, y_offset} typedef struct { WedgeDirectionType direction; int x_offset; int y_offset; } wedge_code_type; typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; typedef struct { int bits; const wedge_code_type *codebook; uint8_t *signflip; wedge_masks_type *masks; } wedge_params_type; extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL]; typedef struct SubpelParams { int xs; int ys; int subpel_x; int subpel_y; } SubpelParams; struct build_prediction_ctxt { const AV1_COMMON *cm; int mi_row; int mi_col; uint8_t **tmp_buf; int *tmp_width; int *tmp_height; int *tmp_stride; int mb_to_far_edge; }; static INLINE int has_scale(int xs, int ys) { return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS; } static INLINE void revert_scale_extra_bits(SubpelParams *sp) { sp->subpel_x >>= SCALE_EXTRA_BITS; sp->subpel_y >>= SCALE_EXTRA_BITS; sp->xs >>= SCALE_EXTRA_BITS; sp->ys >>= SCALE_EXTRA_BITS; assert(sp->subpel_x < SUBPEL_SHIFTS); assert(sp->subpel_y < SUBPEL_SHIFTS); assert(sp->xs <= SUBPEL_SHIFTS); assert(sp->ys <= SUBPEL_SHIFTS); } static INLINE void inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int is_intrabc) { assert(conv_params->do_average == 0 || conv_params->do_average == 1); assert(sf); const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys); assert(IMPLIES(is_intrabc, !is_scaled)); if (is_scaled) { av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_params->subpel_x, subpel_params->xs, subpel_params->subpel_y, subpel_params->ys, 1, conv_params, sf, is_intrabc); } else { SubpelParams sp = *subpel_params; revert_scale_extra_bits(&sp); av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, sp.subpel_x, sp.xs, sp.subpel_y, sp.ys, 0, conv_params, sf, is_intrabc); } } static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int is_intrabc, int bd) { assert(conv_params->do_average == 0 || conv_params->do_average == 1); assert(sf); const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys); assert(IMPLIES(is_intrabc, !is_scaled)); if (is_scaled) { av1_highbd_convolve_2d_facade( src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_params->subpel_x, subpel_params->xs, subpel_params->subpel_y, subpel_params->ys, 1, conv_params, sf, is_intrabc, bd); } else { SubpelParams sp = *subpel_params; revert_scale_extra_bits(&sp); av1_highbd_convolve_2d_facade( src, src_stride, dst, dst_stride, w, h, interp_filters, sp.subpel_x, sp.xs, sp.subpel_y, sp.ys, 0, conv_params, sf, is_intrabc, bd); } } void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi); int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, int dir); static INLINE int is_interinter_compound_used(COMPOUND_TYPE type, BLOCK_SIZE sb_type) { const int comp_allowed = is_comp_ref_allowed(sb_type); switch (type) { case COMPOUND_AVERAGE: case COMPOUND_DIFFWTD: return comp_allowed; case COMPOUND_WEDGE: return comp_allowed && wedge_params_lookup[sb_type].bits > 0; default: assert(0); return 0; } } static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) { COMPOUND_TYPE comp_type; int i; if (!is_comp_ref_allowed(sb_type)) return 0; for (i = 0; i < COMPOUND_TYPES; i++) { comp_type = (COMPOUND_TYPE)i; if (is_masked_compound_type(comp_type) && is_interinter_compound_used(comp_type, sb_type)) return 1; } return 0; } static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) { const int wbits = wedge_params_lookup[sb_type].bits; return (wbits > 0) ? wbits + 1 : 0; } static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits > 0; } static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, const MB_MODE_INFO *mi, int build_for_obmc, const MACROBLOCKD *xd, int can_use_previous); void av1_make_masked_inter_predictor( const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const SubpelParams *subpel_params, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int plane, const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, MACROBLOCKD *xd, int can_use_previous); // TODO(jkoleszar): yet another mv clamping function :-( static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))), (int16_t)(src_mv->col * (1 << (1 - ss_x))) }; assert(ss_x <= 1); assert(ss_y <= 1); clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); return clamped_mv; } static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, const struct scale_factors *sf) { const int x = sf ? sf->scale_value_x(x_offset, sf) >> SCALE_EXTRA_BITS : x_offset; const int y = sf ? sf->scale_value_y(y_offset, sf) >> SCALE_EXTRA_BITS : y_offset; return y * stride + x; } static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize, uint8_t *src, int width, int height, int stride, int mi_row, int mi_col, const struct scale_factors *scale, int subsampling_x, int subsampling_y) { // Offset the buffer pointer if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) mi_row -= 1; if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) mi_col -= 1; const int x = (MI_SIZE * mi_col) >> subsampling_x; const int y = (MI_SIZE * mi_row) >> subsampling_y; dst->buf = src + scaled_buffer_offset(x, y, stride, scale); dst->buf0 = src; dst->width = width; dst->height = height; dst->stride = stride; } void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const int plane_start, const int plane_end); void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf, const int num_planes); static INLINE void set_default_interp_filters( MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) { mbmi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter)); } static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { const MB_MODE_INFO *const mbmi = xd->mi[0]; if (mbmi->skip_mode) return 0; if (mbmi->motion_mode == WARPED_CAUSAL) return 0; if (is_nontrans_global_motion(xd, xd->mi[0])) return 0; return 1; } void av1_setup_build_prediction_by_above_pred( MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes); void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes); void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]); const uint8_t *av1_get_obmc_mask(int length); void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1) #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE) void av1_init_wedge_masks(); static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; } const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); // build interintra_predictors for one plane void av1_build_interintra_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *pred, int stride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_intra_predictors_for_interintra( const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *intra_pred, int intra_stride); void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride); void av1_jnt_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi, int order_idx, int *fwd_offset, int *bck_offset, int *use_jnt_comp_avg, int is_compound); int av1_allow_warp(const MB_MODE_INFO *const mbmi, const WarpTypesAllowed *const warp_types, const WarpedMotionParams *const gm_params, int build_for_obmc, int x_scale, int y_scale, WarpedMotionParams *final_warp_params); #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_COMMON_RECONINTER_H_