/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/aom_config.h" #include "config/aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/entropymode.h" #include "av1/common/thread_common.h" #include "av1/common/reconinter.h" // Set up nsync by width. static INLINE int get_sync_range(int width) { // nsync numbers are picked by testing. For example, for 4k // video, using 4 gives best performance. if (width < 640) return 1; else if (width <= 1280) return 2; else if (width <= 4096) return 4; else return 8; } static INLINE int get_lr_sync_range(int width) { #if 0 // nsync numbers are picked by testing. For example, for 4k // video, using 4 gives best performance. if (width < 640) return 1; else if (width <= 1280) return 2; else if (width <= 4096) return 4; else return 8; #else (void)width; return 1; #endif } // Allocate memory for lf row synchronization static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, int width, int num_workers) { lf_sync->rows = rows; #if CONFIG_MULTITHREAD { int i, j; for (j = 0; j < MAX_MB_PLANE; j++) { CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); if (lf_sync->mutex_[j]) { for (i = 0; i < rows; ++i) { pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); } } CHECK_MEM_ERROR(cm, lf_sync->cond_[j], aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); if (lf_sync->cond_[j]) { for (i = 0; i < rows; ++i) { pthread_cond_init(&lf_sync->cond_[j][i], NULL); } } } CHECK_MEM_ERROR(cm, lf_sync->job_mutex, aom_malloc(sizeof(*(lf_sync->job_mutex)))); if (lf_sync->job_mutex) { pthread_mutex_init(lf_sync->job_mutex, NULL); } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, lf_sync->lfdata, aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); lf_sync->num_workers = num_workers; for (int j = 0; j < MAX_MB_PLANE; j++) { CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); } CHECK_MEM_ERROR( cm, lf_sync->job_queue, aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); // Set up nsync. lf_sync->sync_range = get_sync_range(width); } // Deallocate lf synchronization related mutex and data void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { if (lf_sync != NULL) { int j; #if CONFIG_MULTITHREAD int i; for (j = 0; j < MAX_MB_PLANE; j++) { if (lf_sync->mutex_[j] != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_mutex_destroy(&lf_sync->mutex_[j][i]); } aom_free(lf_sync->mutex_[j]); } if (lf_sync->cond_[j] != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_cond_destroy(&lf_sync->cond_[j][i]); } aom_free(lf_sync->cond_[j]); } } if (lf_sync->job_mutex != NULL) { pthread_mutex_destroy(lf_sync->job_mutex); aom_free(lf_sync->job_mutex); } #endif // CONFIG_MULTITHREAD aom_free(lf_sync->lfdata); for (j = 0; j < MAX_MB_PLANE; j++) { aom_free(lf_sync->cur_sb_col[j]); } aom_free(lf_sync->job_queue); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*lf_sync); } } static void loop_filter_data_reset(LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, struct AV1Common *cm, MACROBLOCKD *xd) { struct macroblockd_plane *pd = xd->plane; lf_data->frame_buffer = frame_buffer; lf_data->cm = cm; lf_data->xd = xd; for (int i = 0; i < MAX_MB_PLANE; i++) { memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); lf_data->planes[i].subsampling_x = pd[i].subsampling_x; lf_data->planes[i].subsampling_y = pd[i].subsampling_y; } } static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, int plane) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; if (r && !(c & (nsync - 1))) { pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; pthread_mutex_lock(mutex); while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)lf_sync; (void)r; (void)c; (void)plane; #endif // CONFIG_MULTITHREAD } static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, const int sb_cols, int plane) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; int cur; // Only signal when there are enough filtered SB for next row to run. int sig = 1; if (c < sb_cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = sb_cols + nsync; } if (sig) { pthread_mutex_lock(&lf_sync->mutex_[plane][r]); lf_sync->cur_sb_col[plane][r] = cur; pthread_cond_broadcast(&lf_sync->cond_[plane][r]); pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); } #else (void)lf_sync; (void)r; (void)c; (void)sb_cols; (void)plane; #endif // CONFIG_MULTITHREAD } static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, int stop, int plane_start, int plane_end) { int mi_row, plane, dir; AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; lf_sync->jobs_enqueued = 0; lf_sync->jobs_dequeued = 0; for (dir = 0; dir < 2; dir++) { for (plane = plane_start; plane < plane_end; plane++) { if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) break; else if (plane == 1 && !(cm->lf.filter_level_u)) continue; else if (plane == 2 && !(cm->lf.filter_level_v)) continue; for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { lf_job_queue->mi_row = mi_row; lf_job_queue->plane = plane; lf_job_queue->dir = dir; lf_job_queue++; lf_sync->jobs_enqueued++; } } } } AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { AV1LfMTInfo *cur_job_info = NULL; #if CONFIG_MULTITHREAD pthread_mutex_lock(lf_sync->job_mutex); if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; lf_sync->jobs_dequeued++; } pthread_mutex_unlock(lf_sync->job_mutex); #else (void)lf_sync; #endif return cur_job_info; } // Implement row loopfiltering for each thread. static INLINE void thread_loop_filter_rows( const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, struct macroblockd_plane *planes, MACROBLOCKD *xd, AV1LfSync *const lf_sync) { const int sb_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; int mi_row, mi_col, plane, dir; int r, c; while (1) { AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); if (cur_job_info != NULL) { mi_row = cur_job_info->mi_row; plane = cur_job_info->plane; dir = cur_job_info->dir; r = mi_row >> MAX_MIB_SIZE_LOG2; if (dir == 0) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { c = mi_col >> MAX_MIB_SIZE_LOG2; av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, mi_col); sync_write(lf_sync, r, c, sb_cols, plane); } } else if (dir == 1) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { c = mi_col >> MAX_MIB_SIZE_LOG2; // Wait for vertical edge filtering of the top-right block to be // completed sync_read(lf_sync, r, c, plane); // Wait for vertical edge filtering of the right block to be // completed sync_read(lf_sync, r + 1, c, plane); av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, mi_row, mi_col, plane, plane + 1); av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, mi_col); } } } else { break; } } } // Row-based multi-threaded loopfilter hook static int loop_filter_row_worker(void *arg1, void *arg2) { AV1LfSync *const lf_sync = (AV1LfSync *)arg1; LFWorkerData *const lf_data = (LFWorkerData *)arg2; thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, lf_sync); return 1; } static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, MACROBLOCKD *xd, int start, int stop, int plane_start, int plane_end, AVxWorker *workers, int nworkers, AV1LfSync *lf_sync) { const AVxWorkerInterface *const winterface = aom_get_worker_interface(); // Number of superblock rows and cols const int sb_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; const int num_workers = nworkers; int i; if (!lf_sync->sync_range || sb_rows != lf_sync->rows || num_workers > lf_sync->num_workers) { av1_loop_filter_dealloc(lf_sync); loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); } // Initialize cur_sb_col to -1 for all SB rows. for (i = 0; i < MAX_MB_PLANE; i++) { memset(lf_sync->cur_sb_col[i], -1, sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); } enqueue_lf_jobs(lf_sync, cm, start, stop, plane_start, plane_end); // Set up loopfilter thread data. for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; LFWorkerData *const lf_data = &lf_sync->lfdata[i]; worker->hook = loop_filter_row_worker; worker->data1 = lf_sync; worker->data2 = lf_data; // Loopfilter data loop_filter_data_reset(lf_data, frame, cm, xd); // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } } void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, MACROBLOCKD *xd, int plane_start, int plane_end, int partial_frame, AVxWorker *workers, int num_workers, AV1LfSync *lf_sync) { int start_mi_row, end_mi_row, mi_rows_to_filter; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; av1_loop_filter_frame_init(cm, plane_start, plane_end); loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, plane_end, workers, num_workers, lf_sync); } static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { #if CONFIG_MULTITHREAD AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; const int nsync = loop_res_sync->sync_range; if (r && !(c & (nsync - 1))) { pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; pthread_mutex_lock(mutex); while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)lr_sync; (void)r; (void)c; (void)plane; #endif // CONFIG_MULTITHREAD } static INLINE void lr_sync_write(void *const lr_sync, int r, int c, const int sb_cols, int plane) { #if CONFIG_MULTITHREAD AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; const int nsync = loop_res_sync->sync_range; int cur; // Only signal when there are enough filtered SB for next row to run. int sig = 1; if (c < sb_cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = sb_cols + nsync; } if (sig) { pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); loop_res_sync->cur_sb_col[plane][r] = cur; pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); } #else (void)lr_sync; (void)r; (void)c; (void)sb_cols; (void)plane; #endif // CONFIG_MULTITHREAD } // Allocate memory for loop restoration row synchronization static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, int num_workers, int num_rows_lr, int num_planes, int width) { lr_sync->rows = num_rows_lr; lr_sync->num_planes = num_planes; #if CONFIG_MULTITHREAD { int i, j; for (j = 0; j < num_planes; j++) { CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); if (lr_sync->mutex_[j]) { for (i = 0; i < num_rows_lr; ++i) { pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); } } CHECK_MEM_ERROR(cm, lr_sync->cond_[j], aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); if (lr_sync->cond_[j]) { for (i = 0; i < num_rows_lr; ++i) { pthread_cond_init(&lr_sync->cond_[j][i], NULL); } } } CHECK_MEM_ERROR(cm, lr_sync->job_mutex, aom_malloc(sizeof(*(lr_sync->job_mutex)))); if (lr_sync->job_mutex) { pthread_mutex_init(lr_sync->job_mutex, NULL); } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata)))); for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { if (worker_idx < num_workers - 1) { CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, aom_malloc(sizeof(RestorationLineBuffers))); } else { lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; } } lr_sync->num_workers = num_workers; for (int j = 0; j < num_planes; j++) { CHECK_MEM_ERROR( cm, lr_sync->cur_sb_col[j], aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); } CHECK_MEM_ERROR( cm, lr_sync->job_queue, aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); // Set up nsync. lr_sync->sync_range = get_lr_sync_range(width); } // Deallocate loop restoration synchronization related mutex and data void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) { if (lr_sync != NULL) { int j; #if CONFIG_MULTITHREAD int i; for (j = 0; j < MAX_MB_PLANE; j++) { if (lr_sync->mutex_[j] != NULL) { for (i = 0; i < lr_sync->rows; ++i) { pthread_mutex_destroy(&lr_sync->mutex_[j][i]); } aom_free(lr_sync->mutex_[j]); } if (lr_sync->cond_[j] != NULL) { for (i = 0; i < lr_sync->rows; ++i) { pthread_cond_destroy(&lr_sync->cond_[j][i]); } aom_free(lr_sync->cond_[j]); } } if (lr_sync->job_mutex != NULL) { pthread_mutex_destroy(lr_sync->job_mutex); aom_free(lr_sync->job_mutex); } #endif // CONFIG_MULTITHREAD for (j = 0; j < MAX_MB_PLANE; j++) { aom_free(lr_sync->cur_sb_col[j]); } aom_free(lr_sync->job_queue); if (lr_sync->lrworkerdata) { for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) { LRWorkerData *const workerdata_data = lr_sync->lrworkerdata + worker_idx; aom_free(workerdata_data->rst_tmpbuf); aom_free(workerdata_data->rlbs); } aom_free(lr_sync->lrworkerdata); } // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*lr_sync); } } static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, AV1_COMMON *cm) { FilterFrameCtxt *ctxt = lr_ctxt->ctxt; const int num_planes = av1_num_planes(cm); AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; int32_t lr_job_counter[2], num_even_lr_jobs = 0; lr_sync->jobs_enqueued = 0; lr_sync->jobs_dequeued = 0; for (int plane = 0; plane < num_planes; plane++) { if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; num_even_lr_jobs = num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1); } lr_job_counter[0] = 0; lr_job_counter[1] = num_even_lr_jobs; for (int plane = 0; plane < num_planes; plane++) { if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; const int is_uv = plane > 0; const int ss_y = is_uv && cm->seq_params.subsampling_y; AV1PixelRect tile_rect = ctxt[plane].tile_rect; const int unit_size = ctxt[plane].rsi->restoration_unit_size; const int tile_h = tile_rect.bottom - tile_rect.top; const int ext_size = unit_size * 3 / 2; int y0 = 0, i = 0; while (y0 < tile_h) { int remaining_h = tile_h - y0; int h = (remaining_h < ext_size) ? remaining_h : unit_size; RestorationTileLimits limits; limits.v_start = tile_rect.top + y0; limits.v_end = tile_rect.top + y0 + h; assert(limits.v_end <= tile_rect.bottom); // Offset the tile upwards to align with the restoration processing stripe const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset); if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset; assert(lr_job_counter[0] <= num_even_lr_jobs); lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; lr_job_queue[lr_job_counter[i & 1]].plane = plane; lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; if ((i & 1) == 0) { lr_job_queue[lr_job_counter[i & 1]].v_copy_start = limits.v_start + RESTORATION_BORDER; lr_job_queue[lr_job_counter[i & 1]].v_copy_end = limits.v_end - RESTORATION_BORDER; if (i == 0) { assert(limits.v_start == tile_rect.top); lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top; } if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) { assert(limits.v_end == tile_rect.bottom); lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom; } } else { lr_job_queue[lr_job_counter[i & 1]].v_copy_start = AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top); lr_job_queue[lr_job_counter[i & 1]].v_copy_end = AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom); } lr_job_counter[i & 1]++; lr_sync->jobs_enqueued++; y0 += h; ++i; } } } AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { AV1LrMTInfo *cur_job_info = NULL; #if CONFIG_MULTITHREAD pthread_mutex_lock(lr_sync->job_mutex); if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; lr_sync->jobs_dequeued++; } pthread_mutex_unlock(lr_sync->job_mutex); #else (void)lr_sync; #endif return cur_job_info; } // Implement row loop restoration for each thread. static int loop_restoration_row_worker(void *arg1, void *arg2) { AV1LrSync *const lr_sync = (AV1LrSync *)arg1; LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; FilterFrameCtxt *ctxt = lr_ctxt->ctxt; int lr_unit_row; int plane; const int tile_row = LR_TILE_ROW; const int tile_col = LR_TILE_COL; const int tile_cols = LR_TILE_COLS; const int tile_idx = tile_col + tile_row * tile_cols; typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, int vstart, int vend); static const copy_fun copy_funs[3] = { aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v }; while (1) { AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); if (cur_job_info != NULL) { RestorationTileLimits limits; sync_read_fn_t on_sync_read; sync_write_fn_t on_sync_write; limits.v_start = cur_job_info->v_start; limits.v_end = cur_job_info->v_end; lr_unit_row = cur_job_info->lr_unit_row; plane = cur_job_info->plane; const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile; // sync_mode == 1 implies only sync read is required in LR Multi-threading // sync_mode == 0 implies only sync write is required. on_sync_read = cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write : av1_lr_sync_write_dummy; av1_foreach_rest_unit_in_row( &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row, ctxt[plane].rsi->restoration_unit_size, unit_idx0, ctxt[plane].rsi->horz_units_per_tile, ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane], lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, on_sync_write, lr_sync); copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left, ctxt[plane].tile_rect.right, cur_job_info->v_copy_start, cur_job_info->v_copy_end); } else { break; } } return 1; } static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, AVxWorker *workers, int nworkers, AV1LrSync *lr_sync, AV1_COMMON *cm) { FilterFrameCtxt *ctxt = lr_ctxt->ctxt; const int num_planes = av1_num_planes(cm); const AVxWorkerInterface *const winterface = aom_get_worker_interface(); int num_rows_lr = 0; for (int plane = 0; plane < num_planes; plane++) { if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; const AV1PixelRect tile_rect = ctxt[plane].tile_rect; const int max_tile_h = tile_rect.bottom - tile_rect.top; const int unit_size = cm->rst_info[plane].restoration_unit_size; num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h)); } const int num_workers = nworkers; int i; assert(MAX_MB_PLANE == 3); if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows || num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) { av1_loop_restoration_dealloc(lr_sync, num_workers); loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes, cm->width); } // Initialize cur_sb_col to -1 for all SB rows. for (i = 0; i < num_planes; i++) { memset(lr_sync->cur_sb_col[i], -1, sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); } enqueue_lr_jobs(lr_sync, lr_ctxt, cm); // Set up looprestoration thread data. for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; worker->hook = loop_restoration_row_worker; worker->data1 = lr_sync; worker->data2 = &lr_sync->lrworkerdata[i]; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } } void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, int optimized_lr, AVxWorker *workers, int num_workers, AV1LrSync *lr_sync, void *lr_ctxt) { assert(!cm->all_lossless); const int num_planes = av1_num_planes(cm); AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, optimized_lr, num_planes); foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, cm); }