/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_COMMON_TXB_COMMON_H_ #define AOM_AV1_COMMON_TXB_COMMON_H_ extern const int16_t k_eob_group_start[12]; extern const int16_t k_eob_offset_bits[12]; extern const int8_t av1_coeff_band_4x4[16]; extern const int8_t av1_coeff_band_8x8[64]; extern const int8_t av1_coeff_band_16x16[256]; extern const int8_t av1_coeff_band_32x32[1024]; extern const int8_t *av1_nz_map_ctx_offset[TX_SIZES_ALL]; typedef struct txb_ctx { int txb_skip_ctx; int dc_sign_ctx; } TXB_CTX; static const int base_level_count_to_index[13] = { 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, }; static const TX_CLASS tx_type_to_class[TX_TYPES] = { TX_CLASS_2D, // DCT_DCT TX_CLASS_2D, // ADST_DCT TX_CLASS_2D, // DCT_ADST TX_CLASS_2D, // ADST_ADST TX_CLASS_2D, // FLIPADST_DCT TX_CLASS_2D, // DCT_FLIPADST TX_CLASS_2D, // FLIPADST_FLIPADST TX_CLASS_2D, // ADST_FLIPADST TX_CLASS_2D, // FLIPADST_ADST TX_CLASS_2D, // IDTX TX_CLASS_VERT, // V_DCT TX_CLASS_HORIZ, // H_DCT TX_CLASS_VERT, // V_ADST TX_CLASS_HORIZ, // H_ADST TX_CLASS_VERT, // V_FLIPADST TX_CLASS_HORIZ, // H_FLIPADST }; static INLINE int get_txb_bwl(TX_SIZE tx_size) { tx_size = av1_get_adjusted_tx_size(tx_size); return tx_size_wide_log2[tx_size]; } static INLINE int get_txb_wide(TX_SIZE tx_size) { tx_size = av1_get_adjusted_tx_size(tx_size); return tx_size_wide[tx_size]; } static INLINE int get_txb_high(TX_SIZE tx_size) { tx_size = av1_get_adjusted_tx_size(tx_size); return tx_size_high[tx_size]; } static INLINE uint8_t *set_levels(uint8_t *const levels_buf, const int width) { return levels_buf + TX_PAD_TOP * (width + TX_PAD_HOR); } static INLINE int get_padded_idx(const int idx, const int bwl) { return idx + ((idx >> bwl) << TX_PAD_HOR_LOG2); } static INLINE int get_base_ctx_from_count_mag(int row, int col, int count, int sig_mag) { const int ctx = base_level_count_to_index[count]; int ctx_idx = -1; if (row == 0 && col == 0) { if (sig_mag >= 2) return ctx_idx = 0; if (sig_mag == 1) { if (count >= 2) ctx_idx = 1; else ctx_idx = 2; return ctx_idx; } ctx_idx = 3 + ctx; assert(ctx_idx <= 6); return ctx_idx; } else if (row == 0) { if (sig_mag >= 2) return ctx_idx = 6; if (sig_mag == 1) { if (count >= 2) ctx_idx = 7; else ctx_idx = 8; return ctx_idx; } ctx_idx = 9 + ctx; assert(ctx_idx <= 11); return ctx_idx; } else if (col == 0) { if (sig_mag >= 2) return ctx_idx = 12; if (sig_mag == 1) { if (count >= 2) ctx_idx = 13; else ctx_idx = 14; return ctx_idx; } ctx_idx = 15 + ctx; assert(ctx_idx <= 17); // TODO(angiebird): turn this on once the optimization is finalized // assert(ctx_idx < 28); } else { if (sig_mag >= 2) return ctx_idx = 18; if (sig_mag == 1) { if (count >= 2) ctx_idx = 19; else ctx_idx = 20; return ctx_idx; } ctx_idx = 21 + ctx; assert(ctx_idx <= 24); } return ctx_idx; } static INLINE int get_br_ctx_2d(const uint8_t *const levels, const int c, // raster order const int bwl) { assert(c > 0); const int row = c >> bwl; const int col = c - (row << bwl); const int stride = (1 << bwl) + TX_PAD_HOR; const int pos = row * stride + col; int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) + AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) + AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE); mag = AOMMIN((mag + 1) >> 1, 6); //((row | col) < 2) is equivalent to ((row < 2) && (col < 2)) if ((row | col) < 2) return mag + 7; return mag + 14; } static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels, const int c, // raster order const int bwl, const TX_CLASS tx_class) { const int row = c >> bwl; const int col = c - (row << bwl); const int stride = (1 << bwl) + TX_PAD_HOR; const int pos = row * stride + col; int mag = levels[pos + 1]; mag += levels[pos + stride]; switch (tx_class) { case TX_CLASS_2D: mag += levels[pos + stride + 1]; mag = AOMMIN((mag + 1) >> 1, 6); if (c == 0) return mag; if ((row < 2) && (col < 2)) return mag + 7; break; case TX_CLASS_HORIZ: mag += levels[pos + 2]; mag = AOMMIN((mag + 1) >> 1, 6); if (c == 0) return mag; if (col == 0) return mag + 7; break; case TX_CLASS_VERT: mag += levels[pos + (stride << 1)]; mag = AOMMIN((mag + 1) >> 1, 6); if (c == 0) return mag; if (row == 0) return mag + 7; break; default: break; } return mag + 14; } static const uint8_t clip_max3[256] = { 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static AOM_FORCE_INLINE int get_nz_mag(const uint8_t *const levels, const int bwl, const TX_CLASS tx_class) { int mag; // Note: AOMMIN(level, 3) is useless for decoder since level < 3. mag = clip_max3[levels[1]]; // { 0, 1 } mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 } if (tx_class == TX_CLASS_2D) { mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 } mag += clip_max3[levels[2]]; // { 0, 2 } mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } } else if (tx_class == TX_CLASS_VERT) { mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 } mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 } } else { mag += clip_max3[levels[2]]; // { 0, 2 } mag += clip_max3[levels[3]]; // { 0, 3 } mag += clip_max3[levels[4]]; // { 0, 4 } } return mag; } #define NZ_MAP_CTX_0 SIG_COEF_CONTEXTS_2D #define NZ_MAP_CTX_5 (NZ_MAP_CTX_0 + 5) #define NZ_MAP_CTX_10 (NZ_MAP_CTX_0 + 10) static const int nz_map_ctx_offset_1d[32] = { NZ_MAP_CTX_0, NZ_MAP_CTX_5, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, }; static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats( const int stats, const int coeff_idx, // raster order const int bwl, const TX_SIZE tx_size, const TX_CLASS tx_class) { // tx_class == 0(TX_CLASS_2D) if ((tx_class | coeff_idx) == 0) return 0; int ctx = (stats + 1) >> 1; ctx = AOMMIN(ctx, 4); switch (tx_class) { case TX_CLASS_2D: { // This is the algorithm to generate av1_nz_map_ctx_offset[][] // const int width = tx_size_wide[tx_size]; // const int height = tx_size_high[tx_size]; // if (width < height) { // if (row < 2) return 11 + ctx; // } else if (width > height) { // if (col < 2) return 16 + ctx; // } // if (row + col < 2) return ctx + 1; // if (row + col < 4) return 5 + ctx + 1; // return 21 + ctx; return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx]; } case TX_CLASS_HORIZ: { const int row = coeff_idx >> bwl; const int col = coeff_idx - (row << bwl); return ctx + nz_map_ctx_offset_1d[col]; break; } case TX_CLASS_VERT: { const int row = coeff_idx >> bwl; return ctx + nz_map_ctx_offset_1d[row]; break; } default: break; } return 0; } typedef aom_cdf_prob (*base_cdf_arr)[CDF_SIZE(4)]; typedef aom_cdf_prob (*br_cdf_arr)[CDF_SIZE(BR_CDF_SIZE)]; static INLINE int get_lower_levels_ctx_eob(int bwl, int height, int scan_idx) { if (scan_idx == 0) return 0; if (scan_idx <= (height << bwl) / 8) return 1; if (scan_idx <= (height << bwl) / 4) return 2; return 3; } static INLINE int get_lower_levels_ctx_2d(const uint8_t *levels, int coeff_idx, int bwl, TX_SIZE tx_size) { assert(coeff_idx > 0); int mag; // Note: AOMMIN(level, 3) is useless for decoder since level < 3. levels = levels + get_padded_idx(coeff_idx, bwl); mag = AOMMIN(levels[1], 3); // { 0, 1 } mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 3); // { 1, 0 } mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 3); // { 1, 1 } mag += AOMMIN(levels[2], 3); // { 0, 2 } mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 3); // { 2, 0 } const int ctx = AOMMIN((mag + 1) >> 1, 4); return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx]; } static AOM_FORCE_INLINE int get_lower_levels_ctx(const uint8_t *levels, int coeff_idx, int bwl, TX_SIZE tx_size, TX_CLASS tx_class) { const int stats = get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class); return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class); } static INLINE int get_lower_levels_ctx_general(int is_last, int scan_idx, int bwl, int height, const uint8_t *levels, int coeff_idx, TX_SIZE tx_size, TX_CLASS tx_class) { if (is_last) { if (scan_idx == 0) return 0; if (scan_idx <= (height << bwl) >> 3) return 1; if (scan_idx <= (height << bwl) >> 2) return 2; return 3; } return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_size, tx_class); } static INLINE void set_dc_sign(int *cul_level, int dc_val) { if (dc_val < 0) *cul_level |= 1 << COEFF_CONTEXT_BITS; else if (dc_val > 0) *cul_level += 2 << COEFF_CONTEXT_BITS; } static INLINE void get_txb_ctx(const BLOCK_SIZE plane_bsize, const TX_SIZE tx_size, const int plane, const ENTROPY_CONTEXT *const a, const ENTROPY_CONTEXT *const l, TXB_CTX *const txb_ctx) { #define MAX_TX_SIZE_UNIT 16 static const int8_t signs[3] = { 0, -1, 1 }; static const int8_t dc_sign_contexts[4 * MAX_TX_SIZE_UNIT + 1] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; const int txb_w_unit = tx_size_wide_unit[tx_size]; const int txb_h_unit = tx_size_high_unit[tx_size]; int dc_sign = 0; int k = 0; do { const unsigned int sign = ((uint8_t)a[k]) >> COEFF_CONTEXT_BITS; assert(sign <= 2); dc_sign += signs[sign]; } while (++k < txb_w_unit); k = 0; do { const unsigned int sign = ((uint8_t)l[k]) >> COEFF_CONTEXT_BITS; assert(sign <= 2); dc_sign += signs[sign]; } while (++k < txb_h_unit); txb_ctx->dc_sign_ctx = dc_sign_contexts[dc_sign + 2 * MAX_TX_SIZE_UNIT]; if (plane == 0) { if (plane_bsize == txsize_to_bsize[tx_size]) { txb_ctx->txb_skip_ctx = 0; } else { // This is the algorithm to generate table skip_contexts[min][max]. // if (!max) // txb_skip_ctx = 1; // else if (!min) // txb_skip_ctx = 2 + (max > 3); // else if (max <= 3) // txb_skip_ctx = 4; // else if (min <= 3) // txb_skip_ctx = 5; // else // txb_skip_ctx = 6; static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 }, { 1, 4, 4, 4, 5 }, { 1, 4, 4, 4, 5 }, { 1, 4, 4, 4, 5 }, { 1, 4, 4, 4, 6 } }; int top = 0; int left = 0; k = 0; do { top |= a[k]; } while (++k < txb_w_unit); top &= COEFF_CONTEXT_MASK; k = 0; do { left |= l[k]; } while (++k < txb_h_unit); left &= COEFF_CONTEXT_MASK; const int max = AOMMIN(top | left, 4); const int min = AOMMIN(AOMMIN(top, left), 4); txb_ctx->txb_skip_ctx = skip_contexts[min][max]; } } else { const int ctx_base = get_entropy_context(tx_size, a, l); const int ctx_offset = (num_pels_log2_lookup[plane_bsize] > num_pels_log2_lookup[txsize_to_bsize[tx_size]]) ? 10 : 7; txb_ctx->txb_skip_ctx = ctx_base + ctx_offset; } #undef MAX_TX_SIZE_UNIT } void av1_init_lv_map(AV1_COMMON *cm); #endif // AOM_AV1_COMMON_TXB_COMMON_H_