/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "av1/common/convolve.h" // A specialised version of hfilter, the horizontal filter for // av1_convolve_2d_scale_sse4_1. This version only supports 8 tap filters. static void hfilter8(const uint8_t *src, int src_stride, int16_t *dst, int w, int h, int subpel_x_qn, int x_step_qn, const InterpFilterParams *filter_params, unsigned round) { const int bd = 8; const int ntaps = 8; src -= ntaps / 2 - 1; int32_t round_add32 = (1 << round) / 2 + (1 << (bd + FILTER_BITS - 1)); const __m128i round_add = _mm_set1_epi32(round_add32); const __m128i round_shift = _mm_cvtsi32_si128(round); int x_qn = subpel_x_qn; for (int x = 0; x < w; ++x, x_qn += x_step_qn) { const uint8_t *const src_col = src + (x_qn >> SCALE_SUBPEL_BITS); const int filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(filter_idx < SUBPEL_SHIFTS); const int16_t *filter = av1_get_interp_filter_subpel_kernel(filter_params, filter_idx); // Load the filter coefficients const __m128i coefflo = _mm_loadu_si128((__m128i *)filter); const __m128i zero = _mm_castps_si128(_mm_setzero_ps()); int y; for (y = 0; y <= h - 4; y += 4) { const uint8_t *const src0 = src_col + y * src_stride; const uint8_t *const src1 = src0 + 1 * src_stride; const uint8_t *const src2 = src0 + 2 * src_stride; const uint8_t *const src3 = src0 + 3 * src_stride; // Load up source data. This is 8-bit input data; each load is just // loading the lower half of the register and gets 8 pixels const __m128i data08 = _mm_loadl_epi64((__m128i *)src0); const __m128i data18 = _mm_loadl_epi64((__m128i *)src1); const __m128i data28 = _mm_loadl_epi64((__m128i *)src2); const __m128i data38 = _mm_loadl_epi64((__m128i *)src3); // Now zero-extend up to 16-bit precision by interleaving with // zeros. Drop the upper half of each register (which just had zeros) const __m128i data0lo = _mm_unpacklo_epi8(data08, zero); const __m128i data1lo = _mm_unpacklo_epi8(data18, zero); const __m128i data2lo = _mm_unpacklo_epi8(data28, zero); const __m128i data3lo = _mm_unpacklo_epi8(data38, zero); // Multiply by coefficients const __m128i conv0lo = _mm_madd_epi16(data0lo, coefflo); const __m128i conv1lo = _mm_madd_epi16(data1lo, coefflo); const __m128i conv2lo = _mm_madd_epi16(data2lo, coefflo); const __m128i conv3lo = _mm_madd_epi16(data3lo, coefflo); // Reduce horizontally and add const __m128i conv01lo = _mm_hadd_epi32(conv0lo, conv1lo); const __m128i conv23lo = _mm_hadd_epi32(conv2lo, conv3lo); const __m128i conv = _mm_hadd_epi32(conv01lo, conv23lo); // Divide down by (1 << round), rounding to nearest. __m128i shifted = _mm_sra_epi32(_mm_add_epi32(conv, round_add), round_shift); shifted = _mm_packus_epi32(shifted, shifted); // Write transposed to the output _mm_storel_epi64((__m128i *)(dst + y + x * h), shifted); } for (; y < h; ++y) { const uint8_t *const src_row = src_col + y * src_stride; int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < ntaps; ++k) { sum += filter[k] * src_row[k]; } dst[y + x * h] = ROUND_POWER_OF_TWO(sum, round); } } } static __m128i convolve_16_8(const int16_t *src, __m128i coeff) { __m128i data = _mm_loadu_si128((__m128i *)src); return _mm_madd_epi16(data, coeff); } // A specialised version of vfilter, the vertical filter for // av1_convolve_2d_scale_sse4_1. This version only supports 8 tap filters. static void vfilter8(const int16_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, int subpel_y_qn, int y_step_qn, const InterpFilterParams *filter_params, const ConvolveParams *conv_params, int bd) { const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int ntaps = 8; const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1); const int32_t sub32 = ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); const __m128i sub = _mm_set1_epi16(sub32); CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; const __m128i bits_shift = _mm_cvtsi32_si128(bits); const __m128i bits_const = _mm_set1_epi16(((1 << bits) >> 1)); const __m128i round_shift_add = _mm_set1_epi32(((1 << conv_params->round_1) >> 1)); const __m128i res_add_const = _mm_set1_epi32(1 << offset_bits); const int w0 = conv_params->fwd_offset; const int w1 = conv_params->bck_offset; const __m128i wt0 = _mm_set1_epi16(w0); const __m128i wt1 = _mm_set1_epi16(w1); const __m128i wt = _mm_unpacklo_epi16(wt0, wt1); int y_qn = subpel_y_qn; for (int y = 0; y < h; ++y, y_qn += y_step_qn) { const int16_t *src_y = src + (y_qn >> SCALE_SUBPEL_BITS); const int filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(filter_idx < SUBPEL_SHIFTS); const int16_t *filter = av1_get_interp_filter_subpel_kernel(filter_params, filter_idx); const __m128i coeff0716 = _mm_loadu_si128((__m128i *)filter); int x; for (x = 0; x <= w - 4; x += 4) { const int16_t *const src0 = src_y + x * src_stride; const int16_t *const src1 = src0 + 1 * src_stride; const int16_t *const src2 = src0 + 2 * src_stride; const int16_t *const src3 = src0 + 3 * src_stride; // Load the source data for the three rows, adding the three registers of // convolved products to one as we go (conv0..conv3) to avoid the // register pressure getting too high. const __m128i conv0 = convolve_16_8(src0, coeff0716); const __m128i conv1 = convolve_16_8(src1, coeff0716); const __m128i conv2 = convolve_16_8(src2, coeff0716); const __m128i conv3 = convolve_16_8(src3, coeff0716); // Now reduce horizontally to get one lane for each result const __m128i conv01 = _mm_hadd_epi32(conv0, conv1); const __m128i conv23 = _mm_hadd_epi32(conv2, conv3); __m128i conv = _mm_hadd_epi32(conv01, conv23); conv = _mm_add_epi32(conv, res_add_const); // Divide down by (1 << round_1), rounding to nearest and subtract sub32. __m128i shifted = _mm_sra_epi32(_mm_add_epi32(conv, round_shift_add), round_shift); uint8_t *dst_x = dst + y * dst_stride + x; CONV_BUF_TYPE *dst_16_x = dst16 + y * dst16_stride + x; __m128i result; __m128i shifted_16 = _mm_packus_epi32(shifted, shifted); if (conv_params->is_compound) { if (conv_params->do_average) { const __m128i p_16 = _mm_loadl_epi64((__m128i *)dst_16_x); if (conv_params->use_jnt_comp_avg) { const __m128i p_16_lo = _mm_unpacklo_epi16(p_16, shifted_16); const __m128i wt_res_lo = _mm_madd_epi16(p_16_lo, wt); const __m128i shifted_32 = _mm_srai_epi32(wt_res_lo, DIST_PRECISION_BITS); shifted_16 = _mm_packus_epi32(shifted_32, shifted_32); } else { shifted_16 = _mm_srai_epi16(_mm_add_epi16(p_16, shifted_16), 1); } const __m128i subbed = _mm_sub_epi16(shifted_16, sub); result = _mm_sra_epi16(_mm_add_epi16(subbed, bits_const), bits_shift); const __m128i result_8 = _mm_packus_epi16(result, result); *(uint32_t *)dst_x = _mm_cvtsi128_si32(result_8); } else { _mm_storel_epi64((__m128i *)dst_16_x, shifted_16); } } else { const __m128i subbed = _mm_sub_epi16(shifted_16, sub); result = _mm_sra_epi16(_mm_add_epi16(subbed, bits_const), bits_shift); const __m128i result_8 = _mm_packus_epi16(result, result); *(uint32_t *)dst_x = _mm_cvtsi128_si32(result_8); } } for (; x < w; ++x) { const int16_t *src_x = src_y + x * src_stride; int32_t sum = 1 << offset_bits; for (int k = 0; k < ntaps; ++k) sum += filter[k] * src_x[k]; CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->is_compound) { if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_jnt_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } /* Subtract round offset and convolve round */ tmp = tmp - sub32; dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits)); } else { dst16[y * dst16_stride + x] = res; } } else { /* Subtract round offset and convolve round */ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits)); } } } } void av1_convolve_2d_scale_sse4_1(const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params) { // TODO(yaowu): remove unnecessary initializations int16_t tmp[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE] = { 0 }; int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; const int xtaps = filter_params_x->taps; const int ytaps = filter_params_y->taps; const int fo_vert = ytaps / 2 - 1; assert((xtaps == 8) && (ytaps == 8)); (void)xtaps; // horizontal filter hfilter8(src - fo_vert * src_stride, src_stride, tmp, w, im_h, subpel_x_qn, x_step_qn, filter_params_x, conv_params->round_0); // vertical filter (input is transposed) vfilter8(tmp, im_h, dst8, dst8_stride, w, h, subpel_y_qn, y_step_qn, filter_params_y, conv_params, 8); } // A specialised version of hfilter, the horizontal filter for // av1_highbd_convolve_2d_scale_sse4_1. This version only supports 8 tap // filters. static void highbd_hfilter8(const uint16_t *src, int src_stride, int16_t *dst, int w, int h, int subpel_x_qn, int x_step_qn, const InterpFilterParams *filter_params, unsigned round, int bd) { const int ntaps = 8; src -= ntaps / 2 - 1; int32_t round_add32 = (1 << round) / 2 + (1 << (bd + FILTER_BITS - 1)); const __m128i round_add = _mm_set1_epi32(round_add32); const __m128i round_shift = _mm_cvtsi32_si128(round); int x_qn = subpel_x_qn; for (int x = 0; x < w; ++x, x_qn += x_step_qn) { const uint16_t *const src_col = src + (x_qn >> SCALE_SUBPEL_BITS); const int filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(filter_idx < SUBPEL_SHIFTS); const int16_t *filter = av1_get_interp_filter_subpel_kernel(filter_params, filter_idx); // Load the filter coefficients const __m128i coefflo = _mm_loadu_si128((__m128i *)filter); int y; for (y = 0; y <= h - 4; y += 4) { const uint16_t *const src0 = src_col + y * src_stride; const uint16_t *const src1 = src0 + 1 * src_stride; const uint16_t *const src2 = src0 + 2 * src_stride; const uint16_t *const src3 = src0 + 3 * src_stride; // Load up source data. This is 16-bit input data, so each load gets the 8 // pixels we need. const __m128i data0lo = _mm_loadu_si128((__m128i *)src0); const __m128i data1lo = _mm_loadu_si128((__m128i *)src1); const __m128i data2lo = _mm_loadu_si128((__m128i *)src2); const __m128i data3lo = _mm_loadu_si128((__m128i *)src3); // Multiply by coefficients const __m128i conv0lo = _mm_madd_epi16(data0lo, coefflo); const __m128i conv1lo = _mm_madd_epi16(data1lo, coefflo); const __m128i conv2lo = _mm_madd_epi16(data2lo, coefflo); const __m128i conv3lo = _mm_madd_epi16(data3lo, coefflo); // Reduce horizontally and add const __m128i conv01lo = _mm_hadd_epi32(conv0lo, conv1lo); const __m128i conv23lo = _mm_hadd_epi32(conv2lo, conv3lo); const __m128i conv = _mm_hadd_epi32(conv01lo, conv23lo); // Divide down by (1 << round), rounding to nearest. __m128i shifted = _mm_sra_epi32(_mm_add_epi32(conv, round_add), round_shift); shifted = _mm_packus_epi32(shifted, shifted); // Write transposed to the output _mm_storel_epi64((__m128i *)(dst + y + x * h), shifted); } for (; y < h; ++y) { const uint16_t *const src_row = src_col + y * src_stride; int32_t sum = (1 << (bd + FILTER_BITS - 1)); for (int k = 0; k < ntaps; ++k) { sum += filter[k] * src_row[k]; } dst[y + x * h] = ROUND_POWER_OF_TWO(sum, round); } } } // A specialised version of vfilter, the vertical filter for // av1_highbd_convolve_2d_scale_sse4_1. This version only supports 8 tap // filters. static void highbd_vfilter8(const int16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, int subpel_y_qn, int y_step_qn, const InterpFilterParams *filter_params, const ConvolveParams *conv_params, int bd) { const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int ntaps = 8; const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1); const int32_t sub32 = ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); const __m128i sub = _mm_set1_epi32(sub32); CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; const __m128i clip_pixel_ = _mm_set1_epi16(bd == 10 ? 1023 : (bd == 12 ? 4095 : 255)); const int bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; const __m128i bits_shift = _mm_cvtsi32_si128(bits); const __m128i bits_const = _mm_set1_epi32(((1 << bits) >> 1)); const __m128i round_shift_add = _mm_set1_epi32(((1 << conv_params->round_1) >> 1)); const __m128i res_add_const = _mm_set1_epi32(1 << offset_bits); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; __m128i round_bits_shift = _mm_cvtsi32_si128(round_bits); __m128i round_bits_const = _mm_set1_epi32(((1 << round_bits) >> 1)); const int w0 = conv_params->fwd_offset; const int w1 = conv_params->bck_offset; const __m128i wt0 = _mm_set1_epi32(w0); const __m128i wt1 = _mm_set1_epi32(w1); int y_qn = subpel_y_qn; for (int y = 0; y < h; ++y, y_qn += y_step_qn) { const int16_t *src_y = src + (y_qn >> SCALE_SUBPEL_BITS); const int filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS; assert(filter_idx < SUBPEL_SHIFTS); const int16_t *filter = av1_get_interp_filter_subpel_kernel(filter_params, filter_idx); const __m128i coeff0716 = _mm_loadu_si128((__m128i *)filter); int x; for (x = 0; x <= w - 4; x += 4) { const int16_t *const src0 = src_y + x * src_stride; const int16_t *const src1 = src0 + 1 * src_stride; const int16_t *const src2 = src0 + 2 * src_stride; const int16_t *const src3 = src0 + 3 * src_stride; // Load the source data for the three rows, adding the three registers of // convolved products to one as we go (conv0..conv3) to avoid the // register pressure getting too high. const __m128i conv0 = convolve_16_8(src0, coeff0716); const __m128i conv1 = convolve_16_8(src1, coeff0716); const __m128i conv2 = convolve_16_8(src2, coeff0716); const __m128i conv3 = convolve_16_8(src3, coeff0716); // Now reduce horizontally to get one lane for each result const __m128i conv01 = _mm_hadd_epi32(conv0, conv1); const __m128i conv23 = _mm_hadd_epi32(conv2, conv3); __m128i conv = _mm_hadd_epi32(conv01, conv23); conv = _mm_add_epi32(conv, res_add_const); // Divide down by (1 << round_1), rounding to nearest and subtract sub32. __m128i shifted = _mm_sra_epi32(_mm_add_epi32(conv, round_shift_add), round_shift); uint16_t *dst_x = dst + y * dst_stride + x; CONV_BUF_TYPE *dst_16_x = dst16 + y * dst16_stride + x; __m128i result; if (conv_params->is_compound) { if (conv_params->do_average) { __m128i p_32 = _mm_cvtepu16_epi32(_mm_loadl_epi64((__m128i *)dst_16_x)); if (conv_params->use_jnt_comp_avg) { shifted = _mm_add_epi32(_mm_mullo_epi32(p_32, wt0), _mm_mullo_epi32(shifted, wt1)); shifted = _mm_srai_epi32(shifted, DIST_PRECISION_BITS); } else { shifted = _mm_srai_epi32(_mm_add_epi32(p_32, shifted), 1); } __m128i res32 = _mm_sub_epi32(shifted, sub); res32 = _mm_sra_epi32(_mm_add_epi32(res32, round_bits_const), round_bits_shift); __m128i res16 = _mm_packus_epi32(res32, res32); res16 = _mm_min_epi16(res16, clip_pixel_); _mm_storel_epi64((__m128i *)dst_x, res16); } else { __m128i shifted_16 = _mm_packus_epi32(shifted, shifted); _mm_storel_epi64((__m128i *)dst_16_x, shifted_16); } } else { const __m128i subbed = _mm_sub_epi32(shifted, sub); result = _mm_sra_epi16(_mm_add_epi32(subbed, bits_const), bits_shift); result = _mm_packus_epi32(result, result); result = _mm_min_epi16(result, clip_pixel_); _mm_storel_epi64((__m128i *)dst_x, result); } } for (; x < w; ++x) { const int16_t *src_x = src_y + x * src_stride; int32_t sum = 1 << offset_bits; for (int k = 0; k < ntaps; ++k) sum += filter[k] * src_x[k]; CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1); if (conv_params->is_compound) { if (conv_params->do_average) { int32_t tmp = dst16[y * dst16_stride + x]; if (conv_params->use_jnt_comp_avg) { tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset; tmp = tmp >> DIST_PRECISION_BITS; } else { tmp += res; tmp = tmp >> 1; } /* Subtract round offset and convolve round */ tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); } else { dst16[y * dst16_stride + x] = res; } } else { /* Subtract round offset and convolve round */ int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1))); dst[y * dst_stride + x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd); } } } } void av1_highbd_convolve_2d_scale_sse4_1( const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params, int bd) { // TODO(yaowu): Move this out of stack DECLARE_ALIGNED(16, int16_t, tmp[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; const int xtaps = filter_params_x->taps; const int ytaps = filter_params_y->taps; const int fo_vert = ytaps / 2 - 1; memset(tmp, 0, sizeof(tmp)); assert((xtaps == 8) && (ytaps == 8)); (void)xtaps; // horizontal filter highbd_hfilter8(src - fo_vert * src_stride, src_stride, tmp, w, im_h, subpel_x_qn, x_step_qn, filter_params_x, conv_params->round_0, bd); // vertical filter (input is transposed) highbd_vfilter8(tmp, im_h, dst, dst_stride, w, h, subpel_y_qn, y_step_qn, filter_params_y, conv_params, bd); }