/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/av1_rtcd.h" #include "av1/common/cfl.h" #include "av1/common/x86/cfl_simd.h" // Load 32-bit integer from memory into the first element of dst. static INLINE __m128i _mm_loadh_epi32(__m128i const *mem_addr) { return _mm_cvtsi32_si128(*((int *)mem_addr)); } // Store 32-bit integer from the first element of a into memory. static INLINE void _mm_storeh_epi32(__m128i const *mem_addr, __m128i a) { *((int *)mem_addr) = _mm_cvtsi128_si32(a); } /** * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more * precise version of a box filter 4:2:0 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static INLINE void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const __m128i twos = _mm_set1_epi8(2); __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; const __m128i *end = pred_buf_m128i + (height >> 1) * CFL_BUF_LINE_I128; const int luma_stride = input_stride << 1; do { if (width == 4) { __m128i top = _mm_loadh_epi32((__m128i *)input); top = _mm_maddubs_epi16(top, twos); __m128i bot = _mm_loadh_epi32((__m128i *)(input + input_stride)); bot = _mm_maddubs_epi16(bot, twos); const __m128i sum = _mm_add_epi16(top, bot); _mm_storeh_epi32(pred_buf_m128i, sum); } else if (width == 8) { __m128i top = _mm_loadl_epi64((__m128i *)input); top = _mm_maddubs_epi16(top, twos); __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride)); bot = _mm_maddubs_epi16(bot, twos); const __m128i sum = _mm_add_epi16(top, bot); _mm_storel_epi64(pred_buf_m128i, sum); } else { __m128i top = _mm_loadu_si128((__m128i *)input); top = _mm_maddubs_epi16(top, twos); __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride)); bot = _mm_maddubs_epi16(bot, twos); const __m128i sum = _mm_add_epi16(top, bot); _mm_storeu_si128(pred_buf_m128i, sum); if (width == 32) { __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); __m128i bot_1 = _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1); top_1 = _mm_maddubs_epi16(top_1, twos); bot_1 = _mm_maddubs_epi16(bot_1, twos); __m128i sum_1 = _mm_add_epi16(top_1, bot_1); _mm_storeu_si128(pred_buf_m128i + 1, sum_1); } } input += luma_stride; pred_buf_m128i += CFL_BUF_LINE_I128; } while (pred_buf_m128i < end); } /** * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more * precise version of a box filter 4:2:2 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static INLINE void cfl_luma_subsampling_422_lbd_ssse3(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const __m128i fours = _mm_set1_epi8(4); __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; do { if (width == 4) { __m128i top = _mm_loadh_epi32((__m128i *)input); top = _mm_maddubs_epi16(top, fours); _mm_storeh_epi32(pred_buf_m128i, top); } else if (width == 8) { __m128i top = _mm_loadl_epi64((__m128i *)input); top = _mm_maddubs_epi16(top, fours); _mm_storel_epi64(pred_buf_m128i, top); } else { __m128i top = _mm_loadu_si128((__m128i *)input); top = _mm_maddubs_epi16(top, fours); _mm_storeu_si128(pred_buf_m128i, top); if (width == 32) { __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); top_1 = _mm_maddubs_epi16(top_1, fours); _mm_storeu_si128(pred_buf_m128i + 1, top_1); } } input += input_stride; pred_buf_m128i += CFL_BUF_LINE_I128; } while (pred_buf_m128i < end); } /** * Multiplies the pixels by 8 (scaling in Q3). * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static INLINE void cfl_luma_subsampling_444_lbd_ssse3(const uint8_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const __m128i zeros = _mm_setzero_si128(); const int luma_stride = input_stride; __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; do { if (width == 4) { __m128i row = _mm_loadh_epi32((__m128i *)input); row = _mm_unpacklo_epi8(row, zeros); _mm_storel_epi64(pred_buf_m128i, _mm_slli_epi16(row, 3)); } else if (width == 8) { __m128i row = _mm_loadl_epi64((__m128i *)input); row = _mm_unpacklo_epi8(row, zeros); _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row, 3)); } else { __m128i row = _mm_loadu_si128((__m128i *)input); const __m128i row_lo = _mm_unpacklo_epi8(row, zeros); const __m128i row_hi = _mm_unpackhi_epi8(row, zeros); _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row_lo, 3)); _mm_storeu_si128(pred_buf_m128i + 1, _mm_slli_epi16(row_hi, 3)); if (width == 32) { __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1); const __m128i row_1_lo = _mm_unpacklo_epi8(row_1, zeros); const __m128i row_1_hi = _mm_unpackhi_epi8(row_1, zeros); _mm_storeu_si128(pred_buf_m128i + 2, _mm_slli_epi16(row_1_lo, 3)); _mm_storeu_si128(pred_buf_m128i + 3, _mm_slli_epi16(row_1_hi, 3)); } } input += luma_stride; pred_buf_m128i += CFL_BUF_LINE_I128; } while (pred_buf_m128i < end); } /** * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more * precise version of a box filter 4:2:0 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static INLINE void cfl_luma_subsampling_420_hbd_ssse3(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE; const int luma_stride = input_stride << 1; do { if (width == 4) { const __m128i top = _mm_loadl_epi64((__m128i *)input); const __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride)); __m128i sum = _mm_add_epi16(top, bot); sum = _mm_hadd_epi16(sum, sum); *((int *)pred_buf_q3) = _mm_cvtsi128_si32(_mm_add_epi16(sum, sum)); } else { const __m128i top = _mm_loadu_si128((__m128i *)input); const __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride)); __m128i sum = _mm_add_epi16(top, bot); if (width == 8) { sum = _mm_hadd_epi16(sum, sum); _mm_storel_epi64((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum)); } else { const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); const __m128i bot_1 = _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1); sum = _mm_hadd_epi16(sum, _mm_add_epi16(top_1, bot_1)); _mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum)); if (width == 32) { const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2); const __m128i bot_2 = _mm_loadu_si128(((__m128i *)(input + input_stride)) + 2); const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3); const __m128i bot_3 = _mm_loadu_si128(((__m128i *)(input + input_stride)) + 3); const __m128i sum_2 = _mm_add_epi16(top_2, bot_2); const __m128i sum_3 = _mm_add_epi16(top_3, bot_3); __m128i next_sum = _mm_hadd_epi16(sum_2, sum_3); _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, _mm_add_epi16(next_sum, next_sum)); } } } input += luma_stride; } while ((pred_buf_q3 += CFL_BUF_LINE) < end); } /** * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more * precise version of a box filter 4:2:2 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. */ static INLINE void cfl_luma_subsampling_422_hbd_ssse3(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; do { if (width == 4) { const __m128i top = _mm_loadl_epi64((__m128i *)input); const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2); _mm_storeh_epi32(pred_buf_m128i, sum); } else { const __m128i top = _mm_loadu_si128((__m128i *)input); if (width == 8) { const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2); _mm_storel_epi64(pred_buf_m128i, sum); } else { const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top_1), 2); _mm_storeu_si128(pred_buf_m128i, sum); if (width == 32) { const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2); const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3); const __m128i sum_1 = _mm_slli_epi16(_mm_hadd_epi16(top_2, top_3), 2); _mm_storeu_si128(pred_buf_m128i + 1, sum_1); } } } pred_buf_m128i += CFL_BUF_LINE_I128; input += input_stride; } while (pred_buf_m128i < end); } static INLINE void cfl_luma_subsampling_444_hbd_ssse3(const uint16_t *input, int input_stride, uint16_t *pred_buf_q3, int width, int height) { const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { if (width == 4) { const __m128i row = _mm_slli_epi16(_mm_loadl_epi64((__m128i *)input), 3); _mm_storel_epi64((__m128i *)pred_buf_q3, row); } else { const __m128i row = _mm_slli_epi16(_mm_loadu_si128((__m128i *)input), 3); _mm_storeu_si128((__m128i *)pred_buf_q3, row); if (width >= 16) { __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1); row_1 = _mm_slli_epi16(row_1, 3); _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, row_1); if (width == 32) { __m128i row_2 = _mm_loadu_si128(((__m128i *)input) + 2); row_2 = _mm_slli_epi16(row_2, 3); _mm_storeu_si128(((__m128i *)pred_buf_q3) + 2, row_2); __m128i row_3 = _mm_loadu_si128(((__m128i *)input) + 3); row_3 = _mm_slli_epi16(row_3, 3); _mm_storeu_si128(((__m128i *)pred_buf_q3) + 3, row_3); } } } input += input_stride; pred_buf_q3 += CFL_BUF_LINE; } while (pred_buf_q3 < end); } CFL_GET_SUBSAMPLE_FUNCTION(ssse3) static INLINE __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12, __m128i alpha_sign, __m128i dc_q0) { __m128i ac_q3 = _mm_loadu_si128(input); __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3); __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12); scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign); return _mm_add_epi16(scaled_luma_q0, dc_q0); } static INLINE void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3, int width, int height) { const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); const __m128i dc_q0 = _mm_set1_epi16(*dst); __m128i *row = (__m128i *)pred_buf_q3; const __m128i *row_end = row + height * CFL_BUF_LINE_I128; do { __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); if (width < 16) { res = _mm_packus_epi16(res, res); if (width == 4) _mm_storeh_epi32((__m128i *)dst, res); else _mm_storel_epi64((__m128i *)dst, res); } else { __m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); res = _mm_packus_epi16(res, next); _mm_storeu_si128((__m128i *)dst, res); if (width == 32) { res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0); next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0); res = _mm_packus_epi16(res, next); _mm_storeu_si128((__m128i *)(dst + 16), res); } } dst += dst_stride; } while ((row += CFL_BUF_LINE_I128) < row_end); } CFL_PREDICT_FN(ssse3, lbd) static INLINE __m128i highbd_max_epi16(int bd) { const __m128i neg_one = _mm_set1_epi16(-1); // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one); } static INLINE __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) { return _mm_max_epi16(_mm_min_epi16(u, max), zero); } static INLINE void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bd, int width, int height) { const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); const __m128i dc_q0 = _mm_set1_epi16(*dst); const __m128i max = highbd_max_epi16(bd); const __m128i zeros = _mm_setzero_si128(); __m128i *row = (__m128i *)pred_buf_q3; const __m128i *row_end = row + height * CFL_BUF_LINE_I128; do { __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); res = highbd_clamp_epi16(res, zeros, max); if (width == 4) { _mm_storel_epi64((__m128i *)dst, res); } else { _mm_storeu_si128((__m128i *)dst, res); } if (width >= 16) { const __m128i res_1 = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); _mm_storeu_si128(((__m128i *)dst) + 1, highbd_clamp_epi16(res_1, zeros, max)); } if (width == 32) { const __m128i res_2 = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0); _mm_storeu_si128((__m128i *)(dst + 16), highbd_clamp_epi16(res_2, zeros, max)); const __m128i res_3 = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0); _mm_storeu_si128((__m128i *)(dst + 24), highbd_clamp_epi16(res_3, zeros, max)); } dst += dst_stride; } while ((row += CFL_BUF_LINE_I128) < row_end); } CFL_PREDICT_FN(ssse3, hbd)