/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // SSE2 #include /* SSE4.1 */ #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" static INLINE __m128i calc_mask(const __m128i mask_base, const __m128i s0, const __m128i s1) { const __m128i diff = _mm_abs_epi16(_mm_sub_epi16(s0, s1)); return _mm_abs_epi16(_mm_add_epi16(mask_base, _mm_srli_epi16(diff, 4))); // clamp(diff, 0, 64) can be skiped for diff is always in the range ( 38, 54) } void av1_build_compound_diffwtd_mask_sse4_1(uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, int stride0, const uint8_t *src1, int stride1, int h, int w) { const int mb = (mask_type == DIFFWTD_38_INV) ? AOM_BLEND_A64_MAX_ALPHA : 0; const __m128i mask_base = _mm_set1_epi16(38 - mb); int i = 0; if (4 == w) { do { const __m128i s0A = _mm_cvtsi32_si128(*(uint32_t *)src0); const __m128i s0B = _mm_cvtsi32_si128(*(uint32_t *)(src0 + stride0)); const __m128i s0AB = _mm_unpacklo_epi32(s0A, s0B); const __m128i s0 = _mm_cvtepu8_epi16(s0AB); const __m128i s1A = _mm_cvtsi32_si128(*(uint32_t *)src1); const __m128i s1B = _mm_cvtsi32_si128(*(uint32_t *)(src1 + stride1)); const __m128i s1AB = _mm_unpacklo_epi32(s1A, s1B); const __m128i s1 = _mm_cvtepu8_epi16(s1AB); const __m128i m16 = calc_mask(mask_base, s0, s1); const __m128i m8 = _mm_packus_epi16(m16, m16); *(uint32_t *)mask = _mm_cvtsi128_si32(m8); *(uint32_t *)(mask + w) = _mm_extract_epi32(m8, 1); src0 += (stride0 << 1); src1 += (stride1 << 1); mask += 8; i += 2; } while (i < h); } else if (8 == w) { do { __m128i s0 = _mm_loadl_epi64((__m128i const *)src0); __m128i s1 = _mm_loadl_epi64((__m128i const *)src1); s0 = _mm_cvtepu8_epi16(s0); s1 = _mm_cvtepu8_epi16(s1); const __m128i m16 = calc_mask(mask_base, s0, s1); const __m128i m8 = _mm_packus_epi16(m16, m16); _mm_storel_epi64((__m128i *)mask, m8); src0 += stride0; src1 += stride1; mask += 8; i += 1; } while (i < h); } else { const __m128i zero = _mm_setzero_si128(); do { int j = 0; do { const __m128i s0 = _mm_load_si128((__m128i const *)(src0 + j)); const __m128i s1 = _mm_load_si128((__m128i const *)(src1 + j)); const __m128i s0L = _mm_cvtepu8_epi16(s0); const __m128i s1L = _mm_cvtepu8_epi16(s1); const __m128i s0H = _mm_unpackhi_epi8(s0, zero); const __m128i s1H = _mm_unpackhi_epi8(s1, zero); const __m128i m16L = calc_mask(mask_base, s0L, s1L); const __m128i m16H = calc_mask(mask_base, s0H, s1H); const __m128i m8 = _mm_packus_epi16(m16L, m16H); _mm_store_si128((__m128i *)(mask + j), m8); j += 16; } while (j < w); src0 += stride0; src1 += stride1; mask += w; i += 1; } while (i < h); } } void av1_build_compound_diffwtd_mask_d16_sse4_1( uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, ConvolveParams *conv_params, int bd) { const int which_inverse = (mask_type == DIFFWTD_38) ? 0 : 1; const int mask_base = 38; int round = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); const __m128i round_const = _mm_set1_epi16((1 << round) >> 1); const __m128i mask_base_16 = _mm_set1_epi16(mask_base); const __m128i clip_diff = _mm_set1_epi16(AOM_BLEND_A64_MAX_ALPHA); const __m128i add_const = _mm_set1_epi16((which_inverse ? AOM_BLEND_A64_MAX_ALPHA : 0)); const __m128i add_sign = _mm_set1_epi16((which_inverse ? -1 : 1)); int i, j; // When rounding constant is added, there is a possibility of overflow. // However that much precision is not required. Code should very well work for // other values of DIFF_FACTOR_LOG2 and AOM_BLEND_A64_MAX_ALPHA as well. But // there is a possibility of corner case bugs. assert(DIFF_FACTOR_LOG2 == 4); assert(AOM_BLEND_A64_MAX_ALPHA == 64); for (i = 0; i < h; ++i) { for (j = 0; j < w; j += 8) { const __m128i data_src0 = _mm_loadu_si128((__m128i *)&src0[(i * src0_stride) + j]); const __m128i data_src1 = _mm_loadu_si128((__m128i *)&src1[(i * src1_stride) + j]); const __m128i diffa = _mm_subs_epu16(data_src0, data_src1); const __m128i diffb = _mm_subs_epu16(data_src1, data_src0); const __m128i diff = _mm_max_epu16(diffa, diffb); const __m128i diff_round = _mm_srli_epi16(_mm_adds_epu16(diff, round_const), round); const __m128i diff_factor = _mm_srli_epi16(diff_round, DIFF_FACTOR_LOG2); const __m128i diff_mask = _mm_adds_epi16(diff_factor, mask_base_16); __m128i diff_clamp = _mm_min_epi16(diff_mask, clip_diff); // clamp to 0 can be skipped since we are using add and saturate // instruction const __m128i diff_sign = _mm_sign_epi16(diff_clamp, add_sign); const __m128i diff_const_16 = _mm_add_epi16(diff_sign, add_const); // 8 bit conversion and saturation to uint8 const __m128i res_8 = _mm_packus_epi16(diff_const_16, diff_const_16); // Store values into the destination buffer __m128i *const dst = (__m128i *)&mask[i * w + j]; if ((w - j) > 4) { _mm_storel_epi64(dst, res_8); } else { // w==4 *(uint32_t *)dst = _mm_cvtsi128_si32(res_8); } } } }