/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "av1/common/restoration.h" #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/synonyms_avx2.h" // Load 8 bytes from the possibly-misaligned pointer p, extend each byte to // 32-bit precision and return them in an AVX2 register. static __m256i yy256_load_extend_8_32(const void *p) { return _mm256_cvtepu8_epi32(xx_loadl_64(p)); } // Load 8 halfwords from the possibly-misaligned pointer p, extend each // halfword to 32-bit precision and return them in an AVX2 register. static __m256i yy256_load_extend_16_32(const void *p) { return _mm256_cvtepu16_epi32(xx_loadu_128(p)); } // Compute the scan of an AVX2 register holding 8 32-bit integers. If the // register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., // x0+x1+...+x7 // // Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers // (assumed small enough to be able to add them without overflow). // // Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. // // x = [h g f e][d c b a] // x01 = [g f e 0][c b a 0] // x02 = [g+h f+g e+f e][c+d b+c a+b a] // x03 = [e+f e 0 0][a+b a 0 0] // x04 = [e->h e->g e->f e][a->d a->c a->b a] // s = a->d // s01 = [a->d a->d a->d a->d] // s02 = [a->d a->d a->d a->d][0 0 0 0] // ret = [a->h a->g a->f a->e][a->d a->c a->b a] static __m256i scan_32(__m256i x) { const __m256i x01 = _mm256_slli_si256(x, 4); const __m256i x02 = _mm256_add_epi32(x, x01); const __m256i x03 = _mm256_slli_si256(x02, 8); const __m256i x04 = _mm256_add_epi32(x02, x03); const int32_t s = _mm256_extract_epi32(x04, 3); const __m128i s01 = _mm_set1_epi32(s); const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1); return _mm256_add_epi32(x04, s02); } // Compute two integral images from src. B sums elements; A sums their // squares. The images are offset by one pixel, so will have width and height // equal to width + 1, height + 1 and the first row and column will be zero. // // A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple // of 8. static void *memset_zero_avx(int32_t *dest, const __m256i *zero, size_t count) { unsigned int i = 0; for (i = 0; i < (count & 0xffffffe0); i += 32) { _mm256_storeu_si256((__m256i *)(dest + i), *zero); _mm256_storeu_si256((__m256i *)(dest + i + 8), *zero); _mm256_storeu_si256((__m256i *)(dest + i + 16), *zero); _mm256_storeu_si256((__m256i *)(dest + i + 24), *zero); } for (; i < (count & 0xfffffff8); i += 8) { _mm256_storeu_si256((__m256i *)(dest + i), *zero); } for (; i < count; i++) { dest[i] = 0; } return dest; } static void integral_images(const uint8_t *src, int src_stride, int width, int height, int32_t *A, int32_t *B, int buf_stride) { const __m256i zero = _mm256_setzero_si256(); // Write out the zero top row memset_zero_avx(A, &zero, (width + 8)); memset_zero_avx(B, &zero, (width + 8)); for (int i = 0; i < height; ++i) { // Zero the left column. A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; // ldiff is the difference H - D where H is the output sample immediately // to the left and D is the output sample above it. These are scalars, // replicated across the eight lanes. __m256i ldiff1 = zero, ldiff2 = zero; for (int j = 0; j < width; j += 8) { const int ABj = 1 + j; const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride); const __m256i x2 = _mm256_madd_epi16(x1, x1); const __m256i sc1 = scan_32(x1); const __m256i sc2 = scan_32(x2); const __m256i row1 = _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); const __m256i row2 = _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); yy_store_256(B + ABj + (i + 1) * buf_stride, row1); yy_store_256(A + ABj + (i + 1) * buf_stride, row2); // Calculate the new H - D. ldiff1 = _mm256_set1_epi32( _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); ldiff2 = _mm256_set1_epi32( _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); } } } // Compute two integral images from src. B sums elements; A sums their squares // // A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8. static void integral_images_highbd(const uint16_t *src, int src_stride, int width, int height, int32_t *A, int32_t *B, int buf_stride) { const __m256i zero = _mm256_setzero_si256(); // Write out the zero top row memset_zero_avx(A, &zero, (width + 8)); memset_zero_avx(B, &zero, (width + 8)); for (int i = 0; i < height; ++i) { // Zero the left column. A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; // ldiff is the difference H - D where H is the output sample immediately // to the left and D is the output sample above it. These are scalars, // replicated across the eight lanes. __m256i ldiff1 = zero, ldiff2 = zero; for (int j = 0; j < width; j += 8) { const int ABj = 1 + j; const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride); const __m256i x2 = _mm256_madd_epi16(x1, x1); const __m256i sc1 = scan_32(x1); const __m256i sc2 = scan_32(x2); const __m256i row1 = _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); const __m256i row2 = _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); yy_store_256(B + ABj + (i + 1) * buf_stride, row1); yy_store_256(A + ABj + (i + 1) * buf_stride, row2); // Calculate the new H - D. ldiff1 = _mm256_set1_epi32( _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); ldiff2 = _mm256_set1_epi32( _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); } } } // Compute 8 values of boxsum from the given integral image. ii should point // at the middle of the box (for the first value). r is the box radius. static INLINE __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) { const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride); const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride); const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride); const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride); const __m256i u = _mm256_sub_epi32(tr, tl); const __m256i v = _mm256_sub_epi32(br, bl); return _mm256_sub_epi32(v, u); } static __m256i round_for_shift(unsigned shift) { return _mm256_set1_epi32((1 << shift) >> 1); } static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) { __m256i an, bb; if (bit_depth > 8) { const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8)); const __m256i rounding_b = round_for_shift(bit_depth - 8); const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8)); const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8); const __m256i a = _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a); const __m256i b = _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b); // b < 2^14, so we can use a 16-bit madd rather than a 32-bit // mullo to square it bb = _mm256_madd_epi16(b, b); an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb); } else { bb = _mm256_madd_epi16(sum1, sum1); an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n)); } return _mm256_sub_epi32(an, bb); } // Assumes that C, D are integral images for the original buffer which has been // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels // on the sides. A, B, C, D point at logical position (0, 0). static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D, int width, int height, int buf_stride, int bit_depth, int sgr_params_idx, int radius_idx) { const sgr_params_type *const params = &sgr_params[sgr_params_idx]; const int r = params->r[radius_idx]; const int n = (2 * r + 1) * (2 * r + 1); const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); // one_over_n[n-1] is 2^12/n, so easily fits in an int16 const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); // Set up masks const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff); __m256i mask[8]; for (int idx = 0; idx < 8; idx++) { const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); } for (int i = -1; i < height + 1; ++i) { for (int j = -1; j < width + 1; j += 8) { const int32_t *Cij = C + i * buf_stride + j; const int32_t *Dij = D + i * buf_stride + j; __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain // some uninitialised data in their upper words. We use a mask to // ensure that these bits are set to 0. int idx = AOMMIN(8, width + 1 - j); assert(idx >= 1); if (idx < 8) { sum1 = _mm256_and_si256(mask[idx], sum1); sum2 = _mm256_and_si256(mask[idx], sum2); } const __m256i p = compute_p(sum1, sum2, bit_depth, n); const __m256i z = _mm256_min_epi32( _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), SGRPROJ_MTABLE_BITS), _mm256_set1_epi32(255)); const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); yy_storeu_256(A + i * buf_stride + j, a_res); const __m256i a_complement = _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); // sum1 might have lanes greater than 2^15, so we can't use madd to do // multiplication involving sum1. However, a_complement and one_over_n // are both less than 256, so we can multiply them first. const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), SGRPROJ_RECIP_BITS); yy_storeu_256(B + i * buf_stride + j, b_res); } } } // Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter // where the outer four corners have weight 3 and all other pixels have weight // 4. // // Pixels are indexed as follows: // xtl xt xtr // xl x xr // xbl xb xbr // // buf points to x // // fours = xl + xt + xr + xb + x // threes = xtl + xtr + xbr + xbl // cross_sum = 4 * fours + 3 * threes // = 4 * (fours + threes) - threes // = (fours + threes) << 2 - threes static INLINE __m256i cross_sum(const int32_t *buf, int stride) { const __m256i xtl = yy_loadu_256(buf - 1 - stride); const __m256i xt = yy_loadu_256(buf - stride); const __m256i xtr = yy_loadu_256(buf + 1 - stride); const __m256i xl = yy_loadu_256(buf - 1); const __m256i x = yy_loadu_256(buf); const __m256i xr = yy_loadu_256(buf + 1); const __m256i xbl = yy_loadu_256(buf - 1 + stride); const __m256i xb = yy_loadu_256(buf + stride); const __m256i xbr = yy_loadu_256(buf + 1 + stride); const __m256i fours = _mm256_add_epi32( xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x)))); const __m256i threes = _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2), threes); } // The final filter for self-guided restoration. Computes a weighted average // across A, B with "cross sums" (see cross_sum implementation above). static void final_filter(int32_t *dst, int dst_stride, const int32_t *A, const int32_t *B, int buf_stride, const void *dgd8, int dgd_stride, int width, int height, int highbd) { const int nb = 5; const __m256i rounding = round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); const uint8_t *dgd_real = highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride); const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride); const __m128i raw = xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); const __m256i src = highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding), SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); yy_storeu_256(dst + i * dst_stride + j, w); } } } // Assumes that C, D are integral images for the original buffer which has been // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels // on the sides. A, B, C, D point at logical position (0, 0). static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D, int width, int height, int buf_stride, int bit_depth, int sgr_params_idx, int radius_idx) { const sgr_params_type *const params = &sgr_params[sgr_params_idx]; const int r = params->r[radius_idx]; const int n = (2 * r + 1) * (2 * r + 1); const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); // one_over_n[n-1] is 2^12/n, so easily fits in an int16 const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); // Set up masks const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff); __m256i mask[8]; for (int idx = 0; idx < 8; idx++) { const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); } for (int i = -1; i < height + 1; i += 2) { for (int j = -1; j < width + 1; j += 8) { const int32_t *Cij = C + i * buf_stride + j; const int32_t *Dij = D + i * buf_stride + j; __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain // some uninitialised data in their upper words. We use a mask to // ensure that these bits are set to 0. int idx = AOMMIN(8, width + 1 - j); assert(idx >= 1); if (idx < 8) { sum1 = _mm256_and_si256(mask[idx], sum1); sum2 = _mm256_and_si256(mask[idx], sum2); } const __m256i p = compute_p(sum1, sum2, bit_depth, n); const __m256i z = _mm256_min_epi32( _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), SGRPROJ_MTABLE_BITS), _mm256_set1_epi32(255)); const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); yy_storeu_256(A + i * buf_stride + j, a_res); const __m256i a_complement = _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); // sum1 might have lanes greater than 2^15, so we can't use madd to do // multiplication involving sum1. However, a_complement and one_over_n // are both less than 256, so we can multiply them first. const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), SGRPROJ_RECIP_BITS); yy_storeu_256(B + i * buf_stride + j, b_res); } } } // Calculate 8 values of the "cross sum" starting at buf. // // Pixels are indexed like this: // xtl xt xtr // - buf - // xbl xb xbr // // Pixels are weighted like this: // 5 6 5 // 0 0 0 // 5 6 5 // // fives = xtl + xtr + xbl + xbr // sixes = xt + xb // cross_sum = 6 * sixes + 5 * fives // = 5 * (fives + sixes) - sixes // = (fives + sixes) << 2 + (fives + sixes) + sixes static INLINE __m256i cross_sum_fast_even_row(const int32_t *buf, int stride) { const __m256i xtl = yy_loadu_256(buf - 1 - stride); const __m256i xt = yy_loadu_256(buf - stride); const __m256i xtr = yy_loadu_256(buf + 1 - stride); const __m256i xbl = yy_loadu_256(buf - 1 + stride); const __m256i xb = yy_loadu_256(buf + stride); const __m256i xbr = yy_loadu_256(buf + 1 + stride); const __m256i fives = _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); const __m256i sixes = _mm256_add_epi32(xt, xb); const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); return _mm256_add_epi32( _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), fives_plus_sixes), sixes); } // Calculate 8 values of the "cross sum" starting at buf. // // Pixels are indexed like this: // xl x xr // // Pixels are weighted like this: // 5 6 5 // // buf points to x // // fives = xl + xr // sixes = x // cross_sum = 5 * fives + 6 * sixes // = 4 * (fives + sixes) + (fives + sixes) + sixes // = (fives + sixes) << 2 + (fives + sixes) + sixes static INLINE __m256i cross_sum_fast_odd_row(const int32_t *buf) { const __m256i xl = yy_loadu_256(buf - 1); const __m256i x = yy_loadu_256(buf); const __m256i xr = yy_loadu_256(buf + 1); const __m256i fives = _mm256_add_epi32(xl, xr); const __m256i sixes = x; const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); return _mm256_add_epi32( _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), fives_plus_sixes), sixes); } // The final filter for the self-guided restoration. Computes a // weighted average across A, B with "cross sums" (see cross_sum_... // implementations above). static void final_filter_fast(int32_t *dst, int dst_stride, const int32_t *A, const int32_t *B, int buf_stride, const void *dgd8, int dgd_stride, int width, int height, int highbd) { const int nb0 = 5; const int nb1 = 4; const __m256i rounding0 = round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); const __m256i rounding1 = round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); const uint8_t *dgd_real = highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; for (int i = 0; i < height; ++i) { if (!(i & 1)) { // even row for (int j = 0; j < width; j += 8) { const __m256i a = cross_sum_fast_even_row(A + i * buf_stride + j, buf_stride); const __m256i b = cross_sum_fast_even_row(B + i * buf_stride + j, buf_stride); const __m128i raw = xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); const __m256i src = highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding0), SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); yy_storeu_256(dst + i * dst_stride + j, w); } } else { // odd row for (int j = 0; j < width; j += 8) { const __m256i a = cross_sum_fast_odd_row(A + i * buf_stride + j); const __m256i b = cross_sum_fast_odd_row(B + i * buf_stride + j); const __m128i raw = xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); const __m256i src = highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); yy_storeu_256(dst + i * dst_stride + j, w); } } } } int av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height, int dgd_stride, int32_t *flt0, int32_t *flt1, int flt_stride, int sgr_params_idx, int bit_depth, int highbd) { // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, // Ctl and Dtl is 32-byte aligned. const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3); int32_t *buf = aom_memalign( 32, 4 * sizeof(*buf) * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)); if (!buf) return -1; const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of 32 bytes for efficiency. int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3); // The "tl" pointers point at the top-left of the initialised data for the // array. int32_t *Atl = buf + 0 * buf_elts + 7; int32_t *Btl = buf + 1 * buf_elts + 7; int32_t *Ctl = buf + 2 * buf_elts + 7; int32_t *Dtl = buf + 3 * buf_elts + 7; // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note // there's a zero row and column in A, B (integral images), so we move down // and right one for them. const int buf_diag_border = SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; int32_t *A0 = Atl + 1 + buf_stride; int32_t *B0 = Btl + 1 + buf_stride; int32_t *C0 = Ctl + 1 + buf_stride; int32_t *D0 = Dtl + 1 + buf_stride; // Finally, A, B, C, D point at position (0, 0). int32_t *A = A0 + buf_diag_border; int32_t *B = B0 + buf_diag_border; int32_t *C = C0 + buf_diag_border; int32_t *D = D0 + buf_diag_border; const int dgd_diag_border = SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; const uint8_t *dgd0 = dgd8 - dgd_diag_border; // Generate integral images from the input. C will contain sums of squares; D // will contain just sums if (highbd) integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, height_ext, Ctl, Dtl, buf_stride); else integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, buf_stride); const sgr_params_type *const params = &sgr_params[sgr_params_idx]; // Write to flt0 and flt1 // If params->r == 0 we skip the corresponding filter. We only allow one of // the radii to be 0, as having both equal to 0 would be equivalent to // skipping SGR entirely. assert(!(params->r[0] == 0 && params->r[1] == 0)); assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); if (params->r[0] > 0) { calc_ab_fast(A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, 0); final_filter_fast(flt0, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, height, highbd); } if (params->r[1] > 0) { calc_ab(A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, 1); final_filter(flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, height, highbd); } aom_free(buf); return 0; } void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width, int height, int stride, int eps, const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, int bit_depth, int highbd) { int32_t *flt0 = tmpbuf; int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; assert(width * height <= RESTORATION_UNITPELS_MAX); const int ret = av1_selfguided_restoration_avx2( dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); (void)ret; assert(!ret); const sgr_params_type *const params = &sgr_params[eps]; int xq[2]; decode_xq(xqd, xq, params); __m256i xq0 = _mm256_set1_epi32(xq[0]); __m256i xq1 = _mm256_set1_epi32(xq[1]); for (int i = 0; i < height; ++i) { // Calculate output in batches of 16 pixels for (int j = 0; j < width; j += 16) { const int k = i * width + j; const int m = i * dst_stride + j; const uint8_t *dat8ij = dat8 + i * stride + j; __m256i ep_0, ep_1; __m128i src_0, src_1; if (highbd) { src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij)); src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8)); ep_0 = _mm256_cvtepu16_epi32(src_0); ep_1 = _mm256_cvtepu16_epi32(src_1); } else { src_0 = xx_loadu_128(dat8ij); ep_0 = _mm256_cvtepu8_epi32(src_0); ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8)); } const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS); const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS); __m256i v_0 = _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS); __m256i v_1 = _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS); if (params->r[0] > 0) { const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt0[k]), u_0); v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq0, f1_0)); const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt0[k + 8]), u_1); v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq0, f1_1)); } if (params->r[1] > 0) { const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0); v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq1, f2_0)); const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1); v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq1, f2_1)); } const __m256i rounding = round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); const __m256i w_0 = _mm256_srai_epi32( _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); const __m256i w_1 = _mm256_srai_epi32( _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); if (highbd) { // Pack into 16 bits and clamp to [0, 2^bit_depth) // Note that packing into 16 bits messes up the order of the bits, // so we use a permute function to correct this const __m256i tmp = _mm256_packus_epi32(w_0, w_1); const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1); const __m256i res = _mm256_min_epi16(tmp2, max); yy_storeu_256(CONVERT_TO_SHORTPTR(dst8 + m), res); } else { // Pack into 8 bits and clamp to [0, 256) // Note that each pack messes up the order of the bits, // so we use a permute function to correct this const __m256i tmp = _mm256_packs_epi32(w_0, w_1); const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); const __m256i res = _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */); const __m128i res2 = _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8)); xx_storeu_128(dst8 + m, res2); } } } }