/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "aom/aom_codec.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_ports/mem_ops.h" #include "av1/common/common.h" #include "av1/common/obu_util.h" #include "av1/common/timing.h" #include "av1/decoder/decoder.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/obu.h" // Picture prediction structures (0-12 are predefined) in scalability metadata. typedef enum { SCALABILITY_L1T2 = 0, SCALABILITY_L1T3 = 1, SCALABILITY_L2T1 = 2, SCALABILITY_L2T2 = 3, SCALABILITY_L2T3 = 4, SCALABILITY_S2T1 = 5, SCALABILITY_S2T2 = 6, SCALABILITY_S2T3 = 7, SCALABILITY_L2T1h = 8, SCALABILITY_L2T2h = 9, SCALABILITY_L2T3h = 10, SCALABILITY_S2T1h = 11, SCALABILITY_S2T2h = 12, SCALABILITY_S2T3h = 13, SCALABILITY_SS = 14 } SCALABILITY_STRUCTURES; aom_codec_err_t aom_get_num_layers_from_operating_point_idc( int operating_point_idc, unsigned int *number_spatial_layers, unsigned int *number_temporal_layers) { // derive number of spatial/temporal layers from operating_point_idc if (!number_spatial_layers || !number_temporal_layers) return AOM_CODEC_INVALID_PARAM; if (operating_point_idc == 0) { *number_temporal_layers = 1; *number_spatial_layers = 1; } else { *number_spatial_layers = 0; *number_temporal_layers = 0; for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) { *number_spatial_layers += (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1; } for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) { *number_temporal_layers += (operating_point_idc >> j) & 0x1; } } return AOM_CODEC_OK; } static int is_obu_in_current_operating_point(AV1Decoder *pbi, ObuHeader obu_header) { if (!pbi->current_operating_point) { return 1; } if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 && (pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) & 0x1) { return 1; } return 0; } static int byte_alignment(AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { while (rb->bit_offset & 7) { if (aom_rb_read_bit(rb)) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } return 0; } static uint32_t read_temporal_delimiter_obu() { return 0; } // Returns a boolean that indicates success. static int read_bitstream_level(BitstreamLevel *bl, struct aom_read_bit_buffer *rb) { const uint8_t seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); if (!is_valid_seq_level_idx(seq_level_idx)) return 0; bl->major = (seq_level_idx >> LEVEL_MINOR_BITS) + LEVEL_MAJOR_MIN; bl->minor = seq_level_idx & ((1 << LEVEL_MINOR_BITS) - 1); return 1; } // Returns whether two sequence headers are consistent with each other. // TODO(huisu,wtc@google.com): make sure the code matches the spec exactly. static int are_seq_headers_consistent(const SequenceHeader *seq_params_old, const SequenceHeader *seq_params_new) { return !memcmp(seq_params_old, seq_params_new, sizeof(SequenceHeader)); } // On success, sets pbi->sequence_header_ready to 1 and returns the number of // bytes read from 'rb'. // On failure, sets pbi->common.error.error_code and returns 0. static uint32_t read_sequence_header_obu(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; const uint32_t saved_bit_offset = rb->bit_offset; // Verify rb has been configured to report errors. assert(rb->error_handler); // Use a local variable to store the information as we decode. At the end, // if no errors have occurred, cm->seq_params is updated. SequenceHeader sh = cm->seq_params; SequenceHeader *const seq_params = &sh; seq_params->profile = av1_read_profile(rb); if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } // Still picture or not seq_params->still_picture = aom_rb_read_bit(rb); seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb); // Video must have reduced_still_picture_hdr = 0 if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } if (seq_params->reduced_still_picture_hdr) { cm->timing_info_present = 0; seq_params->decoder_model_info_present_flag = 0; seq_params->display_model_info_present_flag = 0; seq_params->operating_points_cnt_minus_1 = 0; seq_params->operating_point_idc[0] = 0; if (!read_bitstream_level(&seq_params->level[0], rb)) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } seq_params->tier[0] = 0; cm->op_params[0].decoder_model_param_present_flag = 0; cm->op_params[0].display_model_param_present_flag = 0; } else { cm->timing_info_present = aom_rb_read_bit(rb); // timing_info_present_flag if (cm->timing_info_present) { av1_read_timing_info_header(cm, rb); seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb); if (seq_params->decoder_model_info_present_flag) av1_read_decoder_model_info(cm, rb); } else { seq_params->decoder_model_info_present_flag = 0; } seq_params->display_model_info_present_flag = aom_rb_read_bit(rb); seq_params->operating_points_cnt_minus_1 = aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { seq_params->operating_point_idc[i] = aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); if (!read_bitstream_level(&seq_params->level[i], rb)) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return 0; } // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7 // is equivalent to level 3.3. if (seq_params->level[i].major > 3) seq_params->tier[i] = aom_rb_read_bit(rb); else seq_params->tier[i] = 0; if (seq_params->decoder_model_info_present_flag) { cm->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb); if (cm->op_params[i].decoder_model_param_present_flag) av1_read_op_parameters_info(cm, rb, i); } else { cm->op_params[i].decoder_model_param_present_flag = 0; } if (cm->timing_info_present && (cm->timing_info.equal_picture_interval || cm->op_params[i].decoder_model_param_present_flag)) { cm->op_params[i].bitrate = max_level_bitrate( seq_params->profile, major_minor_to_seq_level_idx(seq_params->level[i]), seq_params->tier[i]); // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass // the check if (cm->op_params[i].bitrate == 0) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "AV1 does not support this combination of " "profile, level, and tier."); // Buffer size in bits/s is bitrate in bits/s * 1 s cm->op_params[i].buffer_size = cm->op_params[i].bitrate; } if (cm->timing_info_present && cm->timing_info.equal_picture_interval && !cm->op_params[i].decoder_model_param_present_flag) { // When the decoder_model_parameters are not sent for this op, set // the default ones that can be used with the resource availability mode cm->op_params[i].decoder_buffer_delay = 70000; cm->op_params[i].encoder_buffer_delay = 20000; cm->op_params[i].low_delay_mode_flag = 0; } if (seq_params->display_model_info_present_flag) { cm->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb); if (cm->op_params[i].display_model_param_present_flag) { cm->op_params[i].initial_display_delay = aom_rb_read_literal(rb, 4) + 1; if (cm->op_params[i].initial_display_delay > 10) aom_internal_error( &cm->error, AOM_CODEC_UNSUP_BITSTREAM, "AV1 does not support more than 10 decoded frames delay"); } else { cm->op_params[i].initial_display_delay = 10; } } else { cm->op_params[i].display_model_param_present_flag = 0; cm->op_params[i].initial_display_delay = 10; } } } // This decoder supports all levels. Choose operating point provided by // external means int operating_point = pbi->operating_point; if (operating_point < 0 || operating_point > seq_params->operating_points_cnt_minus_1) operating_point = 0; pbi->current_operating_point = seq_params->operating_point_idc[operating_point]; if (aom_get_num_layers_from_operating_point_idc( pbi->current_operating_point, &cm->number_spatial_layers, &cm->number_temporal_layers) != AOM_CODEC_OK) { cm->error.error_code = AOM_CODEC_ERROR; return 0; } av1_read_sequence_header(cm, rb, seq_params); av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &cm->error); if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) && !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) && !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, " "%d %d subsampling is not supported.\n", seq_params->subsampling_x, seq_params->subsampling_y); } seq_params->film_grain_params_present = aom_rb_read_bit(rb); if (av1_check_trailing_bits(pbi, rb) != 0) { // cm->error.error_code is already set. return 0; } // If a sequence header has been decoded before, we check if the new // one is consistent with the old one. if (pbi->sequence_header_ready) { if (!are_seq_headers_consistent(&cm->seq_params, seq_params)) pbi->sequence_header_changed = 1; } cm->seq_params = *seq_params; pbi->sequence_header_ready = 1; return ((rb->bit_offset - saved_bit_offset + 7) >> 3); } // On success, returns the frame header size. On failure, calls // aom_internal_error and does not return. static uint32_t read_frame_header_obu(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t **p_data_end, int trailing_bits_present) { return av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end, trailing_bits_present); } static int32_t read_tile_group_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int *start_tile, int *end_tile, int tile_start_implicit) { AV1_COMMON *const cm = &pbi->common; uint32_t saved_bit_offset = rb->bit_offset; int tile_start_and_end_present_flag = 0; const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols; if (!pbi->common.large_scale_tile && num_tiles > 1) { tile_start_and_end_present_flag = aom_rb_read_bit(rb); } if (pbi->common.large_scale_tile || num_tiles == 1 || !tile_start_and_end_present_flag) { *start_tile = 0; *end_tile = num_tiles - 1; return ((rb->bit_offset - saved_bit_offset + 7) >> 3); } if (tile_start_implicit && tile_start_and_end_present_flag) { aom_internal_error( &cm->error, AOM_CODEC_UNSUP_BITSTREAM, "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0"); return -1; } *start_tile = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); *end_tile = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); return ((rb->bit_offset - saved_bit_offset + 7) >> 3); } static uint32_t read_one_tile_group_obu( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, int *is_last_tg, int tile_start_implicit) { AV1_COMMON *const cm = &pbi->common; int start_tile, end_tile; int32_t header_size, tg_payload_size; assert((rb->bit_offset & 7) == 0); assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data); header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile, tile_start_implicit); if (header_size == -1 || byte_alignment(cm, rb)) return 0; if (start_tile > end_tile) return header_size; data += header_size; av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile, end_tile, is_first_tg); tg_payload_size = (uint32_t)(*p_data_end - data); // TODO(shan): For now, assume all tile groups received in order *is_last_tg = end_tile == cm->tile_rows * cm->tile_cols - 1; return header_size + tg_payload_size; } static void alloc_tile_list_buffer(AV1Decoder *pbi) { // TODO(yunqing): for now, copy each tile's decoded YUV data directly to the // output buffer. This needs to be modified according to the application // requirement. AV1_COMMON *const cm = &pbi->common; const int tile_width_in_pixels = cm->tile_width * MI_SIZE; const int tile_height_in_pixels = cm->tile_height * MI_SIZE; const int ssy = cm->seq_params.subsampling_y; const int ssx = cm->seq_params.subsampling_x; const int num_planes = av1_num_planes(cm); const size_t yplane_tile_size = tile_height_in_pixels * tile_width_in_pixels; const size_t uvplane_tile_size = (num_planes > 1) ? (tile_height_in_pixels >> ssy) * (tile_width_in_pixels >> ssx) : 0; const size_t tile_size = (cm->seq_params.use_highbitdepth ? 2 : 1) * (yplane_tile_size + 2 * uvplane_tile_size); pbi->tile_list_size = tile_size * (pbi->tile_count_minus_1 + 1); if (pbi->tile_list_size > pbi->buffer_sz) { if (pbi->tile_list_output != NULL) aom_free(pbi->tile_list_output); pbi->tile_list_output = NULL; pbi->tile_list_output = (uint8_t *)aom_memalign(32, pbi->tile_list_size); if (pbi->tile_list_output == NULL) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate the tile list output buffer"); pbi->buffer_sz = pbi->tile_list_size; } } static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, uint8_t **output) { AV1_COMMON *const cm = &pbi->common; const int tile_width_in_pixels = cm->tile_width * MI_SIZE; const int tile_height_in_pixels = cm->tile_height * MI_SIZE; const int ssy = cm->seq_params.subsampling_y; const int ssx = cm->seq_params.subsampling_x; const int num_planes = av1_num_planes(cm); // Copy decoded tile to the tile list output buffer. YV12_BUFFER_CONFIG *cur_frame = get_frame_new_buffer(cm); const int mi_row = pbi->dec_tile_row * cm->tile_height; const int mi_col = pbi->dec_tile_col * cm->tile_width; const int is_hbd = (cur_frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; uint8_t *bufs[MAX_MB_PLANE] = { NULL, NULL, NULL }; int strides[MAX_MB_PLANE] = { 0, 0, 0 }; int plane; for (plane = 0; plane < num_planes; ++plane) { int shift_x = plane > 0 ? ssx : 0; int shift_y = plane > 0 ? ssy : 0; bufs[plane] = cur_frame->buffers[plane]; strides[plane] = (plane > 0) ? cur_frame->strides[1] : cur_frame->strides[0]; bufs[plane] += mi_row * (MI_SIZE >> shift_y) * strides[plane] + mi_col * (MI_SIZE >> shift_x); if (is_hbd) { bufs[plane] = (uint8_t *)CONVERT_TO_SHORTPTR(bufs[plane]); strides[plane] *= 2; } int w, h; w = (plane > 0 && shift_x > 0) ? ((tile_width_in_pixels + 1) >> shift_x) : tile_width_in_pixels; w *= (1 + is_hbd); h = (plane > 0 && shift_y > 0) ? ((tile_height_in_pixels + 1) >> shift_y) : tile_height_in_pixels; int j; for (j = 0; j < h; ++j) { memcpy(*output, bufs[plane], w); bufs[plane] += strides[plane]; *output += w; } } } // Only called while large_scale_tile = 1. static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, int *frame_decoding_finished) { AV1_COMMON *const cm = &pbi->common; uint32_t tile_list_payload_size = 0; const int num_tiles = cm->tile_cols * cm->tile_rows; const int start_tile = 0; const int end_tile = num_tiles - 1; int i = 0; // Process the tile list info. pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16); if (pbi->tile_count_minus_1 > MAX_TILES - 1) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } // Allocate output frame buffer for the tile list. alloc_tile_list_buffer(pbi); uint32_t tile_list_info_bytes = 4; tile_list_payload_size += tile_list_info_bytes; data += tile_list_info_bytes; uint8_t *output = pbi->tile_list_output; for (i = 0; i <= pbi->tile_count_minus_1; i++) { // Process 1 tile. // Reset the bit reader. rb->bit_offset = 0; rb->bit_buffer = data; // Read out the tile info. uint32_t tile_info_bytes = 5; // Set reference for each tile. int ref_idx = aom_rb_read_literal(rb, 8); if (ref_idx >= MAX_EXTERNAL_REFERENCES) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } av1_set_reference_dec(cm, 0, 1, &pbi->ext_refs.refs[ref_idx]); pbi->dec_tile_row = aom_rb_read_literal(rb, 8); pbi->dec_tile_col = aom_rb_read_literal(rb, 8); if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 || pbi->dec_tile_row >= cm->tile_rows || pbi->dec_tile_col >= cm->tile_cols) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1; data += tile_info_bytes; if ((size_t)(data_end - data) < pbi->coded_tile_data_size) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return 0; } av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size, p_data_end, start_tile, end_tile, 0); uint32_t tile_payload_size = (uint32_t)(*p_data_end - data); tile_list_payload_size += tile_info_bytes + tile_payload_size; // Update data ptr for next tile decoding. data = *p_data_end; assert(data <= data_end); // Copy the decoded tile to the tile list output buffer. copy_decoded_tile_to_tile_list_buffer(pbi, &output); } *frame_decoding_finished = 1; return tile_list_payload_size; } static void read_metadata_itut_t35(const uint8_t *data, size_t sz) { struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; for (size_t i = 0; i < sz; i++) { aom_rb_read_literal(&rb, 8); } } static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) { struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; aom_rb_read_literal(&rb, 16); // max_cll aom_rb_read_literal(&rb, 16); // max_fall } static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) { struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; for (int i = 0; i < 3; i++) { aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_x aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_y } aom_rb_read_literal(&rb, 16); // white_point_chromaticity_x aom_rb_read_literal(&rb, 16); // white_point_chromaticity_y aom_rb_read_unsigned_literal(&rb, 32); // luminance_max aom_rb_read_unsigned_literal(&rb, 32); // luminance_min } static void scalability_structure(struct aom_read_bit_buffer *rb) { int spatial_layers_cnt = aom_rb_read_literal(rb, 2); int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb); int spatial_layer_description_present_flag = aom_rb_read_bit(rb); int temporal_group_description_present_flag = aom_rb_read_bit(rb); aom_rb_read_literal(rb, 3); // reserved if (spatial_layer_dimensions_present_flag) { int i; for (i = 0; i < spatial_layers_cnt + 1; i++) { aom_rb_read_literal(rb, 16); aom_rb_read_literal(rb, 16); } } if (spatial_layer_description_present_flag) { int i; for (i = 0; i < spatial_layers_cnt + 1; i++) { aom_rb_read_literal(rb, 8); } } if (temporal_group_description_present_flag) { int i, j, temporal_group_size; temporal_group_size = aom_rb_read_literal(rb, 8); for (i = 0; i < temporal_group_size; i++) { aom_rb_read_literal(rb, 3); aom_rb_read_bit(rb); aom_rb_read_bit(rb); int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3); for (j = 0; j < temporal_group_ref_cnt; j++) { aom_rb_read_literal(rb, 8); } } } } static void read_metadata_scalability(const uint8_t *data, size_t sz) { struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; int scalability_mode_idc = aom_rb_read_literal(&rb, 8); if (scalability_mode_idc == SCALABILITY_SS) { scalability_structure(&rb); } } static void read_metadata_timecode(const uint8_t *data, size_t sz) { struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; aom_rb_read_literal(&rb, 5); // counting_type f(5) int full_timestamp_flag = aom_rb_read_bit(&rb); // full_timestamp_flag f(1) aom_rb_read_bit(&rb); // discontinuity_flag (f1) aom_rb_read_bit(&rb); // cnt_dropped_flag f(1) aom_rb_read_literal(&rb, 9); // n_frames f(9) if (full_timestamp_flag) { aom_rb_read_literal(&rb, 6); // seconds_value f(6) aom_rb_read_literal(&rb, 6); // minutes_value f(6) aom_rb_read_literal(&rb, 5); // hours_value f(5) } else { int seconds_flag = aom_rb_read_bit(&rb); // seconds_flag f(1) if (seconds_flag) { aom_rb_read_literal(&rb, 6); // seconds_value f(6) int minutes_flag = aom_rb_read_bit(&rb); // minutes_flag f(1) if (minutes_flag) { aom_rb_read_literal(&rb, 6); // minutes_value f(6) int hours_flag = aom_rb_read_bit(&rb); // hours_flag f(1) if (hours_flag) { aom_rb_read_literal(&rb, 5); // hours_value f(5) } } } } // time_offset_length f(5) int time_offset_length = aom_rb_read_literal(&rb, 5); if (time_offset_length) { aom_rb_read_literal(&rb, time_offset_length); // f(time_offset_length) } } static size_t read_metadata(const uint8_t *data, size_t sz) { size_t type_length; uint64_t type_value; OBU_METADATA_TYPE metadata_type; if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) { return sz; } metadata_type = (OBU_METADATA_TYPE)type_value; if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) { read_metadata_itut_t35(data + type_length, sz - type_length); } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) { read_metadata_hdr_cll(data + type_length, sz - type_length); } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) { read_metadata_hdr_mdcv(data + type_length, sz - type_length); } else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) { read_metadata_scalability(data + type_length, sz - type_length); } else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) { read_metadata_timecode(data + type_length, sz - type_length); } return sz; } // On success, returns a boolean that indicates whether the decoding of the // current frame is finished. On failure, sets cm->error.error_code and // returns -1. int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { AV1_COMMON *const cm = &pbi->common; int frame_decoding_finished = 0; int is_first_tg_obu_received = 1; uint32_t frame_header_size = 0; ObuHeader obu_header; memset(&obu_header, 0, sizeof(obu_header)); pbi->seen_frame_header = 0; if (data_end < data) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } // Reset pbi->camera_frame_header_ready to 0 if cm->large_scale_tile = 0. if (!cm->large_scale_tile) pbi->camera_frame_header_ready = 0; // decode frame as a series of OBUs while (!frame_decoding_finished && !cm->error.error_code) { struct aom_read_bit_buffer rb; size_t payload_size = 0; size_t decoded_payload_size = 0; size_t obu_payload_offset = 0; size_t bytes_read = 0; const size_t bytes_available = data_end - data; if (bytes_available == 0 && !pbi->seen_frame_header) { *p_data_end = data; cm->error.error_code = AOM_CODEC_OK; break; } aom_codec_err_t status = aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb, &obu_header, &payload_size, &bytes_read); if (status != AOM_CODEC_OK) { cm->error.error_code = status; return -1; } // Record obu size header information. pbi->obu_size_hdr.data = data + obu_header.size; pbi->obu_size_hdr.size = bytes_read - obu_header.size; // Note: aom_read_obu_header_and_size() takes care of checking that this // doesn't cause 'data' to advance past 'data_end'. data += bytes_read; if ((size_t)(data_end - data) < payload_size) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } cm->temporal_layer_id = obu_header.temporal_layer_id; cm->spatial_layer_id = obu_header.spatial_layer_id; if (obu_header.type != OBU_TEMPORAL_DELIMITER && obu_header.type != OBU_SEQUENCE_HEADER && obu_header.type != OBU_PADDING) { // don't decode obu if it's not in current operating mode if (!is_obu_in_current_operating_point(pbi, obu_header)) { data += payload_size; continue; } } av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size); switch (obu_header.type) { case OBU_TEMPORAL_DELIMITER: decoded_payload_size = read_temporal_delimiter_obu(); pbi->seen_frame_header = 0; break; case OBU_SEQUENCE_HEADER: decoded_payload_size = read_sequence_header_obu(pbi, &rb); if (cm->error.error_code != AOM_CODEC_OK) return -1; break; case OBU_FRAME_HEADER: case OBU_REDUNDANT_FRAME_HEADER: case OBU_FRAME: // Only decode first frame header received if (!pbi->seen_frame_header || (cm->large_scale_tile && !pbi->camera_frame_header_ready)) { frame_header_size = read_frame_header_obu( pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME); pbi->seen_frame_header = 1; if (!pbi->ext_tile_debug && cm->large_scale_tile) pbi->camera_frame_header_ready = 1; } else { // TODO(wtc): Verify that the frame_header_obu is identical to the // original frame_header_obu. For now just skip frame_header_size // bytes in the bit buffer. if (frame_header_size > payload_size) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } assert(rb.bit_offset == 0); rb.bit_offset = 8 * frame_header_size; } decoded_payload_size = frame_header_size; pbi->frame_header_size = frame_header_size; if (cm->show_existing_frame) { if (obu_header.type == OBU_FRAME) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return -1; } frame_decoding_finished = 1; pbi->seen_frame_header = 0; break; } // In large scale tile coding, decode the common camera frame header // before any tile list OBU. if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) { frame_decoding_finished = 1; // Skip the rest of the frame data. decoded_payload_size = payload_size; // Update data_end. *p_data_end = data_end; break; } if (obu_header.type != OBU_FRAME) break; obu_payload_offset = frame_header_size; // Byte align the reader before reading the tile group. if (byte_alignment(cm, &rb)) return -1; AOM_FALLTHROUGH_INTENDED; // fall through to read tile group. case OBU_TILE_GROUP: if (!pbi->seen_frame_header) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } if (obu_payload_offset > payload_size) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } decoded_payload_size += read_one_tile_group_obu( pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset, data + payload_size, p_data_end, &frame_decoding_finished, obu_header.type == OBU_FRAME); is_first_tg_obu_received = 0; if (frame_decoding_finished) pbi->seen_frame_header = 0; break; case OBU_METADATA: decoded_payload_size = read_metadata(data, payload_size); break; case OBU_TILE_LIST: if (CONFIG_NORMAL_TILE_MODE) { cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; return -1; } // This OBU type is purely for the large scale tile coding mode. // The common camera frame header has to be already decoded. if (!pbi->camera_frame_header_ready) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } cm->large_scale_tile = 1; av1_set_single_tile_decoding_mode(cm); decoded_payload_size = read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size, p_data_end, &frame_decoding_finished); if (cm->error.error_code != AOM_CODEC_OK) return -1; break; case OBU_PADDING: default: // Skip unrecognized OBUs decoded_payload_size = payload_size; break; } // Check that the signalled OBU size matches the actual amount of data read if (decoded_payload_size > payload_size) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } // If there are extra padding bytes, they should all be zero while (decoded_payload_size < payload_size) { uint8_t padding_byte = data[decoded_payload_size++]; if (padding_byte != 0) { cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; return -1; } } data += payload_size; } return frame_decoding_finished; }