/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/context_tree.h" #include "av1/encoder/encoder.h" static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = { BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, BLOCK_128X128, }; static void alloc_mode_context(AV1_COMMON *cm, int num_pix, PICK_MODE_CONTEXT *ctx) { const int num_planes = av1_num_planes(cm); int i; const int num_blk = num_pix / 16; ctx->num_4x4_blk = num_blk; CHECK_MEM_ERROR(cm, ctx->blk_skip, aom_calloc(num_blk, sizeof(uint8_t))); for (i = 0; i < num_planes; ++i) { CHECK_MEM_ERROR(cm, ctx->coeff[i], aom_memalign(32, num_pix * sizeof(*ctx->coeff[i]))); CHECK_MEM_ERROR(cm, ctx->qcoeff[i], aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i]))); CHECK_MEM_ERROR(cm, ctx->dqcoeff[i], aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i]))); CHECK_MEM_ERROR(cm, ctx->eobs[i], aom_memalign(32, num_blk * sizeof(*ctx->eobs[i]))); CHECK_MEM_ERROR( cm, ctx->txb_entropy_ctx[i], aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i]))); } if (num_pix <= MAX_PALETTE_SQUARE) { for (i = 0; i < 2; ++i) { CHECK_MEM_ERROR( cm, ctx->color_index_map[i], aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i]))); } } } static void free_mode_context(PICK_MODE_CONTEXT *ctx, const int num_planes) { int i; aom_free(ctx->blk_skip); ctx->blk_skip = 0; for (i = 0; i < num_planes; ++i) { aom_free(ctx->coeff[i]); ctx->coeff[i] = 0; aom_free(ctx->qcoeff[i]); ctx->qcoeff[i] = 0; aom_free(ctx->dqcoeff[i]); ctx->dqcoeff[i] = 0; aom_free(ctx->eobs[i]); ctx->eobs[i] = 0; aom_free(ctx->txb_entropy_ctx[i]); ctx->txb_entropy_ctx[i] = 0; } for (i = 0; i < 2; ++i) { aom_free(ctx->color_index_map[i]); ctx->color_index_map[i] = 0; } } static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, int num_pix, int is_leaf) { alloc_mode_context(cm, num_pix, &tree->none); if (is_leaf) return; alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0]); alloc_mode_context(cm, num_pix / 2, &tree->vertical[0]); alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1]); alloc_mode_context(cm, num_pix / 2, &tree->vertical[1]); alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0]); alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1]); alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2]); alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0]); alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1]); alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2]); alloc_mode_context(cm, num_pix / 4, &tree->verticala[0]); alloc_mode_context(cm, num_pix / 4, &tree->verticala[1]); alloc_mode_context(cm, num_pix / 2, &tree->verticala[2]); alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0]); alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1]); alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2]); for (int i = 0; i < 4; ++i) { alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i]); alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i]); } } static void free_tree_contexts(PC_TREE *tree, const int num_planes) { int i; for (i = 0; i < 3; i++) { free_mode_context(&tree->horizontala[i], num_planes); free_mode_context(&tree->horizontalb[i], num_planes); free_mode_context(&tree->verticala[i], num_planes); free_mode_context(&tree->verticalb[i], num_planes); } for (i = 0; i < 4; ++i) { free_mode_context(&tree->horizontal4[i], num_planes); free_mode_context(&tree->vertical4[i], num_planes); } free_mode_context(&tree->none, num_planes); free_mode_context(&tree->horizontal[0], num_planes); free_mode_context(&tree->horizontal[1], num_planes); free_mode_context(&tree->vertical[0], num_planes); free_mode_context(&tree->vertical[1], num_planes); } // This function sets up a tree of contexts such that at each square // partition level. There are contexts for none, horizontal, vertical, and // split. Along with a block_size value and a selected block_size which // represents the state of our search. void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) { int i, j; const int tree_nodes_inc = 1024; const int leaf_factor = 4; const int leaf_nodes = 256 * leaf_factor; const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; int pc_tree_index = 0; PC_TREE *this_pc; int square_index = 1; int nodes; aom_free(td->pc_tree); CHECK_MEM_ERROR(cm, td->pc_tree, aom_calloc(tree_nodes, sizeof(*td->pc_tree))); this_pc = &td->pc_tree[0]; // Sets up all the leaf nodes in the tree. for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) { PC_TREE *const tree = &td->pc_tree[pc_tree_index]; tree->block_size = square[0]; alloc_tree_contexts(cm, tree, 16, 1); } // Each node has 4 leaf nodes, fill each block_size level of the tree // from leafs to the root. for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { for (i = 0; i < nodes; ++i) { PC_TREE *const tree = &td->pc_tree[pc_tree_index]; alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0); tree->block_size = square[square_index]; for (j = 0; j < 4; j++) tree->split[j] = this_pc++; ++pc_tree_index; } ++square_index; } // Set up the root node for the largest superblock size i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2; td->pc_root[i] = &td->pc_tree[tree_nodes - 1]; td->pc_root[i]->none.best_mode_index = 2; // Set up the root nodes for the rest of the possible superblock sizes while (--i >= 0) { td->pc_root[i] = td->pc_root[i + 1]->split[0]; td->pc_root[i]->none.best_mode_index = 2; } } void av1_free_pc_tree(ThreadData *td, const int num_planes) { if (td->pc_tree != NULL) { const int tree_nodes_inc = 1024; const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; for (int i = 0; i < tree_nodes; ++i) { free_tree_contexts(&td->pc_tree[i], num_planes); } aom_free(td->pc_tree); td->pc_tree = NULL; } } void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx, PICK_MODE_CONTEXT *src_ctx) { dst_ctx->mic = src_ctx->mic; dst_ctx->mbmi_ext = src_ctx->mbmi_ext; dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk; dst_ctx->skip = src_ctx->skip; dst_ctx->skippable = src_ctx->skippable; dst_ctx->best_mode_index = src_ctx->best_mode_index; memcpy(dst_ctx->blk_skip, src_ctx->blk_skip, sizeof(uint8_t) * src_ctx->num_4x4_blk); dst_ctx->hybrid_pred_diff = src_ctx->hybrid_pred_diff; dst_ctx->comp_pred_diff = src_ctx->comp_pred_diff; dst_ctx->single_pred_diff = src_ctx->single_pred_diff; dst_ctx->rate = src_ctx->rate; dst_ctx->dist = src_ctx->dist; dst_ctx->rdcost = src_ctx->rdcost; dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready; memcpy(dst_ctx->pred_mv, src_ctx->pred_mv, sizeof(MV) * REF_FRAMES); dst_ctx->pred_interp_filter = src_ctx->pred_interp_filter; dst_ctx->partition = src_ctx->partition; }