/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_ports/mem.h" #include "aom_ports/aom_timer.h" #include "aom_ports/system_state.h" #if CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_MISMATCH_DEBUG #include "av1/common/cfl.h" #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/mv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconintra.h" #include "av1/common/reconinter.h" #include "av1/common/seg_common.h" #include "av1/common/tile_common.h" #include "av1/common/warped_motion.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/global_motion.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/ethread.h" #include "av1/encoder/extend.h" #include "av1/encoder/ml.h" #include "av1/encoder/partition_model_weights.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/tokenize.h" static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate); // This is used as a reference when computing the source variance for the // purposes of activity masking. // Eventually this should be replaced by custom no-reference routines, // which will be faster. static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 }; static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16 }; #if CONFIG_FP_MB_STATS static const uint8_t num_16x16_blocks_wide_lookup[BLOCK_SIZES_ALL] = { 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 1, 1, 1, 2, 2, 4 }; static const uint8_t num_16x16_blocks_high_lookup[BLOCK_SIZES_ALL] = { 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 1, 1, 2, 1, 4, 2 }; #endif // CONFIG_FP_MB_STATS unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs) { unsigned int sse; const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) { unsigned int var, sse; switch (bd) { case 10: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); break; case 12: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); break; case 8: default: var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); break; } return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, const struct buf_2d *ref, int mi_row, int mi_col, BLOCK_SIZE bs) { unsigned int sse, var; uint8_t *last_y; const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); assert(last != NULL); last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); if (var < 8) return BLOCK_64X64; else if (var < 128) return BLOCK_32X32; else if (var < 2048) return BLOCK_16X16; else return BLOCK_8X8; } // Lighter version of set_offsets that only sets the mode info // pointers. static void set_mode_info_offsets(const AV1_COMP *const cpi, MACROBLOCK *const x, MACROBLOCKD *const xd, int mi_row, int mi_col) { const AV1_COMMON *const cm = &cpi->common; const int idx_str = xd->mi_stride * mi_row + mi_col; xd->mi = cm->mi_grid_visible + idx_str; xd->mi[0] = cm->mi + idx_str; x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); } static void set_offsets_without_segment_id(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); set_skip_context(xd, mi_row, mi_col, num_planes); xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); // Set up destination pointers. av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col, 0, num_planes); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. x->mv_limits.row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; set_plane_n4(xd, mi_width, mi_height, num_planes); // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, cm->mi_cols); // Set up source buffers. av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); // R/D setup. x->rdmult = cpi->rd.RDMULT; // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() xd->tile = *tile; } static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const struct segmentation *const seg = &cm->seg; set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); mbmi = xd->mi[0]; xd->cfl.mi_row = mi_row; xd->cfl.mi_col = mi_col; mbmi->segment_id = 0; // Setup segment ID. if (seg->enabled) { if (seg->enabled && !cpi->vaq_refresh) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; } av1_init_plane_quantizers(cpi, x, mbmi->segment_id); } } static void reset_intmv_filter_type(MB_MODE_INFO *mbmi) { InterpFilter filters[2]; for (int dir = 0; dir < 2; ++dir) { filters[dir] = av1_extract_interp_filter(mbmi->interp_filters, dir); } mbmi->interp_filters = av1_make_interp_filters(filters[0], filters[1]); } static void update_filter_type_count(uint8_t allow_update_cdf, FRAME_COUNTS *counts, const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi) { int dir; for (dir = 0; dir < 2; ++dir) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); ++counts->switchable_interp[ctx][filter]; if (allow_update_cdf) { update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, SWITCHABLE_FILTERS); } } } static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize, const MB_MODE_INFO *mbmi, RD_COUNTS *rdc) { if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) { const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize]; int ref; for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; } } } static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, const TX_MODE tx_mode) { MACROBLOCKD *const xd = &x->e_mbd; if (xd->lossless[mbmi->segment_id]) { mbmi->tx_size = TX_4X4; } else if (tx_mode != TX_MODE_SELECT) { mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode); } else { BLOCK_SIZE bsize = mbmi->sb_type; TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); } if (is_inter_block(mbmi)) { memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); } memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); av1_zero(x->blk_skip); x->skip = 0; } static void update_state(const AV1_COMP *const cpi, const TileDataEnc *const tile_data, ThreadData *td, const PICK_MODE_CONTEXT *const ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { int i, x_idx, y; const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); RD_COUNTS *const rdc = &td->rd_counts; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const MB_MODE_INFO *const mi = &ctx->mic; MB_MODE_INFO *const mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; const int bw = mi_size_wide[mi->sb_type]; const int bh = mi_size_high[mi->sb_type]; const int mis = cm->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; assert(mi->sb_type == bsize); *mi_addr = *mi; *x->mbmi_ext = ctx->mbmi_ext; reset_intmv_filter_type(mi_addr); memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); x->skip = ctx->skip; // If segmentation in use if (seg->enabled) { // For in frame complexity AQ copy the segment id from the segment map. if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi_addr->segment_id = map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; reset_tx_size(x, mi_addr, cm->tx_mode); } // Else for cyclic refresh mode update the segment map, set the segment id // and then update the quantizer. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, ctx->rate, ctx->dist, x->skip); reset_tx_size(x, mi_addr, cm->tx_mode); } if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) mi_addr->uv_mode = UV_DC_PRED; } for (i = 0; i < num_planes; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; pd[i].dqcoeff = ctx->dqcoeff[i]; p[i].eobs = ctx->eobs[i]; p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; } for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi[x_idx + y * mis] = mi_addr; } if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); if (dry_run) return; #if CONFIG_INTERNAL_STATS { unsigned int *const mode_chosen_counts = (unsigned int *)cpi->mode_chosen_counts; // Cast const away. if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D113_PRED /*D113_PRED*/, THR_D157_PRED /*D157_PRED*/, THR_D203_PRED /*D203_PRED*/, THR_D67_PRED /*D67_PRED*/, THR_SMOOTH, /*SMOOTH_PRED*/ THR_SMOOTH_V, /*SMOOTH_V_PRED*/ THR_SMOOTH_H, /*SMOOTH_H_PRED*/ THR_PAETH /*PAETH_PRED*/, }; ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; } else { // Note how often each mode chosen as best ++mode_chosen_counts[ctx->best_mode_index]; } } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(mi_addr)) { // TODO(sarahparker): global motion stats need to be handled per-tile // to be compatible with tile-based threading. update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc); } if (cm->interp_filter == SWITCHABLE && mi_addr->motion_mode != WARPED_CAUSAL && !is_nontrans_global_motion(xd, xd->mi[0])) { update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd, mi_addr); } rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; } const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); } void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const int num_planes) { // Set current frame pointer. x->e_mbd.cur_buf = src; // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { const int is_uv = i > 0; setup_pred_plane(&x->plane[i].src, x->e_mbd.mi[0]->sb_type, src->buffers[i], src->crop_widths[is_uv], src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } } static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, int8_t segment_id) { const AV1_COMMON *const cm = &cpi->common; av1_init_plane_quantizers(cpi, x, segment_id); aom_clear_system_state(); int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); } static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) { const AV1_COMMON *const cm = &cpi->common; return av1_compute_rd_mult( cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q); } static void rd_pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_STATS *rd_cost, PARTITION_TYPE partition, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; MB_MODE_INFO *ctx_mbmi = &ctx->mic; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.aq_mode; const DELTAQ_MODE deltaq_mode = cpi->oxcf.deltaq_mode; int i, orig_rdmult; if (best_rd < 0) { ctx->rdcost = INT64_MAX; ctx->skip = 0; av1_invalid_rd_stats(rd_cost); return; } aom_clear_system_state(); set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); mbmi = xd->mi[0]; if (ctx->rd_mode_is_ready) { assert(ctx_mbmi->sb_type == bsize); assert(ctx_mbmi->partition == partition); *mbmi = *ctx_mbmi; rd_cost->rate = ctx->rate; rd_cost->dist = ctx->dist; rd_cost->rdcost = ctx->rdcost; } else { mbmi->sb_type = bsize; mbmi->partition = partition; } #if CONFIG_RD_DEBUG mbmi->mi_row = mi_row; mbmi->mi_col = mi_col; #endif for (i = 0; i < num_planes; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; pd[i].dqcoeff = ctx->dqcoeff[i]; p[i].eobs = ctx->eobs[i]; p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; } for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; if (!ctx->rd_mode_is_ready) { ctx->skippable = 0; // Set to zero to make sure we do not use the previous encoded frame stats mbmi->skip = 0; // Reset skip mode flag. mbmi->skip_mode = 0; } x->skip_chroma_rd = !is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); if (ctx->rd_mode_is_ready) { x->skip = ctx->skip; *x->mbmi_ext = ctx->mbmi_ext; return; } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->source_variance = av1_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { x->source_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } // Save rdmult before it might be changed, so it can be restored later. orig_rdmult = x->rdmult; if (aq_mode == VARIANCE_AQ) { if (cpi->vaq_refresh) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : av1_log_block_var(cpi, x, bsize); mbmi->segment_id = energy; } x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == COMPLEXITY_AQ) { x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == CYCLIC_REFRESH_AQ) { // If segment is boosted, use rdmult for that segment. if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } if (deltaq_mode > 0) x->rdmult = set_deltaq_rdmult(cpi, xd); // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { av1_rd_pick_intra_mode_sb(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); } else { if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); } else { av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd); } } // Examine the resulting rate and for AQ mode 2 make a segment choice. if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) && (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || cpi->refresh_alt2_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); } x->rdmult = orig_rdmult; // TODO(jingning) The rate-distortion optimization flow needs to be // refactored to provide proper exit/return handle. if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; ctx->rate = rd_cost->rate; ctx->dist = rd_cost->dist; ctx->rdcost = rd_cost->rdcost; } static void update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, PREDICTION_MODE mode, int16_t mode_context, uint8_t allow_update_cdf) { (void)counts; int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; if (mode == NEWMV) { #if CONFIG_ENTROPY_STATS ++counts->newmv_mode[mode_ctx][0]; #endif if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); return; } else { #if CONFIG_ENTROPY_STATS ++counts->newmv_mode[mode_ctx][1]; #endif if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mode == GLOBALMV) { #if CONFIG_ENTROPY_STATS ++counts->zeromv_mode[mode_ctx][0]; #endif if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); return; } else { #if CONFIG_ENTROPY_STATS ++counts->zeromv_mode[mode_ctx][1]; #endif if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; #if CONFIG_ENTROPY_STATS ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; #endif if (allow_update_cdf) update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); } } } static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { FRAME_CONTEXT *fc = xd->tile_ctx; const BLOCK_SIZE bsize = mbmi->sb_type; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); (void)counts; if (mbmi->mode == DC_PRED) { const int n = pmi->palette_size[0]; const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); #if CONFIG_ENTROPY_STATS ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; #endif if (allow_update_cdf) update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], n > 0, 2); if (n > 0) { #if CONFIG_ENTROPY_STATS ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; #endif if (allow_update_cdf) { update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], n - PALETTE_MIN_SIZE, PALETTE_SIZES); } } } if (mbmi->uv_mode == UV_DC_PRED) { const int n = pmi->palette_size[1]; const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); #if CONFIG_ENTROPY_STATS ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; #endif if (allow_update_cdf) update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); if (n > 0) { #if CONFIG_ENTROPY_STATS ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; #endif if (allow_update_cdf) { update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], n - PALETTE_MIN_SIZE, PALETTE_SIZES); } } } } static void sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, const MB_MODE_INFO *above_mi, const MB_MODE_INFO *left_mi, const int intraonly, const int mi_row, const int mi_col, uint8_t allow_update_cdf) { FRAME_CONTEXT *fc = xd->tile_ctx; const PREDICTION_MODE y_mode = mbmi->mode; const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; (void)counts; const BLOCK_SIZE bsize = mbmi->sb_type; if (intraonly) { #if CONFIG_ENTROPY_STATS const PREDICTION_MODE above = av1_above_block_mode(above_mi); const PREDICTION_MODE left = av1_left_block_mode(left_mi); const int above_ctx = intra_mode_context[above]; const int left_ctx = intra_mode_context[left]; ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); } else { #if CONFIG_ENTROPY_STATS ++counts->y_mode[size_group_lookup[bsize]][y_mode]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); } if (av1_filter_intra_allowed(cm, mbmi)) { const int use_filter_intra_mode = mbmi->filter_intra_mode_info.use_filter_intra; #if CONFIG_ENTROPY_STATS ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode]; if (use_filter_intra_mode) { ++counts ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; } #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, 2); if (use_filter_intra_mode) { update_cdf(fc->filter_intra_mode_cdf, mbmi->filter_intra_mode_info.filter_intra_mode, FILTER_INTRA_MODES); } } } if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { #if CONFIG_ENTROPY_STATS ++counts->angle_delta[mbmi->mode - V_PRED] [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; #endif if (allow_update_cdf) { update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, 2 * MAX_ANGLE_DELTA + 1); } } if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[AOM_PLANE_U].subsampling_x, xd->plane[AOM_PLANE_U].subsampling_y)) return; #if CONFIG_ENTROPY_STATS ++counts->uv_mode[is_cfl_allowed(xd)][y_mode][uv_mode]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, UV_INTRA_MODES - !cfl_allowed); } if (uv_mode == UV_CFL_PRED) { const int joint_sign = mbmi->cfl_alpha_signs; const int idx = mbmi->cfl_alpha_idx; #if CONFIG_ENTROPY_STATS ++counts->cfl_sign[joint_sign]; #endif if (allow_update_cdf) update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; #if CONFIG_ENTROPY_STATS ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; #endif if (allow_update_cdf) update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); } if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; #if CONFIG_ENTROPY_STATS ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; #endif if (allow_update_cdf) update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); } } if (av1_is_directional_mode(get_uv_mode(uv_mode)) && av1_use_angle_delta(bsize)) { #if CONFIG_ENTROPY_STATS ++counts->angle_delta[uv_mode - UV_V_PRED] [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; #endif if (allow_update_cdf) { update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, 2 * MAX_ANGLE_DELTA + 1); } } if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) update_palette_cdf(xd, mbmi, counts, allow_update_cdf); } static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data, ThreadData *td, int mi_row, int mi_col) { MACROBLOCK *x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const BLOCK_SIZE bsize = mbmi->sb_type; FRAME_CONTEXT *fc = xd->tile_ctx; const uint8_t allow_update_cdf = tile_data->allow_update_cdf; // delta quant applies to both intra and inter const int super_block_upper_left = ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && ((mi_col & (cm->seq_params.mib_size - 1)) == 0); const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (cm->skip_mode_flag && !seg_ref_active && is_comp_ref_allowed(bsize)) { const int skip_mode_ctx = av1_get_skip_mode_context(xd); #if CONFIG_ENTROPY_STATS td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; #endif if (allow_update_cdf) update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); } if (!mbmi->skip_mode) { if (!seg_ref_active) { const int skip_ctx = av1_get_skip_context(xd); #if CONFIG_ENTROPY_STATS td->counts->skip[skip_ctx][mbmi->skip]++; #endif if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2); } } if (cm->delta_q_present_flag && (bsize != cm->seq_params.sb_size || !mbmi->skip) && super_block_upper_left) { #if CONFIG_ENTROPY_STATS const int dq = (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; const int absdq = abs(dq); for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { td->counts->delta_q[i][1]++; } if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; #endif xd->current_qindex = mbmi->current_qindex; if (cm->delta_lf_present_flag) { if (cm->delta_lf_multi) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { #if CONFIG_ENTROPY_STATS const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / cm->delta_lf_res; const int abs_delta_lf = abs(delta_lf); for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { td->counts->delta_lf_multi[lf_id][i][1]++; } if (abs_delta_lf < DELTA_LF_SMALL) td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; #endif xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; } } else { #if CONFIG_ENTROPY_STATS const int delta_lf = (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / cm->delta_lf_res; const int abs_delta_lf = abs(delta_lf); for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { td->counts->delta_lf[i][1]++; } if (abs_delta_lf < DELTA_LF_SMALL) td->counts->delta_lf[abs_delta_lf][0]++; #endif xd->delta_lf_from_base = mbmi->delta_lf_from_base; } } } if (!is_inter_block(mbmi)) { sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, frame_is_intra_only(cm), mi_row, mi_col, tile_data->allow_update_cdf); } if (av1_allow_intrabc(cm)) { if (allow_update_cdf) update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2); #if CONFIG_ENTROPY_STATS ++td->counts->intrabc[is_intrabc_block(mbmi)]; #endif // CONFIG_ENTROPY_STATS } if (!frame_is_intra_only(cm)) { RD_COUNTS *rdc = &td->rd_counts; FRAME_COUNTS *const counts = td->counts; if (mbmi->skip_mode) { rdc->skip_mode_used_flag = 1; if (cm->reference_mode == REFERENCE_MODE_SELECT) { assert(has_second_ref(mbmi)); rdc->compound_ref_used_flag = 1; } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); return; } const int inter_block = is_inter_block(mbmi); if (!seg_ref_active) { #if CONFIG_ENTROPY_STATS counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; #endif if (allow_update_cdf) { update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], inter_block, 2); } // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; av1_collect_neighbors_ref_counts(xd); if (cm->reference_mode == REFERENCE_MODE_SELECT) { if (has_second_ref(mbmi)) // This flag is also updated for 4x4 blocks rdc->compound_ref_used_flag = 1; if (is_comp_ref_allowed(bsize)) { #if CONFIG_ENTROPY_STATS counts->comp_inter[av1_get_reference_mode_context(xd)] [has_second_ref(mbmi)]++; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2); } } } if (has_second_ref(mbmi)) { const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) ? UNIDIR_COMP_REFERENCE : BIDIR_COMP_REFERENCE; if (allow_update_cdf) { update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, COMP_REFERENCE_TYPES); } #if CONFIG_ENTROPY_STATS counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] [comp_ref_type]++; #endif // CONFIG_ENTROPY_STATS if (comp_ref_type == UNIDIR_COMP_REFERENCE) { const int bit = (ref0 == BWDREF_FRAME); if (allow_update_cdf) update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0] [bit]++; #endif // CONFIG_ENTROPY_STATS if (!bit) { const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); if (allow_update_cdf) update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); #if CONFIG_ENTROPY_STATS counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] [bit1]++; #endif // CONFIG_ENTROPY_STATS if (bit1) { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), ref1 == GOLDEN_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)] [2][ref1 == GOLDEN_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } else { const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); if (allow_update_cdf) update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; #endif // CONFIG_ENTROPY_STATS if (!bit) { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] [ref0 == LAST2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } else { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] [ref0 == GOLDEN_FRAME]++; #endif // CONFIG_ENTROPY_STATS } if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] [ref1 == ALTREF_FRAME]++; #endif // CONFIG_ENTROPY_STATS if (ref1 != ALTREF_FRAME) { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), ref1 == ALTREF2_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] [ref1 == ALTREF2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } else { const int bit = (ref0 >= BWDREF_FRAME); if (allow_update_cdf) update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; #endif // CONFIG_ENTROPY_STATS if (bit) { assert(ref0 <= ALTREF_FRAME); if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] [ref0 == ALTREF_FRAME]++; #endif // CONFIG_ENTROPY_STATS if (ref0 != ALTREF_FRAME) { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_single_ref_p6(xd), ref0 == ALTREF2_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] [ref0 == ALTREF2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } else { const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); if (allow_update_cdf) update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); #if CONFIG_ENTROPY_STATS counts ->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; #endif // CONFIG_ENTROPY_STATS if (!bit1) { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] [ref0 != LAST_FRAME]++; #endif // CONFIG_ENTROPY_STATS } else { if (allow_update_cdf) { update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME, 2); } #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] [ref0 != LAST3_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } if (cm->seq_params.enable_interintra_compound && is_interintra_allowed(mbmi)) { const int bsize_group = size_group_lookup[bsize]; if (mbmi->ref_frame[1] == INTRA_FRAME) { #if CONFIG_ENTROPY_STATS counts->interintra[bsize_group][1]++; #endif if (allow_update_cdf) update_cdf(fc->interintra_cdf[bsize_group], 1, 2); #if CONFIG_ENTROPY_STATS counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; #endif if (allow_update_cdf) { update_cdf(fc->interintra_mode_cdf[bsize_group], mbmi->interintra_mode, INTERINTRA_MODES); } if (is_interintra_wedge_used(bsize)) { #if CONFIG_ENTROPY_STATS counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; #endif if (allow_update_cdf) { update_cdf(fc->wedge_interintra_cdf[bsize], mbmi->use_wedge_interintra, 2); } if (mbmi->use_wedge_interintra) { #if CONFIG_ENTROPY_STATS counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; #endif if (allow_update_cdf) { update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, 16); } } } } else { #if CONFIG_ENTROPY_STATS counts->interintra[bsize_group][0]++; #endif if (allow_update_cdf) update_cdf(fc->interintra_cdf[bsize_group], 0, 2); } } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); const MOTION_MODE motion_allowed = cm->switchable_motion_mode ? motion_mode_allowed(xd->global_motion, xd, mbmi, cm->allow_warped_motion) : SIMPLE_TRANSLATION; if (mbmi->ref_frame[1] != INTRA_FRAME) { if (motion_allowed == WARPED_CAUSAL) { #if CONFIG_ENTROPY_STATS counts->motion_mode[bsize][mbmi->motion_mode]++; #endif if (allow_update_cdf) { update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, MOTION_MODES); } } else if (motion_allowed == OBMC_CAUSAL) { #if CONFIG_ENTROPY_STATS counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; #endif if (allow_update_cdf) { update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); } } } if (has_second_ref(mbmi)) { assert(cm->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && mbmi->motion_mode == SIMPLE_TRANSLATION); const int masked_compound_used = is_any_masked_compound_used(bsize) && cm->seq_params.enable_masked_compound; if (masked_compound_used) { const int comp_group_idx_ctx = get_comp_group_idx_context(xd); #if CONFIG_ENTROPY_STATS ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; #endif if (allow_update_cdf) { update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], mbmi->comp_group_idx, 2); } } if (mbmi->comp_group_idx == 0) { const int comp_index_ctx = get_comp_index_context(cm, xd); #if CONFIG_ENTROPY_STATS ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; #endif if (allow_update_cdf) { update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx, 2); } } else { assert(masked_compound_used); if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { #if CONFIG_ENTROPY_STATS ++counts->compound_type[bsize][mbmi->interinter_comp.type - 1]; #endif if (allow_update_cdf) { update_cdf(fc->compound_type_cdf[bsize], mbmi->interinter_comp.type - 1, COMPOUND_TYPES - 1); } } } } if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { #if CONFIG_ENTROPY_STATS counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; #endif if (allow_update_cdf) { update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interinter_comp.wedge_index, 16); } } } } } if (inter_block && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { int16_t mode_ctx; const PREDICTION_MODE mode = mbmi->mode; mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); if (has_second_ref(mbmi)) { #if CONFIG_ENTROPY_STATS ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; #endif if (allow_update_cdf) update_cdf(fc->inter_compound_mode_cdf[mode_ctx], INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); } else { update_inter_mode_stats(fc, counts, mode, mode_ctx, allow_update_cdf); } int mode_allowed = (mbmi->mode == NEWMV); mode_allowed |= (mbmi->mode == NEW_NEWMV); if (mode_allowed) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); int idx; for (idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { #if CONFIG_ENTROPY_STATS uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; #endif if (mbmi->ref_mv_idx == idx) break; } } } if (have_nearmv_in_inter_mode(mbmi->mode)) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); int idx; for (idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { #if CONFIG_ENTROPY_STATS uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; #endif if (mbmi->ref_mv_idx == idx - 1) break; } } } } } } typedef struct { ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; PARTITION_CONTEXT sa[MAX_MIB_SIZE]; PARTITION_CONTEXT sl[MAX_MIB_SIZE]; TXFM_CONTEXT *p_ta; TXFM_CONTEXT *p_tl; TXFM_CONTEXT ta[MAX_MIB_SIZE]; TXFM_CONTEXT tl[MAX_MIB_SIZE]; } RD_SEARCH_MACROBLOCK_CONTEXT; static void restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes) { MACROBLOCKD *xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int num_4x4_blocks_high = block_size_high[bsize] >> tx_size_high_log2[0]; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; for (p = 0; p < num_planes; p++) { int tx_col = mi_col; int tx_row = mi_row & MAX_MIB_MASK; memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), ctx->a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), ctx->l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(xd->above_seg_context + mi_col, ctx->sa, sizeof(*xd->above_seg_context) * mi_width); memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, sizeof(xd->left_seg_context[0]) * mi_height); xd->above_txfm_context = ctx->p_ta; xd->left_txfm_context = ctx->p_tl; memcpy(xd->above_txfm_context, ctx->ta, sizeof(*xd->above_txfm_context) * mi_width); memcpy(xd->left_txfm_context, ctx->tl, sizeof(*xd->left_txfm_context) * mi_height); } static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, const int num_planes) { const MACROBLOCKD *xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int num_4x4_blocks_high = block_size_high[bsize] >> tx_size_high_log2[0]; int mi_width = mi_size_wide[bsize]; int mi_height = mi_size_high[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < num_planes; ++p) { int tx_col = mi_col; int tx_row = mi_row & MAX_MIB_MASK; memcpy(ctx->a + num_4x4_blocks_wide * p, xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); memcpy(ctx->l + num_4x4_blocks_high * p, xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } memcpy(ctx->sa, xd->above_seg_context + mi_col, sizeof(*xd->above_seg_context) * mi_width); memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), sizeof(xd->left_seg_context[0]) * mi_height); memcpy(ctx->ta, xd->above_txfm_context, sizeof(*xd->above_txfm_context) * mi_width); memcpy(ctx->tl, xd->left_txfm_context, sizeof(*xd->left_txfm_context) * mi_height); ctx->p_ta = xd->above_txfm_context; ctx->p_tl = xd->left_txfm_context; } static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PARTITION_TYPE partition, const PICK_MODE_CONTEXT *const ctx, int *rate) { TileInfo *const tile = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; set_offsets(cpi, tile, x, mi_row, mi_col, bsize); MB_MODE_INFO *mbmi = xd->mi[0]; mbmi->partition = partition; update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run); if (!dry_run) av1_set_coeff_buffer(cpi, x, mi_row, mi_col); encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize, rate); if (dry_run == 0) x->cb_offset += block_size_wide[bsize] * block_size_high[bsize]; if (!dry_run) { if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 && cpi->common.delta_lf_present_flag) { const int frame_lf_count = av1_num_planes(&cpi->common) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; mbmi->delta_lf_from_base = xd->delta_lf_from_base; } if (has_second_ref(mbmi)) { if (mbmi->compound_idx == 0 || mbmi->interinter_comp.type == COMPOUND_AVERAGE) mbmi->comp_group_idx = 0; else mbmi->comp_group_idx = 1; } update_stats(&cpi->common, tile_data, td, mi_row, mi_col); } } static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PC_TREE *pc_tree, int *rate) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int hbs = mi_size_wide[bsize] / 2; const int is_partition_root = bsize >= BLOCK_8X8; const int ctx = is_partition_root ? partition_plane_context(xd, mi_row, mi_col, bsize) : -1; const PARTITION_TYPE partition = pc_tree->partitioning; const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); int quarter_step = mi_size_wide[bsize] / 4; int i; BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (!dry_run && ctx >= 0) { const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (has_rows && has_cols) { #if CONFIG_ENTROPY_STATS td->counts->partition[ctx][partition]++; #endif if (tile_data->allow_update_cdf) { FRAME_CONTEXT *fc = xd->tile_ctx; update_cdf(fc->partition_cdf[ctx], partition, partition_cdf_length(bsize)); } } } switch (partition) { case PARTITION_NONE: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->none, rate); break; case PARTITION_VERT: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->vertical[0], rate); if (mi_col + hbs < cm->mi_cols) { encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, partition, &pc_tree->vertical[1], rate); } break; case PARTITION_HORZ: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->horizontal[0], rate); if (mi_row + hbs < cm->mi_rows) { encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, partition, &pc_tree->horizontal[1], rate); } break; case PARTITION_SPLIT: encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, pc_tree->split[0], rate); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, pc_tree->split[1], rate); encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, pc_tree->split[2], rate); encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, subsize, pc_tree->split[3], rate); break; case PARTITION_HORZ_A: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, partition, &pc_tree->horizontala[0], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->horizontala[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, partition, &pc_tree->horizontala[2], rate); break; case PARTITION_HORZ_B: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->horizontalb[0], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, &pc_tree->horizontalb[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->horizontalb[2], rate); break; case PARTITION_VERT_A: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, partition, &pc_tree->verticala[0], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, &pc_tree->verticala[1], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, partition, &pc_tree->verticala[2], rate); break; case PARTITION_VERT_B: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, &pc_tree->verticalb[0], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->verticalb[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, &pc_tree->verticalb[2], rate); break; case PARTITION_HORZ_4: for (i = 0; i < 4; ++i) { int this_mi_row = mi_row + i * quarter_step; if (i > 0 && this_mi_row >= cm->mi_rows) break; encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, partition, &pc_tree->horizontal4[i], rate); } break; case PARTITION_VERT_4: for (i = 0; i < 4; ++i) { int this_mi_col = mi_col + i * quarter_step; if (i > 0 && this_mi_col >= cm->mi_cols) break; encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, partition, &pc_tree->vertical4[i], rate); } break; default: assert(0 && "Invalid partition type."); break; } update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); } // Check to see if the given partition size is allowed for a specified number // of mi block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if (rows_left <= 0 || cols_left <= 0) { return AOMMIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; bsize -= 3) { *bh = mi_size_high[bsize]; *bw = mi_size_wide[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } static void set_partial_sb_partition(const AV1_COMMON *const cm, MB_MODE_INFO *mi, int bh_in, int bw_in, int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize, MB_MODE_INFO **mib) { int bh = bh_in; int r, c; for (r = 0; r < cm->seq_params.mib_size; r += bh) { int bw = bw_in; for (c = 0; c < cm->seq_params.mib_size; c += bw) { const int index = r * cm->mi_stride + c; mib[index] = mi + index; mib[index]->sb_type = find_partition_size( bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); } } } // This function attempts to set all mode info entries in a given superblock // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, MB_MODE_INFO **mib, int mi_row, int mi_col, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; const int mi_rows_remaining = tile->mi_row_end - mi_row; const int mi_cols_remaining = tile->mi_col_end - mi_col; int block_row, block_col; MB_MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; int bh = mi_size_high[bsize]; int bw = mi_size_wide[bsize]; assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); // Apply the requested partition size to the SB if it is all "in image" if ((mi_cols_remaining >= cm->seq_params.mib_size) && (mi_rows_remaining >= cm->seq_params.mib_size)) { for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) { for (block_col = 0; block_col < cm->seq_params.mib_size; block_col += bw) { int index = block_row * cm->mi_stride + block_col; mib[index] = mi_upper_left + index; mib[index]->sb_type = bsize; } } } else { // Else this is a partial SB. set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, mi_cols_remaining, bsize, mib); } } static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; int i; const int pl = (bsize >= BLOCK_8X8) ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; const PARTITION_TYPE partition = (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) : PARTITION_NONE; const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_STATS last_part_rdc, none_rdc, chosen_rdc; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mib[0]->sb_type; int do_partition_search = 1; PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(mi_size_wide[bsize] == mi_size_high[bsize]); av1_invalid_rd_stats(&last_part_rdc); av1_invalid_rd_stats(&none_rdc); av1_invalid_rd_stats(&chosen_rdc); pc_tree->partitioning = partition; xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); x->mb_energy = av1_log_block_var(cpi, x, bsize); } if (do_partition_search && cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.adjust_partitioning_from_last_frame) { // Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; if (this_mi && this_mi->sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { pc_tree->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE, bsize, ctx_none, INT64_MAX); if (none_rdc.rate < INT_MAX) { none_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); mib[0]->sb_type = bs_type; pc_tree->partitioning = partition; } } for (int b = 0; b < 2; ++b) { pc_tree->horizontal[b].skip_ref_frame_mask = 0; pc_tree->vertical[b].skip_ref_frame_mask = 0; } for (int b = 0; b < 3; ++b) { pc_tree->horizontala[b].skip_ref_frame_mask = 0; pc_tree->horizontalb[b].skip_ref_frame_mask = 0; pc_tree->verticala[b].skip_ref_frame_mask = 0; pc_tree->verticalb[b].skip_ref_frame_mask = 0; } for (int b = 0; b < 4; ++b) { pc_tree->horizontal4[b].skip_ref_frame_mask = 0; pc_tree->vertical4[b].skip_ref_frame_mask = 0; } switch (partition) { case PARTITION_NONE: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_NONE, bsize, ctx_none, INT64_MAX); break; case PARTITION_HORZ: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_HORZ, subsize, &pc_tree->horizontal[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + hbs < cm->mi_rows) { RD_STATS tmp_rdc; const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; av1_init_rd_stats(&tmp_rdc); update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, NULL); rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, PARTITION_HORZ, subsize, &pc_tree->horizontal[1], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_VERT: rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_VERT, subsize, &pc_tree->vertical[0], INT64_MAX); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + hbs < cm->mi_cols) { RD_STATS tmp_rdc; const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0]; av1_init_rd_stats(&tmp_rdc); update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, NULL); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, PARTITION_VERT, subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_SPLIT: last_part_rdc.rate = 0; last_part_rdc.dist = 0; last_part_rdc.rdcost = 0; for (i = 0; i < 4; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; int jj = i >> 1, ii = i & 0x01; RD_STATS tmp_rdc; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; av1_init_rd_stats(&tmp_rdc); rd_use_partition(cpi, td, tile_data, mib + jj * hbs * cm->mi_stride + ii * hbs, tp, mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, &tmp_rdc.dist, i != 3, pc_tree->split[i]); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; } break; case PARTITION_VERT_A: case PARTITION_VERT_B: case PARTITION_HORZ_A: case PARTITION_HORZ_B: case PARTITION_HORZ_4: case PARTITION_VERT_4: assert(0 && "Cannot handle extended partition types"); default: assert(0); break; } if (last_part_rdc.rate < INT_MAX) { last_part_rdc.rate += x->partition_cost[pl][partition]; last_part_rdc.rdcost = RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); } if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && cpi->sf.partition_search_type == SEARCH_PARTITION && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); chosen_rdc.rate = 0; chosen_rdc.dist = 0; restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); pc_tree->partitioning = PARTITION_SPLIT; // Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; RD_STATS tmp_rdc; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); pc_tree->split[i]->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, PARTITION_SPLIT, split_subsize, &pc_tree->split[i]->none, INT64_MAX); restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&chosen_rdc); break; } chosen_rdc.rate += tmp_rdc.rate; chosen_rdc.dist += tmp_rdc.dist; if (i != 3) encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; } if (chosen_rdc.rate < INT_MAX) { chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT]; chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); } } // If last_part is better set the partitioning to that. if (last_part_rdc.rdcost < chosen_rdc.rdcost) { mib[0]->sb_type = bsize; if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; chosen_rdc = last_part_rdc; } // If none was better set the partitioning to that. if (none_rdc.rdcost < chosen_rdc.rdcost) { if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; chosen_rdc = none_rdc; } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if (bsize == cm->seq_params.sb_size) assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); if (do_recon) { if (bsize == cm->seq_params.sb_size) { // NOTE: To get estimate for rate due to the tokens, use: // int rate_coeffs = 0; // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, // bsize, pc_tree, &rate_coeffs); x->cb_offset = 0; encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } *rate = chosen_rdc.rate; *dist = chosen_rdc.dist; } /* clang-format off */ static const BLOCK_SIZE min_partition_size[BLOCK_SIZES_ALL] = { BLOCK_4X4, // 4x4 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16 BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 64x128, 128x64, 128x128 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES_ALL] = { BLOCK_8X8, // 4x4 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8 BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16 BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32 BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64 BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 64x128, 128x64, 128x128 BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 4x16, 16x4, 8x32 BLOCK_32X32, BLOCK_LARGEST, BLOCK_LARGEST, // 32x8, 16x64, 64x16 }; // Next square block size less or equal than current block size. static const BLOCK_SIZE next_square_size[BLOCK_SIZES_ALL] = { BLOCK_4X4, // 4x4 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8 BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16 BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32 BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64 BLOCK_64X64, BLOCK_64X64, BLOCK_128X128, // 64x128, 128x64, 128x128 BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 }; /* clang-format on */ // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a superblock but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one // superblock. static void get_sb_partition_size_range(const AV1_COMMON *const cm, MACROBLOCKD *xd, MB_MODE_INFO **mib, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < cm->seq_params.mib_size; ++i) { for (j = 0; j < cm->seq_params.mib_size; ++j) { MB_MODE_INFO *mi = mib[index + j]; BLOCK_SIZE sb_type = mi ? mi->sb_type : BLOCK_4X4; *min_block_size = AOMMIN(*min_block_size, sb_type); *max_block_size = AOMMAX(*max_block_size, sb_type); } index += xd->mi_stride; } } // Checks to see if a super block is on a horizontal image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { int top_edge = 0; int bottom_edge = cpi->common.mi_rows; int is_active_h_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { const TWO_PASS *const twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge = AOMMAX(top_edge, bottom_edge); } if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { is_active_h_edge = 1; } return is_active_h_edge; } // Checks to see if a super block is on a vertical image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { int left_edge = 0; int right_edge = cpi->common.mi_cols; int is_active_v_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { const TWO_PASS *const twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge = AOMMAX(left_edge, right_edge); } if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { is_active_v_edge = 1; } return is_active_v_edge; } // Checks to see if a super block is at the edge of the active image. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. static int active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) { return active_h_edge(cpi, mi_row, cpi->common.seq_params.mib_size) || active_v_edge(cpi, mi_col, cpi->common.seq_params.mib_size); } // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { AV1_COMMON *const cm = &cpi->common; MB_MODE_INFO **mi = xd->mi; const int left_in_image = xd->left_available && mi[-1]; const int above_in_image = xd->up_available && mi[-xd->mi_stride]; const int mi_rows_remaining = tile->mi_row_end - mi_row; const int mi_cols_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_4X4; BLOCK_SIZE max_size = BLOCK_LARGEST; // Trap case where we do not have a prediction. if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { // Default "min to max" and "max to min" min_size = BLOCK_LARGEST; max_size = BLOCK_4X4; // NOTE: each call to get_sb_partition_size_range() uses the previous // passed in values for min and max as a starting point. // Find the min and max partition used in previous frame at this location if (cm->frame_type != KEY_FRAME) { MB_MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the left superblock if (left_in_image) { MB_MODE_INFO **left_sb_mi = &mi[-cm->seq_params.mib_size]; get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the above suprblock. if (above_in_image) { MB_MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->seq_params.mib_size]; get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size); } // Adjust observed min and max for "relaxed" auto partition case. if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } } // Check border cases where max and min from neighbors may not be legal. max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining, &bh, &bw); min_size = AOMMIN(min_size, max_size); // Test for blocks at the edge of the active image. // This may be the actual edge of the image or where there are formatting // bars. if (active_edge_sb(cpi, mi_row, mi_col)) { min_size = BLOCK_4X4; } else { min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size); } // When use_square_partition_only is true, make sure at least one square // partition is allowed by selecting the next smaller square size as // *min_block_size. if (min_size >= cpi->sf.use_square_partition_only_threshold) { min_size = AOMMIN(min_size, next_square_size[max_size]); } *min_block_size = AOMMIN(min_size, cm->seq_params.sb_size); *max_block_size = AOMMIN(max_size, cm->seq_params.sb_size); } // TODO(jingning) refactor functions setting partition search range static void set_partition_range(const AV1_COMMON *const cm, const MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE bsize, BLOCK_SIZE *const min_bs, BLOCK_SIZE *const max_bs) { const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; int idx, idy; const int idx_str = cm->mi_stride * mi_row + mi_col; MB_MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str]; BLOCK_SIZE min_size = cm->seq_params.sb_size; // default values BLOCK_SIZE max_size = BLOCK_4X4; if (prev_mi) { for (idy = 0; idy < mi_height; ++idy) { for (idx = 0; idx < mi_width; ++idx) { const MB_MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx]; const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } } if (xd->left_available) { for (idy = 0; idy < mi_height; ++idy) { const MB_MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1]; const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } if (xd->up_available) { for (idx = 0; idx < mi_width; ++idx) { const MB_MODE_INFO *const mi = xd->mi[idx - cm->mi_stride]; const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; min_size = AOMMIN(min_size, bs); max_size = AOMMAX(max_size, bs); } } if (min_size == max_size) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } *min_bs = AOMMIN(min_size, cm->seq_params.sb_size); *max_bs = AOMMIN(max_size, cm->seq_params.sb_size); } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, const PICK_MODE_CONTEXT *const ctx) { memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } #if CONFIG_FP_MB_STATS const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120, // TODO(debargha): What are the correct numbers here? 130, 130, 150 }; const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120, // TODO(debargha): What are the correct numbers here? 160, 160, 240 }; const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6, // TODO(debargha): What are the correct numbers here? 8, 8, 10 }; typedef enum { MV_ZERO = 0, MV_LEFT = 1, MV_UP = 2, MV_RIGHT = 3, MV_DOWN = 4, MV_INVALID } MOTION_DIRECTION; static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { if (fp_byte & FPMB_MOTION_ZERO_MASK) { return MV_ZERO; } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { return MV_LEFT; } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { return MV_RIGHT; } else if (fp_byte & FPMB_MOTION_UP_MASK) { return MV_UP; } else { return MV_DOWN; } } static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, MOTION_DIRECTION that_mv) { if (this_mv == that_mv) { return 0; } else { return abs(this_mv - that_mv) == 2 ? 2 : 1; } } #endif // Try searching for an encoding for the given subblock. Returns zero if the // rdcost is already too high (to tell the caller not to bother searching for // encodings of further subblocks) static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last, int mi_row, int mi_col, BLOCK_SIZE subsize, RD_STATS *best_rdc, RD_STATS *sum_rdc, RD_STATS *this_rdc, PARTITION_TYPE partition, PICK_MODE_CONTEXT *prev_ctx, PICK_MODE_CONTEXT *this_ctx) { #define RTS_X_RATE_NOCOEF_ARG #define RTS_MAX_RDCOST best_rdc->rdcost MACROBLOCK *const x = &td->mb; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx); const int64_t rdcost_remaining = best_rdc->rdcost == INT64_MAX ? INT64_MAX : (best_rdc->rdcost - sum_rdc->rdcost); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, RTS_X_RATE_NOCOEF_ARG partition, subsize, this_ctx, rdcost_remaining); if (this_rdc->rate == INT_MAX) { sum_rdc->rdcost = INT64_MAX; } else { sum_rdc->rate += this_rdc->rate; sum_rdc->dist += this_rdc->dist; sum_rdc->rdcost += this_rdc->rdcost; } if (sum_rdc->rdcost >= RTS_MAX_RDCOST) return 0; if (!is_last) { update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, NULL); } return 1; #undef RTS_X_RATE_NOCOEF_ARG #undef RTS_MAX_RDCOST } static void rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, PC_TREE *pc_tree, RD_STATS *best_rdc, PICK_MODE_CONTEXT ctxs[3], PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, PARTITION_TYPE partition, int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1, BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; RD_STATS sum_rdc, this_rdc; #define RTP_STX_TRY_ARGS int pl = partition_plane_context(xd, mi_row, mi_col, bsize); av1_init_rd_stats(&sum_rdc); sum_rdc.rate = x->partition_cost[pl][partition]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0, best_rdc, &sum_rdc, &this_rdc, RTP_STX_TRY_ARGS partition, ctx, &ctxs[0])) return; if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1, best_rdc, &sum_rdc, &this_rdc, RTP_STX_TRY_ARGS partition, &ctxs[0], &ctxs[1])) return; // With the new layout of mixed partitions for PARTITION_HORZ_B and // PARTITION_VERT_B, the last subblock might start past halfway through the // main block, so we might signal it even though the subblock lies strictly // outside the image. In that case, we won't spend any bits coding it and the // difference (obviously) doesn't contribute to the error. const int try_block2 = 1; if (try_block2 && !rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2, best_rdc, &sum_rdc, &this_rdc, RTP_STX_TRY_ARGS partition, &ctxs[1], &ctxs[2])) return; if (sum_rdc.rdcost >= best_rdc->rdcost) return; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost >= best_rdc->rdcost) return; *best_rdc = sum_rdc; pc_tree->partitioning = partition; #undef RTP_STX_TRY_ARGS } static void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) { pc_tree->partitioning = PARTITION_NONE; pc_tree->cb_search_range = SEARCH_FULL_PLANE; pc_tree->none.skip = 0; if (bsize >= BLOCK_8X8) { BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int idx = 0; idx < 4; ++idx) reset_partition(pc_tree->split[idx], subsize); } } static void rd_pick_sqr_partition(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, int64_t best_rd, PC_TREE *pc_tree, int64_t *none_rd) { const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = mi_size_wide[bsize] / 2; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; const TOKENEXTRA *const tp_orig = *tp; PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; int tmp_partition_cost[PARTITION_TYPES]; BLOCK_SIZE subsize; RD_STATS this_rdc, sum_rdc, best_rdc, pn_rdc; const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); int do_square_split = bsize_at_least_8x8; const int pl = bsize_at_least_8x8 ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; const int *partition_cost = pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; const int num_planes = av1_num_planes(cm); int64_t split_rd[4] = { 0, 0, 0, 0 }; // Override skipping rectangular partition operations for edge blocks const int has_rows = (mi_row + mi_step < cm->mi_rows); const int has_cols = (mi_col + mi_step < cm->mi_cols); if (none_rd) *none_rd = 0; int partition_none_allowed = has_rows && has_cols; (void)*tp_orig; (void)split_rd; if (best_rd < 0) { pc_tree->none.rdcost = INT64_MAX; pc_tree->none.skip = 0; av1_invalid_rd_stats(rd_cost); return; } pc_tree->pc_tree_stats.valid = 1; // Override partition costs at the edges of the frame in the same // way as in read_partition (see decodeframe.c) if (!(has_rows && has_cols)) { assert(bsize_at_least_8x8 && pl >= 0); const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; if (has_cols) { // At the bottom, the two possibilities are HORZ and SPLIT aom_cdf_prob bot_cdf[2]; partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); } else if (has_rows) { // At the right, the two possibilities are VERT and SPLIT aom_cdf_prob rhs_cdf[2]; partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); } else { // At the bottom right, we always split tmp_partition_cost[PARTITION_SPLIT] = 0; } partition_cost = tmp_partition_cost; } #ifndef NDEBUG // Nothing should rely on the default value of this array (which is just // leftover from encoding the previous block. Setting it to fixed pattern // when debugging. // bit 0, 1, 2 are blk_skip of each plane // bit 4, 5, 6 are initialization checking of each plane memset(x->blk_skip, 0x77, sizeof(x->blk_skip)); #endif // NDEBUG assert(mi_size_wide[bsize] == mi_size_high[bsize]); av1_init_rd_stats(&this_rdc); av1_init_rd_stats(&sum_rdc); av1_invalid_rd_stats(&best_rdc); best_rdc.rdcost = best_rd; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) x->mb_energy = av1_log_block_var(cpi, x, bsize); xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); #if CONFIG_DIST_8X8 if (x->using_dist_8x8) { if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) do_square_split = 0; } #endif // PARTITION_NONE if (partition_none_allowed) { int pt_cost = 0; if (bsize_at_least_8x8) { pc_tree->partitioning = PARTITION_NONE; pt_cost = partition_cost[PARTITION_NONE] < INT_MAX ? partition_cost[PARTITION_NONE] : 0; } int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0); int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX ? INT64_MAX : (best_rdc.rdcost - partition_rd_cost); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE, bsize, ctx_none, best_remain_rdcost); pc_tree->pc_tree_stats.rdcost = ctx_none->rdcost; pc_tree->pc_tree_stats.skip = ctx_none->skip; if (none_rd) *none_rd = this_rdc.rdcost; if (this_rdc.rate != INT_MAX) { if (bsize_at_least_8x8) { this_rdc.rate += pt_cost; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); } if (this_rdc.rdcost < best_rdc.rdcost) { // Adjust dist breakout threshold according to the partition size. const int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr >> ((2 * (MAX_SB_SIZE_LOG2 - 2)) - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); const int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr * num_pels_log2_lookup[bsize]; best_rdc = this_rdc; if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; pc_tree->cb_search_range = SEARCH_FULL_PLANE; // If all y, u, v transform blocks in this partition are skippable, and // the dist & rate are within the thresholds, the partition search is // terminated for current branch of the partition search tree. // The dist & rate thresholds are set to 0 at speed 0 to disable the // early termination at that speed. if (!x->e_mbd.lossless[xd->mi[0]->segment_id] && (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && best_rdc.rate < rate_breakout_thr)) { do_square_split = 0; } } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); int64_t temp_best_rdcost = best_rdc.rdcost; pn_rdc = best_rdc; // PARTITION_SPLIT if (do_square_split) { int reached_last_index = 0; subsize = get_partition_subsize(bsize, PARTITION_SPLIT); int idx; for (idx = 0; idx < 4 && sum_rdc.rdcost < temp_best_rdcost; ++idx) { const int x_idx = (idx & 1) * mi_step; const int y_idx = (idx >> 1) * mi_step; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); pc_tree->split[idx]->index = idx; int64_t *p_split_rd = &split_rd[idx]; // TODO(Cherma) : Account for partition cost while passing best rd to // rd_pick_sqr_partition() rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, temp_best_rdcost - sum_rdc.rdcost, pc_tree->split[idx], p_split_rd); pc_tree->pc_tree_stats.sub_block_rdcost[idx] = this_rdc.rdcost; pc_tree->pc_tree_stats.sub_block_skip[idx] = pc_tree->split[idx]->none.skip; if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; break; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } reached_last_index = (idx == 4); if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rate += partition_cost[PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_SPLIT; } } int has_split = 0; if (pc_tree->partitioning == PARTITION_SPLIT) { for (int cb_idx = 0; cb_idx <= AOMMIN(idx, 3); ++cb_idx) { if (pc_tree->split[cb_idx]->partitioning == PARTITION_SPLIT) ++has_split; } if (has_split >= 3 || sum_rdc.rdcost < (pn_rdc.rdcost >> 1)) { pc_tree->cb_search_range = SPLIT_PLANE; } } if (pc_tree->partitioning == PARTITION_NONE) { pc_tree->cb_search_range = SEARCH_SAME_PLANE; if (pn_rdc.dist <= sum_rdc.dist) pc_tree->cb_search_range = NONE_PARTITION_PLANE; } if (pn_rdc.rate == INT_MAX) pc_tree->cb_search_range = NONE_PARTITION_PLANE; restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // if (do_split) pc_tree->pc_tree_stats.split = pc_tree->partitioning == PARTITION_SPLIT; if (do_square_split) { for (int i = 0; i < 4; ++i) { pc_tree->pc_tree_stats.sub_block_split[i] = pc_tree->split[i]->partitioning == PARTITION_SPLIT; } } // TODO(jbb): This code added so that we avoid static analysis // warning related to the fact that best_rd isn't used after this // point. This code should be refactored so that the duplicate // checks occur in some sub function and thus are used... (void)best_rd; *rd_cost = best_rdc; if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && pc_tree->index != 3) { if (bsize == cm->seq_params.sb_size) { restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } else { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } if (bsize == cm->seq_params.sb_size) { assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } #define FEATURE_SIZE 19 static const float two_pass_split_partition_weights_128[FEATURE_SIZE + 1] = { 2.683936f, -0.193620f, -4.106470f, -0.141320f, -0.282289f, 0.125296f, -1.134961f, 0.862757f, -0.418799f, -0.637666f, 0.016232f, 0.345013f, 0.018823f, -0.393394f, -1.130700f, 0.695357f, 0.112569f, -0.341975f, -0.513882f, 5.7488966f, }; static const float two_pass_split_partition_weights_64[FEATURE_SIZE + 1] = { 2.990993f, 0.423273f, -0.926544f, 0.454646f, -0.292698f, -1.311632f, -0.284432f, 0.717141f, -0.419257f, -0.574760f, -0.674444f, 0.669047f, -0.374255f, 0.380624f, -0.804036f, 0.264021f, 0.004163f, 1.896802f, 0.924287f, 0.13490619f, }; static const float two_pass_split_partition_weights_32[FEATURE_SIZE + 1] = { 2.795181f, -0.136943f, -0.924842f, 0.405330f, -0.463505f, -0.584076f, -0.831472f, 0.382985f, -0.597544f, -0.138915f, -1.354350f, 0.466035f, -0.553961f, 0.213202f, -1.166429f, 0.010776f, -0.096236f, 2.335084f, 1.699857f, -0.58178353f, }; static const float two_pass_split_partition_weights_16[FEATURE_SIZE + 1] = { 1.987888f, -0.431100f, -1.687703f, 0.262602f, -0.425298f, -0.463870f, -1.493457f, 0.470917f, -0.528457f, -0.087700f, -1.815092f, 0.152883f, -0.337908f, 0.093679f, -1.548267f, -0.042387f, -0.000861f, 2.556746f, 1.619192f, 0.03643292f, }; static const float two_pass_split_partition_weights_8[FEATURE_SIZE + 1] = { 2.188344f, -0.817528f, -2.119219f, 0.000000f, -0.348167f, -0.658074f, -1.960362f, 0.000000f, -0.403080f, 0.282699f, -2.061088f, 0.000000f, -0.431919f, -0.127960f, -1.099550f, 0.000000f, 0.121622f, 2.017455f, 2.058228f, -0.15475988f, }; static const float two_pass_none_partition_weights_128[FEATURE_SIZE + 1] = { -1.006689f, 0.777908f, 4.461072f, -0.395782f, -0.014610f, -0.853863f, 0.729997f, -0.420477f, 0.282429f, -1.194595f, 3.181220f, -0.511416f, 0.117084f, -1.149348f, 1.507990f, -0.477212f, 0.202963f, -1.469581f, 0.624461f, -0.89081228f, }; static const float two_pass_none_partition_weights_64[FEATURE_SIZE + 1] = { -1.241117f, 0.844878f, 5.638803f, -0.489780f, -0.108796f, -4.576821f, 1.540624f, -0.477519f, 0.227791f, -1.443968f, 1.586911f, -0.505125f, 0.140764f, -0.464194f, 1.466658f, -0.641166f, 0.195412f, 1.427905f, 2.080007f, -1.98272777f, }; static const float two_pass_none_partition_weights_32[FEATURE_SIZE + 1] = { -2.130825f, 0.476023f, 5.907343f, -0.516002f, -0.097471f, -2.662754f, 0.614858f, -0.576728f, 0.085261f, -0.031901f, 0.727842f, -0.600034f, 0.079326f, 0.324328f, 0.504502f, -0.547105f, -0.037670f, 0.304995f, 0.369018f, -2.66299987f, }; static const float two_pass_none_partition_weights_16[FEATURE_SIZE + 1] = { -1.626410f, 0.872047f, 5.414965f, -0.554781f, -0.084514f, -3.020550f, 0.467632f, -0.382280f, 0.199568f, 0.426220f, 0.829426f, -0.467100f, 0.153098f, 0.662994f, 0.327545f, -0.560106f, -0.141610f, 0.403372f, 0.523991f, -3.02891231f, }; static const float two_pass_none_partition_weights_8[FEATURE_SIZE + 1] = { -1.463349f, 0.375376f, 4.751430f, 0.000000f, -0.184451f, -1.655447f, 0.443214f, 0.000000f, 0.127961f, 0.152435f, 0.083288f, 0.000000f, 0.143105f, 0.438012f, 0.073238f, 0.000000f, -0.278137f, 0.186134f, 0.073737f, -1.6494962f, }; // split_score indicates confidence of picking split partition; // none_score indicates confidence of picking none partition; static int ml_prune_2pass_split_partition(const PC_TREE_STATS *pc_tree_stats, BLOCK_SIZE bsize, int *split_score, int *none_score) { if (!pc_tree_stats->valid) return 0; const float *split_weights = NULL; const float *none_weights = NULL; switch (bsize) { case BLOCK_4X4: break; case BLOCK_8X8: split_weights = two_pass_split_partition_weights_8; none_weights = two_pass_none_partition_weights_8; break; case BLOCK_16X16: split_weights = two_pass_split_partition_weights_16; none_weights = two_pass_none_partition_weights_16; break; case BLOCK_32X32: split_weights = two_pass_split_partition_weights_32; none_weights = two_pass_none_partition_weights_32; break; case BLOCK_64X64: split_weights = two_pass_split_partition_weights_64; none_weights = two_pass_none_partition_weights_64; break; case BLOCK_128X128: split_weights = two_pass_split_partition_weights_128; none_weights = two_pass_none_partition_weights_128; break; default: assert(0 && "Unexpected bsize."); } if (!split_weights || !none_weights) return 0; aom_clear_system_state(); float features[FEATURE_SIZE]; int feature_index = 0; features[feature_index++] = (float)pc_tree_stats->split; features[feature_index++] = (float)pc_tree_stats->skip; const int rdcost = (int)AOMMIN(INT_MAX, pc_tree_stats->rdcost); const int rd_valid = rdcost > 0 && rdcost < 1000000000; features[feature_index++] = (float)rd_valid; for (int i = 0; i < 4; ++i) { features[feature_index++] = (float)pc_tree_stats->sub_block_split[i]; features[feature_index++] = (float)pc_tree_stats->sub_block_skip[i]; const int sub_rdcost = (int)AOMMIN(INT_MAX, pc_tree_stats->sub_block_rdcost[i]); const int sub_rd_valid = sub_rdcost > 0 && sub_rdcost < 1000000000; features[feature_index++] = (float)sub_rd_valid; // Ratio between the sub-block RD and the whole-block RD. float rd_ratio = 1.0f; if (rd_valid && sub_rd_valid && sub_rdcost < rdcost) rd_ratio = (float)sub_rdcost / (float)rdcost; features[feature_index++] = rd_ratio; } assert(feature_index == FEATURE_SIZE); float score_1 = split_weights[FEATURE_SIZE]; float score_2 = none_weights[FEATURE_SIZE]; for (int i = 0; i < FEATURE_SIZE; ++i) { score_1 += features[i] * split_weights[i]; score_2 += features[i] * none_weights[i]; } *split_score = (int)(score_1 * 100); *none_score = (int)(score_2 * 100); return 1; } #undef FEATURE_SIZE static void ml_prune_rect_partition(const AV1_COMP *const cpi, const MACROBLOCK *const x, BLOCK_SIZE bsize, int64_t best_rd, int64_t none_rd, int64_t *split_rd, int *const dst_prune_horz, int *const dst_prune_vert) { if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; best_rd = AOMMAX(best_rd, 1); const NN_CONFIG *nn_config = NULL; const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; float cur_thresh = 0.0f; switch (bsize) { case BLOCK_8X8: nn_config = &av1_rect_partition_nnconfig_8; cur_thresh = prob_thresholds[0]; break; case BLOCK_16X16: nn_config = &av1_rect_partition_nnconfig_16; cur_thresh = prob_thresholds[1]; break; case BLOCK_32X32: nn_config = &av1_rect_partition_nnconfig_32; cur_thresh = prob_thresholds[2]; break; case BLOCK_64X64: nn_config = &av1_rect_partition_nnconfig_64; cur_thresh = prob_thresholds[3]; break; case BLOCK_128X128: nn_config = &av1_rect_partition_nnconfig_128; cur_thresh = prob_thresholds[4]; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // 1. Compute input features float features[9]; // RD cost ratios for (int i = 0; i < 5; i++) features[i] = 1.0f; if (none_rd > 0 && none_rd < 1000000000) features[0] = (float)none_rd / (float)best_rd; for (int i = 0; i < 4; i++) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) features[1 + i] = (float)split_rd[i] / (float)best_rd; } // Variance ratios const MACROBLOCKD *const xd = &x->e_mbd; int whole_block_variance; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { whole_block_variance = av1_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { whole_block_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } whole_block_variance = AOMMAX(whole_block_variance, 1); int split_variance[4]; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); struct buf_2d buf; buf.stride = x->plane[0].src.stride; const int bw = block_size_wide[bsize]; for (int i = 0; i < 4; ++i) { const int x_idx = (i & 1) * bw / 2; const int y_idx = (i >> 1) * bw / 2; buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { split_variance[i] = av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd); } else { split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize); } } for (int i = 0; i < 4; i++) features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; // 2. Do the prediction and prune 0-2 partitions based on their probabilities float raw_scores[3] = { 0.0f }; av1_nn_predict(features, nn_config, raw_scores); float probs[3] = { 0.0f }; av1_nn_softmax(raw_scores, probs, 3); // probs[0] is the probability of the fact that both rectangular partitions // are worse than current best_rd if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1; if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1; } // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be // considered. static void ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx, int64_t best_rd, int64_t horz_rd[2], int64_t vert_rd[2], int64_t split_rd[4], int *const horza_partition_allowed, int *const horzb_partition_allowed, int *const verta_partition_allowed, int *const vertb_partition_allowed) { if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; const NN_CONFIG *nn_config = NULL; switch (bsize) { case BLOCK_8X8: nn_config = NULL; break; case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // Generate features. float features[10]; int feature_index = 0; features[feature_index++] = (float)part_ctx; features[feature_index++] = (float)var_ctx; const int rdcost = (int)AOMMIN(INT_MAX, best_rd); int sub_block_rdcost[8] = { 0 }; int rd_index = 0; for (int i = 0; i < 2; ++i) { if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)horz_rd[i]; ++rd_index; } for (int i = 0; i < 2; ++i) { if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)vert_rd[i]; ++rd_index; } for (int i = 0; i < 4; ++i) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)split_rd[i]; ++rd_index; } for (int i = 0; i < 8; ++i) { // Ratio between the sub-block RD and the whole-block RD. float rd_ratio = 1.0f; if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; features[feature_index++] = rd_ratio; } assert(feature_index == 10); // Calculate scores using the NN model. float score[16] = { 0.0f }; av1_nn_predict(features, nn_config, score); int int_score[16]; int max_score = -1000; for (int i = 0; i < 16; ++i) { int_score[i] = (int)(100 * score[i]); max_score = AOMMAX(int_score[i], max_score); } // Make decisions based on the model scores. int thresh = max_score; switch (bsize) { case BLOCK_16X16: thresh -= 150; break; case BLOCK_32X32: thresh -= 100; break; default: break; } *horza_partition_allowed = 0; *horzb_partition_allowed = 0; *verta_partition_allowed = 0; *vertb_partition_allowed = 0; for (int i = 0; i < 16; ++i) { if (int_score[i] >= thresh) { if ((i >> 0) & 1) *horza_partition_allowed = 1; if ((i >> 1) & 1) *horzb_partition_allowed = 1; if ((i >> 2) & 1) *verta_partition_allowed = 1; if ((i >> 3) & 1) *vertb_partition_allowed = 1; } } } #define FEATURES 18 #define LABELS 4 // Use a ML model to predict if horz4 and vert4 should be considered. static void ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx, int64_t best_rd, int64_t horz_rd[2], int64_t vert_rd[2], int64_t split_rd[4], int *const partition_horz4_allowed, int *const partition_vert4_allowed, unsigned int pb_source_variance, int mi_row, int mi_col) { if (best_rd >= 1000000000) return; const NN_CONFIG *nn_config = NULL; switch (bsize) { case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // Generate features. float features[FEATURES]; int feature_index = 0; features[feature_index++] = (float)part_ctx; features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); const int rdcost = (int)AOMMIN(INT_MAX, best_rd); int sub_block_rdcost[8] = { 0 }; int rd_index = 0; for (int i = 0; i < 2; ++i) { if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)horz_rd[i]; ++rd_index; } for (int i = 0; i < 2; ++i) { if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)vert_rd[i]; ++rd_index; } for (int i = 0; i < 4; ++i) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)split_rd[i]; ++rd_index; } for (int i = 0; i < 8; ++i) { // Ratio between the sub-block RD and the whole-block RD. float rd_ratio = 1.0f; if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; features[feature_index++] = rd_ratio; } // Get variance of the 1:4 and 4:1 sub-blocks. unsigned int horz_4_source_var[4] = { 0 }; unsigned int vert_4_source_var[4] = { 0 }; { BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(&cpi->common)); const int src_stride = x->plane[0].src.stride; const uint8_t *src = x->plane[0].src.buf; const MACROBLOCKD *const xd = &x->e_mbd; for (int i = 0; i < 4; ++i) { const uint8_t *horz_src = src + i * block_size_high[horz_4_bs] * src_stride; const uint8_t *vert_src = src + i * block_size_wide[vert_4_bs]; unsigned int horz_var, vert_var, sse; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (xd->bd) { case 10: horz_var = cpi->fn_ptr[horz_4_bs].vf( horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); vert_var = cpi->fn_ptr[vert_4_bs].vf( vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); break; case 12: horz_var = cpi->fn_ptr[horz_4_bs].vf( horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); vert_var = cpi->fn_ptr[vert_4_bs].vf( vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); break; case 8: default: horz_var = cpi->fn_ptr[horz_4_bs].vf( horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); vert_var = cpi->fn_ptr[vert_4_bs].vf( vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); break; } horz_4_source_var[i] = ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); vert_4_source_var[i] = ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); } else { horz_var = cpi->fn_ptr[horz_4_bs].vf(horz_src, src_stride, AV1_VAR_OFFS, 0, &sse); vert_var = cpi->fn_ptr[vert_4_bs].vf(vert_src, src_stride, AV1_VAR_OFFS, 0, &sse); horz_4_source_var[i] = ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); vert_4_source_var[i] = ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); } } } const float denom = (float)(pb_source_variance + 1); const float low_b = 0.1f; const float high_b = 10.0f; for (int i = 0; i < 4; ++i) { // Ratio between the 4:1 sub-block variance and the whole-block variance. float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; if (var_ratio < low_b) var_ratio = low_b; if (var_ratio > high_b) var_ratio = high_b; features[feature_index++] = var_ratio; } for (int i = 0; i < 4; ++i) { // Ratio between the 1:4 sub-block RD and the whole-block RD. float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; if (var_ratio < low_b) var_ratio = low_b; if (var_ratio > high_b) var_ratio = high_b; features[feature_index++] = var_ratio; } assert(feature_index == FEATURES); // Calculate scores using the NN model. float score[LABELS] = { 0.0f }; av1_nn_predict(features, nn_config, score); int int_score[LABELS]; int max_score = -1000; for (int i = 0; i < LABELS; ++i) { int_score[i] = (int)(100 * score[i]); max_score = AOMMAX(int_score[i], max_score); } // Make decisions based on the model scores. int thresh = max_score; switch (bsize) { case BLOCK_16X16: thresh -= 500; break; case BLOCK_32X32: thresh -= 500; break; case BLOCK_64X64: thresh -= 200; break; default: break; } *partition_horz4_allowed = 0; *partition_vert4_allowed = 0; for (int i = 0; i < LABELS; ++i) { if (int_score[i] >= thresh) { if ((i >> 0) & 1) *partition_horz4_allowed = 1; if ((i >> 1) & 1) *partition_vert4_allowed = 1; } } } #undef FEATURES #undef LABELS #define FEATURES 4 // ML-based partition search breakout. static int ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize, const MACROBLOCK *const x, const RD_STATS *const rd_stats, unsigned int pb_source_variance) { const NN_CONFIG *nn_config = NULL; int thresh = 0; switch (bsize) { case BLOCK_8X8: nn_config = &av1_partition_breakout_nnconfig_8; thresh = cpi->sf.ml_partition_search_breakout_thresh[0]; break; case BLOCK_16X16: nn_config = &av1_partition_breakout_nnconfig_16; thresh = cpi->sf.ml_partition_search_breakout_thresh[1]; break; case BLOCK_32X32: nn_config = &av1_partition_breakout_nnconfig_32; thresh = cpi->sf.ml_partition_search_breakout_thresh[2]; break; case BLOCK_64X64: nn_config = &av1_partition_breakout_nnconfig_64; thresh = cpi->sf.ml_partition_search_breakout_thresh[3]; break; case BLOCK_128X128: nn_config = &av1_partition_breakout_nnconfig_128; thresh = cpi->sf.ml_partition_search_breakout_thresh[4]; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config || thresh < 0) return 0; // Generate feature values. float features[FEATURES]; int feature_index = 0; aom_clear_system_state(); const int num_pels_log2 = num_pels_log2_lookup[bsize]; float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * rate_f; features[feature_index++] = rate_f; const float dist_f = (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); features[feature_index++] = dist_f; features[feature_index++] = (float)pb_source_variance; const int dc_q = (int)x->plane[0].dequant_QTX[0]; features[feature_index++] = (float)(dc_q * dc_q) / 256.0f; assert(feature_index == FEATURES); // Calculate score using the NN model. float score = 0.0f; av1_nn_predict(features, nn_config, &score); // Make decision. return (int)(score * 100) >= thresh; } #undef FEATURES // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, int64_t best_rd, PC_TREE *pc_tree, int64_t *none_rd) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = mi_size_wide[bsize] / 2; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; const TOKENEXTRA *const tp_orig = *tp; PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; int tmp_partition_cost[PARTITION_TYPES]; BLOCK_SIZE subsize; RD_STATS this_rdc, sum_rdc, best_rdc; const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); int do_square_split = bsize_at_least_8x8; const int pl = bsize_at_least_8x8 ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; const int *partition_cost = pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; int do_rectangular_split = 1; int64_t cur_none_rd = 0; int64_t split_rd[4] = { 0, 0, 0, 0 }; int64_t horz_rd[2] = { 0, 0 }; int64_t vert_rd[2] = { 0, 0 }; int split_ctx_is_ready[2] = { 0, 0 }; int horz_ctx_is_ready = 0; int vert_ctx_is_ready = 0; BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); if (best_rd < 0) { pc_tree->none.rdcost = INT64_MAX; pc_tree->none.skip = 0; av1_invalid_rd_stats(rd_cost); return; } if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; // Override skipping rectangular partition operations for edge blocks const int has_rows = (mi_row + mi_step < cm->mi_rows); const int has_cols = (mi_col + mi_step < cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; BLOCK_SIZE min_size = x->min_partition_size; BLOCK_SIZE max_size = x->max_partition_size; if (none_rd) *none_rd = 0; #if CONFIG_FP_MB_STATS unsigned int src_diff_var = UINT_MAX; int none_complexity = 0; #endif int partition_none_allowed = has_rows && has_cols; int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; (void)*tp_orig; // Override partition costs at the edges of the frame in the same // way as in read_partition (see decodeframe.c) if (!(has_rows && has_cols)) { assert(bsize_at_least_8x8 && pl >= 0); const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; if (has_cols) { // At the bottom, the two possibilities are HORZ and SPLIT aom_cdf_prob bot_cdf[2]; partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); } else if (has_rows) { // At the right, the two possibilities are VERT and SPLIT aom_cdf_prob rhs_cdf[2]; partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); } else { // At the bottom right, we always split tmp_partition_cost[PARTITION_SPLIT] = 0; } partition_cost = tmp_partition_cost; } #ifndef NDEBUG // Nothing should rely on the default value of this array (which is just // leftover from encoding the previous block. Setting it to fixed pattern // when debugging. // bit 0, 1, 2 are blk_skip of each plane // bit 4, 5, 6 are initialization checking of each plane memset(x->blk_skip, 0x77, sizeof(x->blk_skip)); #endif // NDEBUG assert(mi_size_wide[bsize] == mi_size_high[bsize]); av1_init_rd_stats(&this_rdc); av1_invalid_rd_stats(&best_rdc); best_rdc.rdcost = best_rd; set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) x->mb_energy = av1_log_block_var(cpi, x, bsize); if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { const int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3) + get_chessboard_index(cm->current_video_frame)) & 0x1; if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); } // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { const int no_partition_allowed = (bsize <= max_size && bsize >= min_size); // Note: Further partitioning is NOT allowed when bsize == min_size already. const int partition_allowed = (bsize <= max_size && bsize > min_size); partition_none_allowed &= no_partition_allowed; partition_horz_allowed &= partition_allowed || !has_rows; partition_vert_allowed &= partition_allowed || !has_cols; do_square_split &= bsize > min_size; } if (bsize > cpi->sf.use_square_partition_only_threshold) { partition_horz_allowed &= !has_rows; partition_vert_allowed &= !has_cols; } if (bsize > BLOCK_4X4 && x->use_cb_search_range && cpi->sf.auto_min_max_partition_size == 0) { int split_score = 0; int none_score = 0; const int score_valid = ml_prune_2pass_split_partition( &pc_tree->pc_tree_stats, bsize, &split_score, &none_score); if (score_valid) { { const int only_split_thresh = 300; const int no_none_thresh = 250; const int no_split_thresh = 0; if (split_score > only_split_thresh) { partition_none_allowed = 0; partition_horz_allowed = 0; partition_vert_allowed = 0; } else if (split_score > no_none_thresh) { partition_none_allowed = 0; } if (split_score < no_split_thresh) do_square_split = 0; } { const int no_split_thresh = 120; const int no_none_thresh = -120; if (none_score > no_split_thresh && partition_none_allowed) do_square_split = 0; if (none_score < no_none_thresh) partition_none_allowed = 0; } } else { if (pc_tree->cb_search_range == SPLIT_PLANE) { partition_none_allowed = 0; partition_horz_allowed = 0; partition_vert_allowed = 0; } if (pc_tree->cb_search_range == SEARCH_SAME_PLANE) do_square_split = 0; if (pc_tree->cb_search_range == NONE_PARTITION_PLANE) { do_square_split = 0; partition_horz_allowed = 0; partition_vert_allowed = 0; } } // Fall back to default values in case all partition modes are rejected. if (partition_none_allowed == 0 && do_square_split == 0 && partition_horz_allowed == 0 && partition_vert_allowed == 0) { do_square_split = bsize_at_least_8x8; partition_none_allowed = has_rows && has_cols; partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; } } xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, mi_col, bsize); } // Decide whether we shall split directly and skip searching NONE by using // the first pass block statistics if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split && partition_none_allowed && src_diff_var > 4 && cm->base_qindex < qindex_split_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; // compute a complexity measure, basically measure inconsistency of motion // vectors obtained from the first pass in the current block for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; MOTION_DIRECTION this_mv; MOTION_DIRECTION right_mv; MOTION_DIRECTION bottom_mv; this_mv = get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); // to its right if (c != mb_col_end - 1) { right_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + 1]); none_complexity += get_motion_inconsistency(this_mv, right_mv); } // to its bottom if (r != mb_row_end - 1) { bottom_mv = get_motion_direction_fp( cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); none_complexity += get_motion_inconsistency(this_mv, bottom_mv); } // do not count its left and top neighbors to avoid double counting } } if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { partition_none_allowed = 0; } } #endif // Ref frames picked in the [i_th] quarter subblock during square partition // RD search. It may be used to prune ref frame selection of rect partitions. int ref_frames_used[4] = { 0, }; BEGIN_PARTITION_SEARCH: if (x->must_find_valid_partition) { partition_none_allowed = has_rows && has_cols; partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; } // Partition block source pixel variance. unsigned int pb_source_variance = UINT_MAX; #if CONFIG_DIST_8X8 if (x->using_dist_8x8) { if (block_size_high[bsize] <= 8) partition_horz_allowed = 0; if (block_size_wide[bsize] <= 8) partition_vert_allowed = 0; if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) do_square_split = 0; } #endif // PARTITION_NONE if (partition_none_allowed) { int pt_cost = 0; if (bsize_at_least_8x8) { pt_cost = partition_cost[PARTITION_NONE] < INT_MAX ? partition_cost[PARTITION_NONE] : 0; } int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0); int64_t best_remain_rdcost = (best_rdc.rdcost == INT64_MAX) ? INT64_MAX : (best_rdc.rdcost - partition_rd_cost); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE, bsize, ctx_none, best_remain_rdcost); pb_source_variance = x->source_variance; if (none_rd) *none_rd = this_rdc.rdcost; cur_none_rd = this_rdc.rdcost; if (this_rdc.rate != INT_MAX) { if (cpi->sf.prune_ref_frame_for_rect_partitions) { const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame); for (int i = 0; i < 4; ++i) { ref_frames_used[i] |= (1 << ref_type); } } if (bsize_at_least_8x8) { this_rdc.rate += pt_cost; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); } if (this_rdc.rdcost < best_rdc.rdcost) { // Adjust dist breakout threshold according to the partition size. const int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr >> ((2 * (MAX_SB_SIZE_LOG2 - 2)) - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); const int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr * num_pels_log2_lookup[bsize]; best_rdc = this_rdc; if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; if ((do_square_split || do_rectangular_split) && !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { const int use_ml_based_breakout = bsize <= cpi->sf.use_square_partition_only_threshold && bsize > BLOCK_4X4 && xd->bd == 8; if (use_ml_based_breakout) { if (ml_predict_breakout(cpi, bsize, x, &this_rdc, pb_source_variance)) { do_square_split = 0; do_rectangular_split = 0; } } // If all y, u, v transform blocks in this partition are skippable, // and the dist & rate are within the thresholds, the partition // search is terminated for current branch of the partition search // tree. The dist & rate thresholds are set to 0 at speed 0 to // disable the early termination at that speed. if (best_rdc.dist < dist_breakout_thr && best_rdc.rate < rate_breakout_thr) { do_square_split = 0; do_rectangular_split = 0; } } #if CONFIG_FP_MB_STATS // Check if every 16x16 first pass block statistics has zero // motion and the corresponding first pass residue is small enough. // If that is the case, check the difference variance between the // current frame and the last frame. If the variance is small enough, // stop further splitting in RD optimization if (cpi->use_fp_mb_stats && do_square_split && cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { int mb_row = mi_row >> 1; int mb_col = mi_col >> 1; int mb_row_end = AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); int mb_col_end = AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); int r, c; int skip = 1; for (r = mb_row; r < mb_row_end; r++) { for (c = mb_col; c < mb_col_end; c++) { const int mb_index = r * cm->mb_cols + c; if (!(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_MOTION_ZERO_MASK) || !(cpi->twopass.this_frame_mb_stats[mb_index] & FPMB_ERROR_SMALL_MASK)) { skip = 0; break; } } if (skip == 0) { break; } } if (skip) { if (src_diff_var == UINT_MAX) { set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); src_diff_var = get_sby_perpixel_diff_variance( cpi, &x->plane[0].src, mi_row, mi_col, bsize); } if (src_diff_var < 8) { do_square_split = 0; do_rectangular_split = 0; } } } #endif } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); // PARTITION_SPLIT if (do_square_split) { av1_init_rd_stats(&sum_rdc); subsize = get_partition_subsize(bsize, PARTITION_SPLIT); sum_rdc.rate = partition_cost[PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); int idx; for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { const int x_idx = (idx & 1) * mi_step; const int y_idx = (idx >> 1) * mi_step; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); pc_tree->split[idx]->index = idx; int64_t *p_split_rd = &split_rd[idx]; int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX ? INT64_MAX : (best_rdc.rdcost - sum_rdc.rdcost); if (cpi->sf.prune_ref_frame_for_rect_partitions) pc_tree->split[idx]->none.rate = INT_MAX; rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, best_remain_rdcost, pc_tree->split[idx], p_split_rd); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; break; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; if (cpi->sf.prune_ref_frame_for_rect_partitions && pc_tree->split[idx]->none.rate != INT_MAX) { const int ref_type = av1_ref_frame_type(pc_tree->split[idx]->none.mic.ref_frame); ref_frames_used[idx] |= (1 << ref_type); } if (idx <= 1 && (bsize <= BLOCK_8X8 || pc_tree->split[idx]->partitioning == PARTITION_NONE)) { const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; // Neither palette mode nor cfl predicted if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1; } } } } const int reached_last_index = (idx == 4); if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_SPLIT; } } else if (cpi->sf.less_rectangular_check_level > 0) { // skip rectangular partition test when larger block size // gives better rd cost if (cpi->sf.less_rectangular_check_level == 2 || idx <= 2) do_rectangular_split &= !partition_none_allowed; } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // if (do_split) pc_tree->horizontal[0].skip_ref_frame_mask = 0; pc_tree->horizontal[1].skip_ref_frame_mask = 0; pc_tree->vertical[0].skip_ref_frame_mask = 0; pc_tree->vertical[1].skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { int used_frames; used_frames = ref_frames_used[0] | ref_frames_used[1]; if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[2] | ref_frames_used[3]; if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[0] | ref_frames_used[2]; if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[1] | ref_frames_used[3]; if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames; } int prune_horz = 0; int prune_vert = 0; if (cpi->sf.ml_prune_rect_partition && !frame_is_intra_only(cm) && (partition_horz_allowed || partition_vert_allowed)) { av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd, split_rd, &prune_horz, &prune_vert); } // PARTITION_HORZ if (partition_horz_allowed && !prune_horz && (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { av1_init_rd_stats(&sum_rdc); subsize = get_partition_subsize(bsize, PARTITION_HORZ); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) { pc_tree->horizontal[0].pred_interp_filter = av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); } int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX ? INT64_MAX : (best_rdc.rdcost - sum_rdc.rdcost); sum_rdc.rate = partition_cost[PARTITION_HORZ]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_HORZ, subsize, &pc_tree->horizontal[0], best_remain_rdcost); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } horz_rd[0] = this_rdc.rdcost; if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) { const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; // Neither palette mode nor cfl predicted if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1; } update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) { pc_tree->horizontal[1].pred_interp_filter = av1_extract_interp_filter(ctx_h->mic.interp_filters, 0); } rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, PARTITION_HORZ, subsize, &pc_tree->horizontal[1], best_rdc.rdcost - sum_rdc.rdcost); horz_rd[1] = this_rdc.rdcost; if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_HORZ; } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // PARTITION_VERT if (partition_vert_allowed && !prune_vert && (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step))) { av1_init_rd_stats(&sum_rdc); subsize = get_partition_subsize(bsize, PARTITION_VERT); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) { pc_tree->vertical[0].pred_interp_filter = av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); } sum_rdc.rate = partition_cost[PARTITION_VERT]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX ? INT64_MAX : (best_rdc.rdcost - sum_rdc.rdcost); rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_VERT, subsize, &pc_tree->vertical[0], best_remain_rdcost); if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } vert_rd[0] = this_rdc.rdcost; const int64_t vert_max_rdcost = best_rdc.rdcost; if (sum_rdc.rdcost < vert_max_rdcost && has_cols) { const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; // Neither palette mode nor cfl predicted if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1; } update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, NULL); if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) { pc_tree->vertical[1].pred_interp_filter = av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); } rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, PARTITION_VERT, subsize, &pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost); vert_rd[1] = this_rdc.rdcost; if (this_rdc.rate == INT_MAX) { sum_rdc.rdcost = INT64_MAX; } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_VERT; } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } if (pb_source_variance == UINT_MAX) { av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { pb_source_variance = av1_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { pb_source_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } } const int ext_partition_allowed = do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed; // The standard AB partitions are allowed whenever ext-partition-types are // allowed int horzab_partition_allowed = ext_partition_allowed; int vertab_partition_allowed = ext_partition_allowed; #if CONFIG_DIST_8X8 if (x->using_dist_8x8) { if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) { horzab_partition_allowed = 0; vertab_partition_allowed = 0; } } #endif if (cpi->sf.prune_ext_partition_types_search_level) { if (cpi->sf.prune_ext_partition_types_search_level == 1) { // TODO(debargha,huisu@google.com): may need to tune the threshold for // pb_source_variance. horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || (pc_tree->partitioning == PARTITION_NONE && pb_source_variance < 32) || pc_tree->partitioning == PARTITION_SPLIT); vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || (pc_tree->partitioning == PARTITION_NONE && pb_source_variance < 32) || pc_tree->partitioning == PARTITION_SPLIT); } else { horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || pc_tree->partitioning == PARTITION_SPLIT); vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || pc_tree->partitioning == PARTITION_SPLIT); } horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); } int horza_partition_allowed = horzab_partition_allowed; int horzb_partition_allowed = horzab_partition_allowed; if (cpi->sf.prune_ext_partition_types_search_level) { const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; switch (cpi->sf.prune_ext_partition_types_search_level) { case 1: horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost); horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost); break; case 2: default: horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost); horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost); break; } } int verta_partition_allowed = vertab_partition_allowed; int vertb_partition_allowed = vertab_partition_allowed; if (cpi->sf.prune_ext_partition_types_search_level) { const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; switch (cpi->sf.prune_ext_partition_types_search_level) { case 1: verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost); vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost); break; case 2: default: verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost); vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost); break; } } if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed && partition_horz_allowed && partition_vert_allowed) { // TODO(huisu@google.com): x->source_variance may not be the current block's // variance. The correct one to use is pb_source_variance. // Need to re-train the model to fix it. ml_prune_ab_partition(bsize, pc_tree->partitioning, get_unsigned_bits(x->source_variance), best_rdc.rdcost, horz_rd, vert_rd, split_rd, &horza_partition_allowed, &horzb_partition_allowed, &verta_partition_allowed, &vertb_partition_allowed); } // PARTITION_HORZ_A if (partition_horz_allowed && horza_partition_allowed) { subsize = get_partition_subsize(bsize, PARTITION_HORZ_A); pc_tree->horizontala[0].rd_mode_is_ready = 0; pc_tree->horizontala[1].rd_mode_is_ready = 0; pc_tree->horizontala[2].rd_mode_is_ready = 0; if (split_ctx_is_ready[0]) { av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none); pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A; pc_tree->horizontala[0].rd_mode_is_ready = 1; if (split_ctx_is_ready[1]) { av1_copy_tree_context(&pc_tree->horizontala[1], &pc_tree->split[1]->none); pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A; pc_tree->horizontala[1].rd_mode_is_ready = 1; } } pc_tree->horizontala[0].skip_ref_frame_mask = 0; pc_tree->horizontala[1].skip_ref_frame_mask = 0; pc_tree->horizontala[2].skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { int used_frames; used_frames = ref_frames_used[0]; if (used_frames) pc_tree->horizontala[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[1]; if (used_frames) pc_tree->horizontala[1].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[2] | ref_frames_used[3]; if (used_frames) pc_tree->horizontala[2].skip_ref_frame_mask = ~used_frames; } rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, subsize); restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // PARTITION_HORZ_B if (partition_horz_allowed && horzb_partition_allowed) { subsize = get_partition_subsize(bsize, PARTITION_HORZ_B); pc_tree->horizontalb[0].rd_mode_is_ready = 0; pc_tree->horizontalb[1].rd_mode_is_ready = 0; pc_tree->horizontalb[2].rd_mode_is_ready = 0; if (horz_ctx_is_ready) { av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]); pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B; pc_tree->horizontalb[0].rd_mode_is_ready = 1; } pc_tree->horizontalb[0].skip_ref_frame_mask = 0; pc_tree->horizontalb[1].skip_ref_frame_mask = 0; pc_tree->horizontalb[2].skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { int used_frames; used_frames = ref_frames_used[0] | ref_frames_used[1]; if (used_frames) pc_tree->horizontalb[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[2]; if (used_frames) pc_tree->horizontalb[1].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[3]; if (used_frames) pc_tree->horizontalb[2].skip_ref_frame_mask = ~used_frames; } rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col, subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // PARTITION_VERT_A if (partition_vert_allowed && verta_partition_allowed) { subsize = get_partition_subsize(bsize, PARTITION_VERT_A); pc_tree->verticala[0].rd_mode_is_ready = 0; pc_tree->verticala[1].rd_mode_is_ready = 0; pc_tree->verticala[2].rd_mode_is_ready = 0; if (split_ctx_is_ready[0]) { av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none); pc_tree->verticala[0].mic.partition = PARTITION_VERT_A; pc_tree->verticala[0].rd_mode_is_ready = 1; } pc_tree->verticala[0].skip_ref_frame_mask = 0; pc_tree->verticala[1].skip_ref_frame_mask = 0; pc_tree->verticala[2].skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { int used_frames; used_frames = ref_frames_used[0]; if (used_frames) pc_tree->verticala[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[2]; if (used_frames) pc_tree->verticala[1].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[1] | ref_frames_used[3]; if (used_frames) pc_tree->verticala[2].skip_ref_frame_mask = ~used_frames; } rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala, ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step, subsize); restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // PARTITION_VERT_B if (partition_vert_allowed && vertb_partition_allowed) { subsize = get_partition_subsize(bsize, PARTITION_VERT_B); pc_tree->verticalb[0].rd_mode_is_ready = 0; pc_tree->verticalb[1].rd_mode_is_ready = 0; pc_tree->verticalb[2].rd_mode_is_ready = 0; if (vert_ctx_is_ready) { av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]); pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B; pc_tree->verticalb[0].rd_mode_is_ready = 1; } pc_tree->verticalb[0].skip_ref_frame_mask = 0; pc_tree->verticalb[1].skip_ref_frame_mask = 0; pc_tree->verticalb[2].skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { int used_frames; used_frames = ref_frames_used[0] | ref_frames_used[2]; if (used_frames) pc_tree->verticalb[0].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[1]; if (used_frames) pc_tree->verticalb[1].skip_ref_frame_mask = ~used_frames; used_frames = ref_frames_used[3]; if (used_frames) pc_tree->verticalb[2].skip_ref_frame_mask = ~used_frames; } rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col, subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or // PARTITION_VERT_4 for this block. This is almost the same as // ext_partition_allowed, except that we don't allow 128x32 or 32x128 blocks, // so we require that bsize is not BLOCK_128X128. const int partition4_allowed = ext_partition_allowed && bsize != BLOCK_128X128; int partition_horz4_allowed = partition4_allowed && partition_horz_allowed; int partition_vert4_allowed = partition4_allowed && partition_vert_allowed; if (cpi->sf.prune_ext_partition_types_search_level == 2) { partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ || pc_tree->partitioning == PARTITION_HORZ_A || pc_tree->partitioning == PARTITION_HORZ_B || pc_tree->partitioning == PARTITION_SPLIT || pc_tree->partitioning == PARTITION_NONE); partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT || pc_tree->partitioning == PARTITION_VERT_A || pc_tree->partitioning == PARTITION_VERT_B || pc_tree->partitioning == PARTITION_SPLIT || pc_tree->partitioning == PARTITION_NONE); } if (cpi->sf.ml_prune_4_partition && partition4_allowed && partition_horz_allowed && partition_vert_allowed) { ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, best_rdc.rdcost, horz_rd, vert_rd, split_rd, &partition_horz4_allowed, &partition_vert4_allowed, pb_source_variance, mi_row, mi_col); } #if CONFIG_DIST_8X8 if (x->using_dist_8x8) { if (block_size_high[bsize] <= 16 || block_size_wide[bsize] <= 16) { partition_horz4_allowed = 0; partition_vert4_allowed = 0; } } #endif // PARTITION_HORZ_4 if (partition_horz4_allowed && has_rows && (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { av1_init_rd_stats(&sum_rdc); const int quarter_step = mi_size_high[bsize] / 4; PICK_MODE_CONTEXT *ctx_prev = ctx_none; subsize = get_partition_subsize(bsize, PARTITION_HORZ_4); sum_rdc.rate = partition_cost[PARTITION_HORZ_4]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); for (int i = 0; i < 4; ++i) { const int this_mi_row = mi_row + i * quarter_step; if (i > 0 && this_mi_row >= cm->mi_rows) break; PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i]; ctx_this->rd_mode_is_ready = 0; ctx_this->skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { const int used_frames = i <= 1 ? (ref_frames_used[0] | ref_frames_used[1]) : (ref_frames_used[2] | ref_frames_used[3]); if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; } if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row, mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc, PARTITION_HORZ_4, ctx_prev, ctx_this)) break; ctx_prev = ctx_this; } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_HORZ_4; } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } // PARTITION_VERT_4 if (partition_vert4_allowed && has_cols && (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step))) { av1_init_rd_stats(&sum_rdc); const int quarter_step = mi_size_wide[bsize] / 4; PICK_MODE_CONTEXT *ctx_prev = ctx_none; subsize = get_partition_subsize(bsize, PARTITION_VERT_4); sum_rdc.rate = partition_cost[PARTITION_VERT_4]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); for (int i = 0; i < 4; ++i) { const int this_mi_col = mi_col + i * quarter_step; if (i > 0 && this_mi_col >= cm->mi_cols) break; PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i]; ctx_this->rd_mode_is_ready = 0; ctx_this->skip_ref_frame_mask = 0; if (cpi->sf.prune_ref_frame_for_rect_partitions) { const int used_frames = i <= 1 ? (ref_frames_used[0] | ref_frames_used[2]) : (ref_frames_used[1] | ref_frames_used[3]); if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; } if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row, this_mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc, PARTITION_VERT_4, ctx_prev, ctx_this)) break; ctx_prev = ctx_this; } if (sum_rdc.rdcost < best_rdc.rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_VERT_4; } } restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); } if (bsize == cm->seq_params.sb_size && best_rdc.rate == INT_MAX) { // Did not find a valid partition, go back and search again, with less // constraint on which partition types to search. x->must_find_valid_partition = 1; goto BEGIN_PARTITION_SEARCH; } // TODO(jbb): This code added so that we avoid static analysis // warning related to the fact that best_rd isn't used after this // point. This code should be refactored so that the duplicate // checks occur in some sub function and thus are used... (void)best_rd; *rd_cost = best_rdc; if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && pc_tree->index != 3) { if (bsize == cm->seq_params.sb_size) { x->cb_offset = 0; encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } if (bsize == cm->seq_params.sb_size) { assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } // Set all the counters as max. static void init_first_partition_pass_stats_tables( FIRST_PARTITION_PASS_STATS *stats) { for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { memset(stats[i].ref0_counts, 0xff, sizeof(stats[i].ref0_counts)); memset(stats[i].ref1_counts, 0xff, sizeof(stats[i].ref1_counts)); stats[i].sample_counts = INT_MAX; } } // clear pc_tree_stats static INLINE void clear_pc_tree_stats(PC_TREE *pt) { if (pt == NULL) return; pt->pc_tree_stats.valid = 0; for (int i = 0; i < 4; ++i) { clear_pc_tree_stats(pt->split[i]); } } // Minimum number of samples to trigger the // mode_pruning_based_on_two_pass_partition_search feature. #define FIRST_PARTITION_PASS_MIN_SAMPLES 16 static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, TOKENEXTRA **tp) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); const TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; SPEED_FEATURES *const sf = &cpi->sf; const int leaf_nodes = 256; // Initialize the left context for the new SB row av1_zero_left_context(xd); // Reset delta for every tile if (mi_row == tile_info->mi_row_start) { if (cm->delta_q_present_flag) xd->current_qindex = cm->base_qindex; if (cm->delta_lf_present_flag) { av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); } } PC_TREE *const pc_root = td->pc_root[cm->seq_params.mib_size_log2 - MIN_MIB_SIZE_LOG2]; // Code each SB in the row for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; mi_col += cm->seq_params.mib_size) { av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes); av1_fill_mode_rates(cm, x, xd->tile_ctx); if (sf->adaptive_pred_interp_filter) { for (int i = 0; i < leaf_nodes; ++i) { td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; } } x->mb_rd_record.num = x->mb_rd_record.index_start = 0; av1_zero(x->txb_rd_record_8X8); av1_zero(x->txb_rd_record_16X16); av1_zero(x->txb_rd_record_32X32); av1_zero(x->txb_rd_record_64X64); av1_zero(x->txb_rd_record_intra); av1_zero(x->pred_mv); pc_root->index = 0; const struct segmentation *const seg = &cm->seg; int seg_skip = 0; if (seg->enabled) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; const int segment_id = map ? get_segment_id(cm, map, cm->seq_params.sb_size, mi_row, mi_col) : 0; seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); } xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; x->sb_energy_level = 0; if (cm->delta_q_present_flag) { // Delta-q modulation based on variance av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); int offset_qindex; if (DELTAQ_MODULATION == 1) { const int block_wavelet_energy_level = av1_block_wavelet_energy_level(cpi, x, cm->seq_params.sb_size); x->sb_energy_level = block_wavelet_energy_level; offset_qindex = av1_compute_deltaq_from_energy_level( cpi, block_wavelet_energy_level); } else { const int block_var_level = av1_log_block_var(cpi, x, cm->seq_params.sb_size); x->sb_energy_level = block_var_level; offset_qindex = av1_compute_deltaq_from_energy_level(cpi, block_var_level); } const int qmask = ~(cm->delta_q_res - 1); int current_qindex = clamp(cm->base_qindex + offset_qindex, cm->delta_q_res, 256 - cm->delta_q_res); current_qindex = ((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) + cm->base_qindex; assert(current_qindex > 0); xd->delta_qindex = current_qindex - cm->base_qindex; set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); xd->mi[0]->current_qindex = current_qindex; av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) { const int lfmask = ~(cm->delta_lf_res - 1); const int delta_lf_from_base = ((offset_qindex / 2 + cm->delta_lf_res / 2) & lfmask); // pre-set the delta lf for loop filter. Note that this value is set // before mi is assigned for each block in current superblock for (int j = 0; j < AOMMIN(cm->seq_params.mib_size, cm->mi_rows - mi_row); j++) { for (int k = 0; k < AOMMIN(cm->seq_params.mib_size, cm->mi_cols - mi_col); k++) { cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] .delta_lf_from_base = clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] .delta_lf[lf_id] = clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); } } } } } int dummy_rate; int64_t dummy_dist; RD_STATS dummy_rdc; const int idx_str = cm->mi_stride * mi_row + mi_col; MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str; x->source_variance = UINT_MAX; if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); const BLOCK_SIZE bsize = seg_skip ? cm->seq_params.sb_size : sf->always_this_block_size; set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, pc_root); } else if (cpi->partition_search_skippable_frame) { set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); const BLOCK_SIZE bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, pc_root); } else { // If required set upper and lower partition size limits if (sf->auto_min_max_partition_size) { set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, &x->min_partition_size, &x->max_partition_size); } reset_partition(pc_root, cm->seq_params.sb_size); x->use_cb_search_range = 0; init_first_partition_pass_stats_tables(x->first_partition_pass_stats); // Do the first pass if we need two pass partition search if (cpi->sf.two_pass_partition_search && cpi->sf.use_square_partition_only_threshold > BLOCK_4X4 && mi_row + mi_size_high[cm->seq_params.sb_size] < cm->mi_rows && mi_col + mi_size_wide[cm->seq_params.sb_size] < cm->mi_cols && cm->frame_type != KEY_FRAME) { x->cb_partition_scan = 1; // Reset the stats tables. if (sf->mode_pruning_based_on_two_pass_partition_search) av1_zero(x->first_partition_pass_stats); clear_pc_tree_stats(pc_root); rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, pc_root, NULL); x->cb_partition_scan = 0; x->source_variance = UINT_MAX; if (sf->adaptive_pred_interp_filter) { for (int i = 0; i < leaf_nodes; ++i) { td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; } } x->mb_rd_record.num = x->mb_rd_record.index_start = 0; av1_zero(x->txb_rd_record_8X8); av1_zero(x->txb_rd_record_16X16); av1_zero(x->txb_rd_record_32X32); av1_zero(x->txb_rd_record_64X64); av1_zero(x->txb_rd_record_intra); av1_zero(x->pred_mv); pc_root->index = 0; for (int idy = 0; idy < mi_size_high[cm->seq_params.sb_size]; ++idy) { for (int idx = 0; idx < mi_size_wide[cm->seq_params.sb_size]; ++idx) { const int offset = cm->mi_stride * (mi_row + idy) + (mi_col + idx); cm->mi_grid_visible[offset] = 0; } } x->use_cb_search_range = 1; if (sf->mode_pruning_based_on_two_pass_partition_search) { for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { FIRST_PARTITION_PASS_STATS *const stat = &x->first_partition_pass_stats[i]; if (stat->sample_counts < FIRST_PARTITION_PASS_MIN_SAMPLES) { // If there are not enough samples collected, make all available. memset(stat->ref0_counts, 0xff, sizeof(stat->ref0_counts)); memset(stat->ref1_counts, 0xff, sizeof(stat->ref1_counts)); } else if (sf->selective_ref_frame < 2) { // ALTREF2_FRAME and BWDREF_FRAME may be skipped during the // initial partition scan, so we don't eliminate them. stat->ref0_counts[ALTREF2_FRAME] = 0xff; stat->ref1_counts[ALTREF2_FRAME] = 0xff; stat->ref0_counts[BWDREF_FRAME] = 0xff; stat->ref1_counts[BWDREF_FRAME] = 0xff; } } } } rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, pc_root, NULL); } #if CONFIG_COLLECT_INTER_MODE_RD_STATS // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 && cm->tile_rows == 1) { av1_inter_mode_data_fit(tile_data, x->rdmult); } #endif } } static void init_encode_frame_mb_context(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &cpi->td.mb; MACROBLOCKD *const xd = &x->e_mbd; // Copy data over into macro block data structures. av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); av1_setup_block_planes(xd, cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, num_planes); } static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; // We will not update the golden frame with an internal overlay frame else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || cpi->rc.is_src_frame_ext_arf) return ALTREF_FRAME; else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || cpi->refresh_alt_ref_frame) return GOLDEN_FRAME; else // TODO(zoeliu): To investigate whether a frame_type other than // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. return LAST_FRAME; } static TX_MODE select_tx_mode(const AV1_COMP *cpi) { if (cpi->common.coded_lossless) return ONLY_4X4; if (cpi->sf.tx_size_search_method == USE_LARGESTALL) return TX_MODE_LARGEST; else if (cpi->sf.tx_size_search_method == USE_FULL_RD || cpi->sf.tx_size_search_method == USE_FAST_RD) return TX_MODE_SELECT; else return cpi->common.tx_mode; } void av1_alloc_tile_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tile_col, tile_row; if (cpi->tile_data != NULL) aom_free(cpi->tile_data); CHECK_MEM_ERROR( cm, cpi->tile_data, aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); cpi->allocated_tiles = tile_cols * tile_rows; for (tile_row = 0; tile_row < tile_rows; ++tile_row) for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; int i, j; for (i = 0; i < BLOCK_SIZES_ALL; ++i) { for (j = 0; j < MAX_MODES; ++j) { tile_data->thresh_freq_fact[i][j] = 32; tile_data->mode_map[i][j] = j; } } } } void av1_init_tile_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tile_col, tile_row; TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; TOKENLIST *tplist = cpi->tplist[0][0]; unsigned int tile_tok = 0; int tplist_count = 0; for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *const tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; TileInfo *const tile_info = &tile_data->tile_info; av1_tile_init(tile_info, cm, tile_row, tile_col); cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; pre_tok = cpi->tile_tok[tile_row][tile_col]; tile_tok = allocated_tokens( *tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); cpi->tplist[tile_row][tile_col] = tplist + tplist_count; tplist = cpi->tplist[tile_row][tile_col]; tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info); tile_data->allow_update_cdf = !cm->large_scale_tile; tile_data->allow_update_cdf = tile_data->allow_update_cdf && !cm->disable_cdf_update; } } } void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, int tile_col, int mi_row) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); const int tile_cols = cm->tile_cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; TOKENEXTRA *tok = NULL; int sb_row_in_tile; int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; int num_mb_rows_in_sb = ((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; sb_row_in_tile = (mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2; get_start_tok(cpi, tile_row, tile_col, mi_row, &tok, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok; encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok; cpi->tplist[tile_row][tile_col][sb_row_in_tile].count = (unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop - cpi->tplist[tile_row][tile_col][sb_row_in_tile].start); assert( (unsigned int)(tok - cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <= get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes)); (void)tile_mb_cols; (void)num_mb_rows_in_sb; } void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, int tile_col) { AV1_COMMON *const cm = &cpi->common; TileDataEnc *const this_tile = &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; int mi_row; #if CONFIG_COLLECT_INTER_MODE_RD_STATS av1_inter_mode_data_init(this_tile); #endif av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, tile_info->mi_col_end, tile_row); av1_init_above_context(cm, &td->mb.e_mbd, tile_row); // Set up pointers to per thread motion search counters. this_tile->m_search_count = 0; // Count of motion search hits. this_tile->ex_search_count = 0; // Exhaustive mesh search hits. td->mb.m_search_count_ptr = &this_tile->m_search_count; td->mb.ex_search_count_ptr = &this_tile->ex_search_count; this_tile->tctx = *cm->fc; td->mb.e_mbd.tile_ctx = &this_tile->tctx; cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator); td->intrabc_used_this_tile = 0; for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; mi_row += cm->seq_params.mib_size) { av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); } } static void encode_tiles(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tile_col, tile_row; if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); av1_init_tile_data(cpi); for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); cpi->intrabc_used |= cpi->td.intrabc_used_this_tile; } } } #if CONFIG_FP_MB_STATS static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, AV1_COMMON *cm, uint8_t **this_frame_mb_stats) { uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + cm->current_video_frame * cm->MBs * sizeof(uint8_t); if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; *this_frame_mb_stats = mb_stats_in; return 1; } #endif #define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search static int gm_get_params_cost(const WarpedMotionParams *gm, const WarpedMotionParams *ref_gm, int allow_hp) { int params_cost = 0; int trans_bits, trans_prec_diff; switch (gm->wmtype) { case AFFINE: case ROTZOOM: params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); if (gm->wmtype >= AFFINE) { params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); } AOM_FALLTHROUGH_INTENDED; case TRANSLATION: trans_bits = (gm->wmtype == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp : GM_ABS_TRANS_BITS; trans_prec_diff = (gm->wmtype == TRANSLATION) ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp : GM_TRANS_PREC_DIFF; params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[0] >> trans_prec_diff), (gm->wmmat[0] >> trans_prec_diff)); params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[1] >> trans_prec_diff), (gm->wmmat[1] >> trans_prec_diff)); AOM_FALLTHROUGH_INTENDED; case IDENTITY: break; default: assert(0); } return (params_cost << AV1_PROB_COST_SHIFT); } static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm, int frame) { (void)num_refs_using_gm; (void)frame; switch (sf->gm_search_type) { case GM_FULL_SEARCH: return 1; case GM_REDUCED_REF_SEARCH: return !(frame == LAST2_FRAME || frame == LAST3_FRAME); case GM_DISABLE_SEARCH: return 0; default: assert(0); } return 1; } // Estimate if the source frame is screen content, based on the portion of // blocks that have no more than 4 (experimentally selected) luma colors. static int is_screen_content(const uint8_t *src, int use_hbd, int bd, int stride, int width, int height) { assert(src != NULL); int counts = 0; const int blk_w = 16; const int blk_h = 16; const int limit = 4; for (int r = 0; r + blk_h <= height; r += blk_h) { for (int c = 0; c + blk_w <= width; c += blk_w) { int count_buf[1 << 12]; // Maximum (1 << 12) color levels. const int n_colors = use_hbd ? av1_count_colors_highbd(src + r * stride + c, stride, blk_w, blk_h, bd, count_buf) : av1_count_colors(src + r * stride + c, stride, blk_w, blk_h, count_buf); if (n_colors > 1 && n_colors <= limit) counts++; } } // The threshold is 10%. return counts * blk_h * blk_w * 10 > width * height; } static const uint8_t ref_frame_flag_list[REF_FRAMES] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG }; // Enforce the number of references for each arbitrary frame limited to // (INTER_REFS_PER_FRAME - 1) static void enforce_max_ref_frames(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; int total_valid_refs = 0; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) total_valid_refs++; } // NOTE(zoeliu): When all the possible reference frames are availble, we // reduce the number of reference frames by 1, following the rules of: // (1) Retain GOLDEN_FARME/ALTEF_FRAME; // (2) Check the earliest 2 remaining reference frames, and remove the one // with the lower quality factor, otherwise if both have been coded at // the same quality level, remove the earliest reference frame. if (total_valid_refs == INTER_REFS_PER_FRAME) { unsigned int min_ref_offset = UINT_MAX; unsigned int second_min_ref_offset = UINT_MAX; MV_REFERENCE_FRAME earliest_ref_frames[2] = { LAST3_FRAME, LAST2_FRAME }; int earliest_buf_idxes[2] = { 0 }; // Locate the earliest two reference frames except GOLDEN/ALTREF. for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { // Retain GOLDEN/ALTERF if (ref_frame == GOLDEN_FRAME || ref_frame == ALTREF_FRAME) continue; const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; if (buf_idx >= 0) { const unsigned int ref_offset = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; if (min_ref_offset == UINT_MAX) { min_ref_offset = ref_offset; earliest_ref_frames[0] = ref_frame; earliest_buf_idxes[0] = buf_idx; } else { if (get_relative_dist(cm, ref_offset, min_ref_offset) < 0) { second_min_ref_offset = min_ref_offset; earliest_ref_frames[1] = earliest_ref_frames[0]; earliest_buf_idxes[1] = earliest_buf_idxes[0]; min_ref_offset = ref_offset; earliest_ref_frames[0] = ref_frame; earliest_buf_idxes[0] = buf_idx; } else if (second_min_ref_offset == UINT_MAX || get_relative_dist(cm, ref_offset, second_min_ref_offset) < 0) { second_min_ref_offset = ref_offset; earliest_ref_frames[1] = ref_frame; earliest_buf_idxes[1] = buf_idx; } } } } // Check the coding quality factors of the two earliest reference frames. RATE_FACTOR_LEVEL ref_rf_level[2]; double ref_rf_deltas[2]; for (int i = 0; i < 2; ++i) { ref_rf_level[i] = cpi->frame_rf_level[earliest_buf_idxes[i]]; ref_rf_deltas[i] = rate_factor_deltas[ref_rf_level[i]]; } (void)ref_rf_level; (void)ref_rf_deltas; #define USE_RF_LEVEL_TO_ENFORCE 1 #if USE_RF_LEVEL_TO_ENFORCE // If both earliest two reference frames are coded using the same rate- // factor, disable the earliest reference frame; Otherwise disable the // reference frame that uses a lower rate-factor delta. const MV_REFERENCE_FRAME ref_frame_to_disable = (ref_rf_deltas[0] <= ref_rf_deltas[1]) ? earliest_ref_frames[0] : earliest_ref_frames[1]; #else // Always disable the earliest reference frame const MV_REFERENCE_FRAME ref_frame_to_disable = earliest_ref_frames[0]; #endif // USE_RF_LEVEL_TO_ENFORCE #undef USE_RF_LEVEL_TO_ENFORCE switch (ref_frame_to_disable) { case LAST_FRAME: cpi->ref_frame_flags &= ~AOM_LAST_FLAG; break; case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break; case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break; case BWDREF_FRAME: cpi->ref_frame_flags &= ~AOM_BWD_FLAG; break; case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break; default: break; } } } static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) { assert(!frame_is_intra_only(cm)); int one_sided_refs = 1; for (int ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) { const int buf_idx = cm->frame_refs[ref].idx; if (buf_idx == INVALID_IDX) continue; const int ref_offset = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; if (get_relative_dist(cm, ref_offset, (int)cm->frame_offset) > 0) { one_sided_refs = 0; // bwd reference break; } } return one_sided_refs; } static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, int ref_offset[2]) { ref_offset[0] = ref_offset[1] = 0; if (!cm->is_skip_mode_allowed) return; const int buf_idx_0 = cm->frame_refs[cm->ref_frame_idx_0].idx; const int buf_idx_1 = cm->frame_refs[cm->ref_frame_idx_1].idx; assert(buf_idx_0 != INVALID_IDX && buf_idx_1 != INVALID_IDX); ref_offset[0] = cm->buffer_pool->frame_bufs[buf_idx_0].cur_frame_offset; ref_offset[1] = cm->buffer_pool->frame_bufs[buf_idx_1].cur_frame_offset; } static int check_skip_mode_enabled(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; av1_setup_skip_mode_allowed(cm); if (!cm->is_skip_mode_allowed) return 0; // Turn off skip mode if the temporal distances of the reference pair to the // current frame are different by more than 1 frame. const int cur_offset = (int)cm->frame_offset; int ref_offset[2]; get_skip_mode_ref_offsets(cm, ref_offset); const int cur_to_ref0 = get_relative_dist(cm, cur_offset, ref_offset[0]); const int cur_to_ref1 = abs(get_relative_dist(cm, cur_offset, ref_offset[1])); if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; // High Latency: Turn off skip mode if all refs are fwd. if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0; static const int flag_list[REF_FRAMES] = { 0, AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG }; const int ref_frame[2] = { cm->ref_frame_idx_0 + LAST_FRAME, cm->ref_frame_idx_1 + LAST_FRAME }; if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) return 0; return 1; } // Function to decide if we can skip the global motion parameter computation // for a particular ref frame static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) { if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) && cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) { return get_relative_dist( cm, cm->cur_frame->ref_frame_offset[ref_frame - LAST_FRAME], cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0; } return 0; } static void set_default_interp_skip_flags(AV1_COMP *cpi) { const int num_planes = av1_num_planes(&cpi->common); cpi->default_interp_skip_flags = (num_planes == 1) ? DEFAULT_LUMA_INTERP_SKIP_FLAG : DEFAULT_INTERP_SKIP_FLAG; } static void encode_frame_internal(AV1_COMP *cpi) { ThreadData *const td = &cpi->td; MACROBLOCK *const x = &td->mb; AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; RD_COUNTS *const rdc = &cpi->td.rd_counts; int i; x->min_partition_size = AOMMIN(x->min_partition_size, cm->seq_params.sb_size); x->max_partition_size = AOMMIN(x->max_partition_size, cm->seq_params.sb_size); #if CONFIG_DIST_8X8 x->using_dist_8x8 = cpi->oxcf.using_dist_8x8; x->tune_metric = cpi->oxcf.tuning; #endif cm->setup_mi(cm); xd->mi = cm->mi_grid_visible; xd->mi[0] = cm->mi; av1_zero(*td->counts); av1_zero(rdc->comp_pred_diff); if (frame_is_intra_only(cm)) { if (cm->seq_params.force_screen_content_tools == 2) { cm->allow_screen_content_tools = cpi->oxcf.content == AOM_CONTENT_SCREEN || is_screen_content(cpi->source->y_buffer, cpi->source->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, cpi->source->y_stride, cpi->source->y_width, cpi->source->y_height); } else { cm->allow_screen_content_tools = cm->seq_params.force_screen_content_tools; } } // Allow intrabc when screen content tools are enabled. cm->allow_intrabc = cm->allow_screen_content_tools; // Reset the flag. cpi->intrabc_used = 0; // Need to disable intrabc when superres is selected if (av1_superres_scaled(cm)) { cm->allow_intrabc = 0; } if (cpi->oxcf.pass != 1 && av1_use_hash_me(cm)) { // add to hash table const int pic_width = cpi->source->y_crop_width; const int pic_height = cpi->source->y_crop_height; uint32_t *block_hash_values[2][2]; int8_t *is_block_same[2][3]; int k, j; for (k = 0; k < 2; k++) { for (j = 0; j < 2; j++) { CHECK_MEM_ERROR(cm, block_hash_values[k][j], aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); } for (j = 0; j < 3; j++) { CHECK_MEM_ERROR(cm, is_block_same[k][j], aom_malloc(sizeof(int8_t) * pic_width * pic_height)); } } av1_hash_table_create(&cm->cur_frame->hash_table); av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0], is_block_same[0], &cpi->td.mb); av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0], block_hash_values[1], is_block_same[0], is_block_same[1], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], pic_width, pic_height, 4); av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1], block_hash_values[0], is_block_same[1], is_block_same[0], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], pic_width, pic_height, 8); av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0], block_hash_values[1], is_block_same[0], is_block_same[1], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], pic_width, pic_height, 16); av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1], block_hash_values[0], is_block_same[1], is_block_same[0], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], pic_width, pic_height, 32); av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0], block_hash_values[1], is_block_same[0], is_block_same[1], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], pic_width, pic_height, 64); av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1], block_hash_values[0], is_block_same[1], is_block_same[0], &cpi->td.mb); av1_add_to_hash_map_by_row_with_precal_data( &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], pic_width, pic_height, 128); for (k = 0; k < 2; k++) { for (j = 0; j < 2; j++) { aom_free(block_hash_values[k][j]); } for (j = 0; j < 3; j++) { aom_free(is_block_same[k][j]); } } } for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, i, cm->base_qindex) : cm->base_qindex; xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; if (xd->lossless[i]) cpi->has_lossless_segment = 1; xd->qindex[i] = qindex; if (xd->lossless[i]) { cpi->optimize_seg_arr[i] = 0; } else { cpi->optimize_seg_arr[i] = cpi->optimize_speed_feature; } } cm->coded_lossless = is_coded_lossless(cm, xd); cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); cm->tx_mode = select_tx_mode(cpi); // Fix delta q resolution for the moment cm->delta_q_res = DEFAULT_DELTA_Q_RES; // Set delta_q_present_flag before it is used for the first time cm->delta_lf_res = DEFAULT_DELTA_LF_RES; cm->delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; cm->delta_lf_present_flag = cpi->oxcf.deltaq_mode == DELTA_Q_LF; cm->delta_lf_multi = DEFAULT_DELTA_LF_MULTI; // update delta_q_present_flag and delta_lf_present_flag based on base_qindex cm->delta_q_present_flag &= cm->base_qindex > 0; cm->delta_lf_present_flag &= cm->base_qindex > 0; av1_frame_init_quantizer(cpi); av1_initialize_rd_consts(cpi); av1_initialize_me_consts(cpi, x, cm->base_qindex); init_encode_frame_mb_context(cpi); set_default_interp_skip_flags(cpi); if (cm->prev_frame) cm->last_frame_seg_map = cm->prev_frame->seg_map; else cm->last_frame_seg_map = NULL; cm->current_frame_seg_map = cm->cur_frame->seg_map; if (cm->allow_intrabc || cm->coded_lossless) { av1_set_default_ref_deltas(cm->lf.ref_deltas); av1_set_default_mode_deltas(cm->lf.mode_deltas); } else if (cm->prev_frame) { memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); } memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); // Special case: set prev_mi to NULL when the previous mode info // context cannot be used. cm->prev_mi = cm->allow_ref_frame_mvs ? cm->prev_mip : NULL; x->txb_split_count = 0; av1_zero(rdc->global_motion_used); av1_zero(cpi->gmparams_cost); #if !CONFIG_GLOBAL_MOTION_SEARCH cpi->global_motion_search_done = 1; #endif // !CONFIG_GLOBAL_MOTION_SEARCH if (cpi->common.frame_type == INTER_FRAME && cpi->source && !cpi->global_motion_search_done) { YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES]; int frame; double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)]; const double *params_this_motion; int inliers_by_motion[RANSAC_NUM_MOTIONS]; WarpedMotionParams tmp_wm_params; static const double kIdentityParams[MAX_PARAMDIM - 1] = { 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 }; int num_refs_using_gm = 0; for (frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { ref_buf[frame] = get_ref_frame_buffer(cpi, frame); int pframe; cm->global_motion[frame] = default_warp_params; const WarpedMotionParams *ref_params = cm->prev_frame ? &cm->prev_frame->global_motion[frame] : &default_warp_params; // check for duplicate buffer for (pframe = ALTREF_FRAME; pframe > frame; --pframe) { if (ref_buf[frame] == ref_buf[pframe]) break; } if (pframe > frame) { memcpy(&cm->global_motion[frame], &cm->global_motion[pframe], sizeof(WarpedMotionParams)); } else if (ref_buf[frame] && ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame) && !(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) { TransformationType model; const int64_t ref_frame_error = av1_frame_error(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride, cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height, cpi->source->y_stride); if (ref_frame_error == 0) continue; aom_clear_system_state(); for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { int64_t best_warp_error = INT64_MAX; // Initially set all params to identity. for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams, (MAX_PARAMDIM - 1) * sizeof(*params_by_motion)); } compute_global_motion_feature_based( model, cpi->source, ref_buf[frame], cpi->common.seq_params.bit_depth, inliers_by_motion, params_by_motion, RANSAC_NUM_MOTIONS); for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { if (inliers_by_motion[i] == 0) continue; params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i; convert_model_to_params(params_this_motion, &tmp_wm_params); if (tmp_wm_params.wmtype != IDENTITY) { const int64_t warp_error = refine_integerized_param( &tmp_wm_params, tmp_wm_params.wmtype, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, ref_buf[frame]->y_buffer, ref_buf[frame]->y_width, ref_buf[frame]->y_height, ref_buf[frame]->y_stride, cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height, cpi->source->y_stride, 5, best_warp_error); if (warp_error < best_warp_error) { best_warp_error = warp_error; // Save the wm_params modified by refine_integerized_param() // rather than motion index to avoid rerunning refine() below. memcpy(&(cm->global_motion[frame]), &tmp_wm_params, sizeof(WarpedMotionParams)); } } } if (cm->global_motion[frame].wmtype <= AFFINE) if (!get_shear_params(&cm->global_motion[frame])) cm->global_motion[frame] = default_warp_params; if (cm->global_motion[frame].wmtype == TRANSLATION) { cm->global_motion[frame].wmmat[0] = convert_to_trans_prec(cm->allow_high_precision_mv, cm->global_motion[frame].wmmat[0]) * GM_TRANS_ONLY_DECODE_FACTOR; cm->global_motion[frame].wmmat[1] = convert_to_trans_prec(cm->allow_high_precision_mv, cm->global_motion[frame].wmmat[1]) * GM_TRANS_ONLY_DECODE_FACTOR; } // If the best error advantage found doesn't meet the threshold for // this motion type, revert to IDENTITY. if (!is_enough_erroradvantage( (double)best_warp_error / ref_frame_error, gm_get_params_cost(&cm->global_motion[frame], ref_params, cm->allow_high_precision_mv), cpi->sf.gm_erroradv_type)) { cm->global_motion[frame] = default_warp_params; } if (cm->global_motion[frame].wmtype != IDENTITY) break; } aom_clear_system_state(); } if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++; cpi->gmparams_cost[frame] = gm_get_params_cost(&cm->global_motion[frame], ref_params, cm->allow_high_precision_mv) + cpi->gmtype_cost[cm->global_motion[frame].wmtype] - cpi->gmtype_cost[IDENTITY]; } // clear disabled ref_frames for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { const int ref_disabled = !(cpi->ref_frame_flags & ref_frame_flag_list[frame]); if (ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE) { cpi->gmparams_cost[frame] = 0; cm->global_motion[frame] = default_warp_params; } } cpi->global_motion_search_done = 1; } memcpy(cm->cur_frame->global_motion, cm->global_motion, REF_FRAMES * sizeof(WarpedMotionParams)); av1_setup_motion_field(cm); cpi->all_one_sided_refs = frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm); cm->skip_mode_flag = check_skip_mode_enabled(cpi); { struct aom_usec_timer emr_timer; aom_usec_timer_start(&emr_timer); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, &cpi->twopass.this_frame_mb_stats); } #endif if (cpi->row_mt && (cpi->oxcf.max_threads > 1)) av1_encode_tiles_mt(cpi); else if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1) av1_encode_tiles_mt(cpi); else encode_tiles(cpi); aom_usec_timer_mark(&emr_timer); cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer); } // If intrabc is allowed but never selected, reset the allow_intrabc flag. if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0; if (cm->allow_intrabc) cm->delta_lf_present_flag = 0; } void av1_encode_frame(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); // Indicates whether or not to use a default reduced set for ext-tx // rather than the potential full set of 16 transforms cm->reduced_tx_set_used = 0; if (cm->show_frame == 0) { int arf_offset = AOMMIN( (MAX_GF_INTERVAL - 1), cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); int brf_offset = cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); cm->frame_offset = cm->current_video_frame + arf_offset; } else { cm->frame_offset = cm->current_video_frame; } cm->frame_offset %= (1 << (cm->seq_params.order_hint_bits_minus_1 + 1)); // Make sure segment_id is no larger than last_active_segid. if (cm->seg.enabled && cm->seg.update_map) { const int mi_rows = cm->mi_rows; const int mi_cols = cm->mi_cols; const int last_active_segid = cm->seg.last_active_segid; uint8_t *map = cpi->segmentation_map; for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { map[mi_col] = AOMMIN(map[mi_col], last_active_segid); } map += mi_cols; } } av1_setup_frame_buf_refs(cm); if (cpi->sf.selective_ref_frame >= 2) enforce_max_ref_frames(cpi); av1_setup_frame_sign_bias(cm); #if CONFIG_MISMATCH_DEBUG mismatch_reset_frame(num_planes); #else (void)num_planes; #endif cpi->allow_comp_inter_inter = !frame_is_intra_only(cm); if (cpi->sf.frame_parameter_update) { int i; RD_OPT *const rd_opt = &cpi->rd; RD_COUNTS *const rdc = &cpi->td.rd_counts; // This code does a single RD pass over the whole frame assuming // either compound, single or hybrid prediction as per whatever has // worked best for that type of frame in the past. // It also predicts whether another coding mode would have worked // better than this coding mode. If that is the case, it remembers // that for subsequent frames. // It does the same analysis for transform size selection also. // // TODO(zoeliu): To investigate whether a frame_type other than // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; const int is_alt_ref = frame_type == ALTREF_FRAME; /* prediction (compound, single or hybrid) mode selection */ // NOTE: "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames if (is_alt_ref || !cpi->allow_comp_inter_inter) cm->reference_mode = SINGLE_REFERENCE; else cm->reference_mode = REFERENCE_MODE_SELECT; cm->interp_filter = SWITCHABLE; if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR; cm->switchable_motion_mode = 1; rdc->compound_ref_used_flag = 0; rdc->skip_mode_used_flag = 0; encode_frame_internal(cpi); for (i = 0; i < REFERENCE_MODES; ++i) mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; if (cm->reference_mode == REFERENCE_MODE_SELECT) { // Use a flag that includes 4x4 blocks if (rdc->compound_ref_used_flag == 0) { cm->reference_mode = SINGLE_REFERENCE; #if CONFIG_ENTROPY_STATS av1_zero(cpi->td.counts->comp_inter); #endif // CONFIG_ENTROPY_STATS } } // Re-check on the skip mode status as reference mode may have been changed. if (frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE) { cm->is_skip_mode_allowed = 0; cm->skip_mode_flag = 0; } if (cm->skip_mode_flag && rdc->skip_mode_used_flag == 0) cm->skip_mode_flag = 0; if (!cm->large_scale_tile) { if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) cm->tx_mode = TX_MODE_LARGEST; } } else { encode_frame_internal(cpi); } } static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, int blk_row, int blk_col, uint8_t allow_update_cdf) { MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->sb_type; const int max_blocks_high = max_block_high(xd, bsize, 0); const int max_blocks_wide = max_block_wide(xd, bsize, 0); int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, mbmi->sb_type, tx_size); const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; assert(tx_size > TX_4X4); if (depth == MAX_VARTX_DEPTH) { // Don't add to counts in this case mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); return; } if (tx_size == plane_tx_size) { #if CONFIG_ENTROPY_STATS ++counts->txfm_partition[ctx][0]; #endif if (allow_update_cdf) update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; #if CONFIG_ENTROPY_STATS ++counts->txfm_partition[ctx][1]; #endif if (allow_update_cdf) update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); ++x->txb_split_count; if (sub_txs == TX_4X4) { mbmi->inter_tx_size[txb_size_index] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, TX_4X4, tx_size); return; } for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { int offsetr = row; int offsetc = col; update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, blk_col + offsetc, allow_update_cdf); } } } } static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE plane_bsize, int mi_row, int mi_col, FRAME_COUNTS *td_counts, uint8_t allow_update_cdf) { MACROBLOCKD *xd = &x->e_mbd; const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; int idx, idy; xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); for (idy = 0; idy < mi_height; idy += bh) for (idx = 0; idx < mi_width; idx += bw) update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, allow_update_cdf); } static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, int blk_col) { MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->sb_type; const int max_blocks_high = max_block_high(xd, bsize, 0); const int max_blocks_wide = max_block_wide(xd, bsize, 0); const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); } else { if (tx_size == TX_8X8) { mbmi->inter_tx_size[txb_size_index] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, TX_4X4, tx_size); return; } const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { const int offsetr = blk_row + row; const int offsetc = blk_col + col; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; set_txfm_context(xd, sub_txs, offsetr, offsetc); } } } } static void tx_partition_set_contexts(const AV1_COMMON *const cm, MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, int mi_row, int mi_col) { const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; int idx, idy; xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); for (idy = 0; idy < mi_height; idy += bh) for (idx = 0; idx < mi_width; idx += bw) set_txfm_context(xd, max_tx_size, idy, idx); } static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO **mi_4x4 = xd->mi; MB_MODE_INFO *mbmi = mi_4x4[0]; const int seg_skip = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); const int mis = cm->mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; const int is_inter = is_inter_block(mbmi); if (cpi->sf.mode_pruning_based_on_two_pass_partition_search && x->cb_partition_scan) { for (int row = mi_row; row < mi_row + mi_width; row += FIRST_PARTITION_PASS_SAMPLE_REGION) { for (int col = mi_col; col < mi_col + mi_height; col += FIRST_PARTITION_PASS_SAMPLE_REGION) { const int index = av1_first_partition_pass_stats_index(row, col); FIRST_PARTITION_PASS_STATS *const stats = &x->first_partition_pass_stats[index]; // Increase the counter of data samples. ++stats->sample_counts; // Increase the counter for ref_frame[0] and ref_frame[1]. if (stats->ref0_counts[mbmi->ref_frame[0]] < 255) ++stats->ref0_counts[mbmi->ref_frame[0]]; if (mbmi->ref_frame[1] >= 0 && stats->ref1_counts[mbmi->ref_frame[0]] < 255) ++stats->ref1_counts[mbmi->ref_frame[1]]; } } } if (!is_inter) { xd->cfl.is_chroma_reference = is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); xd->cfl.store_y = store_cfl_required(cm, xd); mbmi->skip = 1; for (int plane = 0; plane < num_planes; ++plane) { av1_encode_intra_block_plane(cpi, x, bsize, plane, cpi->optimize_seg_arr[mbmi->segment_id], mi_row, mi_col); } // If there is at least one lossless segment, force the skip for intra // block to be 0, in order to avoid the segment_id to be changed by in // write_segment_id(). if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && cpi->has_lossless_segment) mbmi->skip = 0; xd->cfl.store_y = 0; if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { if (mbmi->palette_mode_info.palette_size[plane] > 0) { if (!dry_run) { av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, PALETTE_MAP, tile_data->allow_update_cdf, td->counts); } else if (dry_run == DRY_RUN_COSTCOEFFS) { rate += av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); } } } } av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col, tile_data->allow_update_cdf); } else { int ref; const int is_compound = has_second_ref(mbmi); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); for (ref = 0; ref < 1 + is_compound; ++ref) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, &xd->block_refs[ref]->sf, num_planes); } av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); if (mbmi->motion_mode == OBMC_CAUSAL) av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); #if CONFIG_MISMATCH_DEBUG if (dry_run == OUTPUT_ENABLED) { for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int pixel_c, pixel_r; mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, pd->subsampling_y); if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset, plane, pixel_c, pixel_r, pd->width, pd->height, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } } #else (void)num_planes; #endif av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run); av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, bsize, rate, tile_data->allow_update_cdf); } if (!dry_run) { if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used_this_tile = 1; if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) { if (is_inter) { tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts, tile_data->allow_update_cdf); } else { if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count; if (block_signals_txsize(bsize)) { const int tx_size_ctx = get_tx_size_context(xd); const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); const int depth = tx_size_to_depth(mbmi->tx_size, bsize); const int max_depths = bsize_to_max_depth(bsize); if (tile_data->allow_update_cdf) update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], depth, max_depths + 1); #if CONFIG_ENTROPY_STATS ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; #endif } } assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); } else { int i, j; TX_SIZE intra_tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) { if (xd->lossless[mbmi->segment_id]) { intra_tx_size = TX_4X4; } else { intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); } } else { intra_tx_size = mbmi->tx_size; } for (j = 0; j < mi_height; j++) for (i = 0; i < mi_width; i++) if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) mi_4x4[mis * j + i]->tx_size = intra_tx_size; if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count; } } if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type) && is_inter && !(mbmi->skip || seg_skip) && !xd->lossless[mbmi->segment_id]) { if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); } else { TX_SIZE tx_size = mbmi->tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) { if (xd->lossless[mbmi->segment_id]) { tx_size = TX_4X4; } else { tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); } } else { tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; } mbmi->tx_size = tx_size; set_txfm_ctxs(tx_size, xd->n4_w, xd->n4_h, (mbmi->skip || seg_skip) && is_inter_block(mbmi), xd); } CFL_CTX *const cfl = &xd->cfl; if (is_inter_block(mbmi) && !is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x, cfl->subsampling_y) && is_cfl_allowed(xd)) { cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); } }