/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/bitwriter.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "av1/common/cfl.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" // Check if one needs to use c version subtraction. static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, int16_t *diff, ptrdiff_t diff_stride, const uint8_t *src8, ptrdiff_t src_stride, const uint8_t *pred8, ptrdiff_t pred_stride) { if (check_subtract_block_size(rows, cols)) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); return; } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); } void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int blk_col, int blk_row, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const MACROBLOCKD *xd = &x->e_mbd; subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, TX_TYPE tx_type, const TXB_CTX *const txb_ctx, int fast_mode, int *rate_cost) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; const int eob = p->eobs[block]; const int segment_id = xd->mi[0]->segment_id; if (eob == 0 || !cpi->optimize_seg_arr[segment_id] || xd->lossless[segment_id]) { *rate_cost = av1_cost_skip_txb(mb, txb_ctx, plane, tx_size); return eob; } (void)fast_mode; return av1_optimize_txb_new(cpi, mb, plane, block, tx_size, tx_type, txb_ctx, rate_cost, cpi->oxcf.sharpness); } typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_TYPES = 2 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, { NULL, NULL } }; void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, TX_TYPE tx_type, AV1_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = block_size_wide[plane_bsize]; int seg_id = mbmi->segment_id; const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms const qm_val_t *qmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][qm_tx_size] : cm->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[seg_id][qm_tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; const int src_offset = (blk_row * diff_stride + blk_col); const int16_t *src_diff = &p->src_diff[src_offset << tx_size_wide_log2[0]]; QUANT_PARAM qparam; qparam.log_scale = av1_get_tx_scale(tx_size); qparam.tx_size = tx_size; qparam.qmatrix = qmatrix; qparam.iqmatrix = iqmatrix; TxfmParam txfm_param; txfm_param.tx_type = tx_type; txfm_param.tx_size = tx_size; txfm_param.lossless = xd->lossless[mbmi->segment_id]; txfm_param.tx_set_type = av1_get_ext_tx_set_type( txfm_param.tx_size, is_inter_block(mbmi), cm->reduced_tx_set_used); txfm_param.bd = xd->bd; txfm_param.is_hbd = get_bitdepth_data_path_index(xd); av1_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { const int n_coeffs = av1_get_max_eob(tx_size); if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][txfm_param.is_hbd]( coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam); } else { av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); } } // NOTE: optimize_b_following is ture means av1_optimze_b will be called // When the condition of doing optimize_b is changed, // this flag need update simultaneously const int optimize_b_following = (xform_quant_idx != AV1_XFORM_QUANT_FP) || (txfm_param.lossless); if (optimize_b_following) { p->txb_entropy_ctx[block] = (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); } else { p->txb_entropy_ctx[block] = 0; } return; } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)mi_row; (void)mi_col; (void)dry_run; struct encode_b_args *const args = arg; const AV1_COMMON *const cm = &args->cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; int dummy_rate_cost = 0; const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; a = &args->ta[blk_col]; l = &args->tl[blk_row]; if (!is_blk_skip(x, plane, blk_row * bw + blk_col) && !mbmi->skip_mode) { TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, AV1_XFORM_QUANT_FP); TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, 1, &dummy_rate_cost); } else { av1_xform_quant( cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); } } else { p->eobs[block] = 0; p->txb_entropy_ctx[block] = 0; } av1_set_txb_context(x, plane, block, tx_size, a, l); if (p->eobs[block]) { *(args->skip) = 0; TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block], cm->reduced_tx_set_used); } if (p->eobs[block] == 0 && plane == 0) { // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0 // case. It is possible that certain collision in hash index would cause // the assertion failure. To further optimize the rate-distortion // performance, we need to re-visit this part and enable this assert // again. #if 0 if (args->cpi->oxcf.aq_mode == NO_AQ && args->cpi->oxcf.deltaq_mode == NO_DELTA_Q) { // TODO(jingning,angiebird,huisu@google.com): enable txk_check when // enable_optimize_b is true to detect potential RD bug. const uint8_t disable_txk_check = args->enable_optimize_b; if (!disable_txk_check) { assert(mbmi->txk_type[av1_get_txk_type_index(plane_bsize, blk_row, blk_col)] == DCT_DCT); } } #endif update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, DCT_DCT); } #if CONFIG_MISMATCH_DEBUG if (dry_run == OUTPUT_ENABLED) { int pixel_c, pixel_r; BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int blk_w = block_size_wide[bsize]; int blk_h = block_size_high[bsize]; mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, pd->subsampling_x, pd->subsampling_y); mismatch_record_block_tx(dst, pd->dst.stride, cm->frame_offset, plane, pixel_c, pixel_r, blk_w, blk_h, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } #endif } static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)mi_row; (void)mi_col; struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; const TX_SIZE plane_tx_size = plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, pd->subsampling_y) : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, blk_col)]; if (!plane) { assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] && tx_size_high[tx_size] >= tx_size_high[plane_tx_size]); } if (tx_size == plane_tx_size || plane) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, mi_row, mi_col, dry_run); } else { assert(tx_size < TX_SIZES_ALL); const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); // This is the square transform block partition entry point. const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int step = bsh * bsw; assert(bsw > 0 && bsh > 0); for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { const int offsetr = blk_row + row; const int offsetc = blk_col + col; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg, mi_row, mi_col, dry_run); block += step; } } } } void av1_foreach_transformed_block_in_plane( const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, foreach_transformed_block_visitor visit, void *arg) { const struct macroblockd_plane *const pd = &xd->plane[plane]; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const uint8_t txw_unit = tx_size_wide_unit[tx_size]; const uint8_t txh_unit = tx_size_high_unit[tx_size]; const int step = txw_unit * txh_unit; int i = 0, r, c; // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); int blk_row, blk_col; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (r = 0; r < max_blocks_high; r += mu_blocks_high) { const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high); // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_blocks_wide; c += mu_blocks_wide) { const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide); for (blk_row = r; blk_row < unit_height; blk_row += txh_unit) { for (blk_col = c; blk_col < unit_width; blk_col += txw_unit) { visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg); i += step; } } } } } void av1_foreach_transformed_block(const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, foreach_transformed_block_visitor visit, void *arg, const int num_planes) { for (int plane = 0; plane < num_planes; ++plane) { if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) continue; av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); } } typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); TxfmParam txfm_param; uint8_t *dst; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, DCT_DCT, AV1_XFORM_QUANT_B); if (p->eobs[block] > 0) { txfm_param.bd = xd->bd; txfm_param.is_hbd = get_bitdepth_data_path_index(xd); txfm_param.tx_type = DCT_DCT; txfm_param.tx_size = tx_size; txfm_param.eob = p->eobs[block]; txfm_param.lossless = xd->lossless[xd->mi[0]->segment_id]; txfm_param.tx_set_type = av1_get_ext_tx_set_type( txfm_param.tx_size, is_inter_block(xd->mi[0]), cm->reduced_tx_set_used); if (txfm_param.is_hbd) { av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); return; } av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)dry_run; const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = xd->mi[0]; struct encode_b_args arg = { cpi, x, &ctx, &mbmi->skip, NULL, NULL, cpi->optimize_seg_arr[mbmi->segment_id] }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < num_planes; ++plane) { const int subsampling_x = xd->plane[plane].subsampling_x; const int subsampling_y = xd->plane[plane].subsampling_y; if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, subsampling_y)) continue; const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, subsampling_x, subsampling_y); // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_high_log2[0]; int idx, idy; int block = 0; int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(bsizec, pd, ctx.ta[plane], ctx.tl[plane]); av1_subtract_plane(x, bsizec, plane); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); for (idy = 0; idy < mi_height; idy += mu_blocks_high) { for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { int blk_row, blk_col; const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); for (blk_row = idy; blk_row < unit_height; blk_row += bh) { for (blk_col = idx; blk_col < unit_width; blk_col += bw) { encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, max_tx_size, &arg, mi_row, mi_col, dry_run); block += step; } } } } } } static void encode_block_intra_and_set_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); struct encode_b_args *const args = arg; MACROBLOCK *x = args->x; ENTROPY_CONTEXT *a = &args->ta[blk_col]; ENTROPY_CONTEXT *l = &args->tl[blk_row]; av1_set_txb_context(x, plane, block, tx_size, a, l); } void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; const AV1_COMMON *const cm = &args->cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); uint16_t *eob = &p->eobs[block]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; int dummy_rate_cost = 0; av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; if (plane == 0 && is_blk_skip(x, plane, blk_row * bw + blk_col)) { *eob = 0; p->txb_entropy_ctx[block] = 0; } else { av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); const ENTROPY_CONTEXT *a = &args->ta[blk_col]; const ENTROPY_CONTEXT *l = &args->tl[blk_row]; if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, AV1_XFORM_QUANT_FP); TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, 1, &dummy_rate_cost); } else { av1_xform_quant( cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); } } if (*eob) { av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, dst_stride, *eob, cm->reduced_tx_set_used); } if (*eob == 0 && plane == 0) { // TODO(jingning): Temporarily disable txk_type check for eob=0 case. // It is possible that certain collision in hash index would cause // the assertion failure. To further optimize the rate-distortion // performance, we need to re-visit this part and enable this assert // again. #if 0 if (args->cpi->oxcf.aq_mode == NO_AQ && args->cpi->oxcf.deltaq_mode == NO_DELTA_Q) { assert(mbmi->txk_type[av1_get_txk_type_index(plane_bsize, blk_row, blk_col)] == DCT_DCT); } #endif update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, DCT_DCT); } // For intra mode, skipped blocks are so rare that transmitting skip=1 is // very expensive. *(args->skip) = 0; if (plane == AOM_PLANE_Y && xd->cfl.store_y) { cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); } } void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b, int mi_row, int mi_col) { const MACROBLOCKD *const xd = &x->e_mbd; ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 }; ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 }; struct encode_b_args arg = { cpi, x, NULL, &(xd->mi[0]->skip), ta, tl, enable_optimize_b }; if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) return; if (enable_optimize_b) { const struct macroblockd_plane *const pd = &xd->plane[plane]; av1_get_entropy_contexts(bsize, pd, ta, tl); } av1_foreach_transformed_block_in_plane( xd, bsize, plane, encode_block_intra_and_set_context, &arg); }