/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/encodetxb.h" #include "aom_ports/mem.h" #include "av1/common/blockd.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/common/scan.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/hash.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/tokenize.h" static int hbt_needs_init = 1; static CRC32C crc_calculator; static const int HBT_EOB = 16; // also the length in opt_qcoeff static const int HBT_TABLE_SIZE = 65536; // 16 bit: holds 65536 'arrays' static const int HBT_ARRAY_LENGTH = 256; // 8 bit: 256 entries // If removed in hbt_create_hashes or increased beyond int8_t, widen deltas type static const int HBT_KICKOUT = 3; typedef struct OptTxbQcoeff { // Use larger type if larger/no kickout value is used in hbt_create_hashes int8_t deltas[16]; uint32_t hbt_qc_hash; uint32_t hbt_ctx_hash; int init; int rate_cost; } OptTxbQcoeff; OptTxbQcoeff *hbt_hash_table; typedef struct LevelDownStats { int update; tran_low_t low_qc; tran_low_t low_dqc; int64_t dist0; int rate; int rate_low; int64_t dist; int64_t dist_low; int64_t rd; int64_t rd_low; int64_t nz_rd; int64_t rd_diff; int cost_diff; int64_t dist_diff; int new_eob; } LevelDownStats; void av1_alloc_txb_buf(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; int size = ((cm->mi_rows >> cm->seq_params.mib_size_log2) + 1) * ((cm->mi_cols >> cm->seq_params.mib_size_log2) + 1); av1_free_txb_buf(cpi); // TODO(jingning): This should be further reduced. CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base, aom_memalign(32, sizeof(*cpi->coeff_buffer_base) * size)); } void av1_free_txb_buf(AV1_COMP *cpi) { aom_free(cpi->coeff_buffer_base); } void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x, int mi_row, int mi_col) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); int mib_size_log2 = cm->seq_params.mib_size_log2; int stride = (cm->mi_cols >> mib_size_log2) + 1; int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset]; const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); assert(x->cb_offset < (1 << num_pels_log2_lookup[cm->seq_params.sb_size])); for (int plane = 0; plane < num_planes; ++plane) { x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset; x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset; x->mbmi_ext->txb_skip_ctx[plane] = coeff_buf->txb_skip_ctx[plane] + txb_offset; x->mbmi_ext->dc_sign_ctx[plane] = coeff_buf->dc_sign_ctx[plane] + txb_offset; } } static void write_golomb(aom_writer *w, int level) { int x = level + 1; int i = x; int length = 0; while (i) { i >>= 1; ++length; } assert(length > 0); for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0); for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01); } static INLINE tran_low_t get_lower_coeff(tran_low_t qc) { if (qc == 0) { return 0; } return qc > 0 ? qc - 1 : qc + 1; } static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc, int coeff_idx, int dqv, int shift, const qm_val_t *iqmatrix) { int sign = qc < 0 ? -1 : 1; if (iqmatrix != NULL) dqv = ((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; return sign * ((abs(qc) * dqv) >> shift); } static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff, int shift) { const int64_t diff = (tcoeff - dqcoeff) * (1 << shift); const int64_t error = diff * diff; return error; } static const int8_t eob_to_pos_small[33] = { 0, 1, 2, // 0-2 3, 3, // 3-4 4, 4, 4, 4, // 5-8 5, 5, 5, 5, 5, 5, 5, 5, // 9-16 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 // 17-32 }; static const int8_t eob_to_pos_large[17] = { 6, // place holder 7, // 33-64 8, 8, // 65-128 9, 9, 9, 9, // 129-256 10, 10, 10, 10, 10, 10, 10, 10, // 257-512 11 // 513- }; static INLINE int get_eob_pos_token(const int eob, int *const extra) { int t; if (eob < 33) { t = eob_to_pos_small[eob]; } else { const int e = AOMMIN((eob - 1) >> 5, 16); t = eob_to_pos_large[e]; } *extra = eob - k_eob_group_start[t]; return t; } #if CONFIG_ENTROPY_STATS void av1_update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size, TX_CLASS tx_class, PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { #else void av1_update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class, PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, uint8_t allow_update_cdf) { #endif int eob_extra; const int eob_pt = get_eob_pos_token(eob, &eob_extra); TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const int eob_multi_size = txsize_log2_minus4[tx_size]; const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: #if CONFIG_ENTROPY_STATS ++counts->eob_multi16[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5); break; case 1: #if CONFIG_ENTROPY_STATS ++counts->eob_multi32[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6); break; case 2: #if CONFIG_ENTROPY_STATS ++counts->eob_multi64[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7); break; case 3: #if CONFIG_ENTROPY_STATS ++counts->eob_multi128[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1, 8); } break; case 4: #if CONFIG_ENTROPY_STATS ++counts->eob_multi256[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1, 9); } break; case 5: #if CONFIG_ENTROPY_STATS ++counts->eob_multi512[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1, 10); } break; case 6: default: #if CONFIG_ENTROPY_STATS ++counts->eob_multi1024[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; #endif if (allow_update_cdf) { update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1, 11); } break; } if (k_eob_offset_bits[eob_pt] > 0) { int eob_ctx = eob_pt - 3; int eob_shift = k_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; #if CONFIG_ENTROPY_STATS counts->eob_extra[cdf_idx][txs_ctx][plane][eob_pt][bit]++; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_ctx], bit, 2); } } static int get_eob_cost(int eob, const LV_MAP_EOB_COST *txb_eob_costs, const LV_MAP_COEFF_COST *txb_costs, TX_CLASS tx_class) { int eob_extra; const int eob_pt = get_eob_pos_token(eob, &eob_extra); int eob_cost = 0; const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; eob_cost = txb_eob_costs->eob_cost[eob_multi_ctx][eob_pt - 1]; if (k_eob_offset_bits[eob_pt] > 0) { const int eob_ctx = eob_pt - 3; const int eob_shift = k_eob_offset_bits[eob_pt] - 1; const int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; eob_cost += txb_costs->eob_extra_cost[eob_ctx][bit]; const int offset_bits = k_eob_offset_bits[eob_pt]; if (offset_bits > 1) eob_cost += av1_cost_literal(offset_bits - 1); } return eob_cost; } static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx, const int (*dc_sign_cost)[2], int dc_sign_ctx) { if (coeff_idx == 0) { const int sign = (qc < 0) ? 1 : 0; return dc_sign_cost[dc_sign_ctx][sign]; } return av1_cost_literal(1); } static INLINE int get_br_cost(tran_low_t abs_qc, int ctx, const int *coeff_lps) { const tran_low_t min_level = 1 + NUM_BASE_LEVELS; const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE; (void)ctx; if (abs_qc >= min_level) { if (abs_qc >= max_level) { return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0; } else { return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1; } } return 0; } static INLINE int get_golomb_cost(int abs_qc) { if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { const int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS; const int length = get_msb(r) + 1; return av1_cost_literal(2 * length - 1); } return 0; } static int get_coeff_cost(const tran_low_t qc, const int scan_idx, const int is_eob, const TxbInfo *const txb_info, const LV_MAP_COEFF_COST *const txb_costs, const int coeff_ctx, const TX_CLASS tx_class) { const TXB_CTX *const txb_ctx = txb_info->txb_ctx; const int is_nz = (qc != 0); const tran_low_t abs_qc = abs(qc); int cost = 0; const int16_t *const scan = txb_info->scan_order->scan; const int pos = scan[scan_idx]; if (is_eob) { cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; } else { cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; } if (is_nz) { cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost, txb_ctx->dc_sign_ctx); if (abs_qc > NUM_BASE_LEVELS) { const int ctx = get_br_ctx(txb_info->levels, pos, txb_info->bwl, tx_class); cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]); cost += get_golomb_cost(abs_qc); } } return cost; } static INLINE int get_nz_map_ctx(const uint8_t *const levels, const int coeff_idx, const int bwl, const int height, const int scan_idx, const int is_eob, const TX_SIZE tx_size, const TX_CLASS tx_class) { if (is_eob) { if (scan_idx == 0) return 0; if (scan_idx <= (height << bwl) / 8) return 1; if (scan_idx <= (height << bwl) / 4) return 2; return 3; } const int stats = get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class); return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class); } static void get_dist_cost_stats(LevelDownStats *const stats, const int scan_idx, const int is_eob, const LV_MAP_COEFF_COST *const txb_costs, const TxbInfo *const txb_info, const TX_CLASS tx_class) { const int16_t *const scan = txb_info->scan_order->scan; const int coeff_idx = scan[scan_idx]; const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const uint8_t *const levels = txb_info->levels; stats->new_eob = -1; stats->update = 0; stats->rd_low = 0; stats->rd = 0; stats->nz_rd = 0; stats->dist_low = 0; stats->rate_low = 0; stats->low_qc = 0; const tran_low_t tqc = txb_info->tcoeff[coeff_idx]; const int dqv = txb_info->dequant[coeff_idx != 0]; const int coeff_ctx = get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, is_eob, txb_info->tx_size, tx_class); const int qc_cost = get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs, coeff_ctx, tx_class); assert(qc != 0); const tran_low_t dqc = qcoeff_to_dqcoeff(qc, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift); // distortion difference when coefficient is quantized to 0 const tran_low_t dqc0 = qcoeff_to_dqcoeff(0, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift); stats->dist = dqc_dist - stats->dist0; stats->rate = qc_cost; stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist); stats->low_qc = get_lower_coeff(qc); if (is_eob && stats->low_qc == 0) { stats->rd_low = stats->rd; // disable selection of low_qc in this case. } else { if (stats->low_qc == 0) { stats->dist_low = 0; } else { stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); const int64_t low_dqc_dist = get_coeff_dist(tqc, stats->low_dqc, txb_info->shift); stats->dist_low = low_dqc_dist - stats->dist0; } const int low_qc_cost = get_coeff_cost(stats->low_qc, scan_idx, is_eob, txb_info, txb_costs, coeff_ctx, tx_class); stats->rate_low = low_qc_cost; stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low); } } static void get_dist_cost_stats_with_eob( LevelDownStats *const stats, const int scan_idx, const LV_MAP_COEFF_COST *const txb_costs, const TxbInfo *const txb_info, const TX_CLASS tx_class) { const int is_eob = 0; get_dist_cost_stats(stats, scan_idx, is_eob, txb_costs, txb_info, tx_class); const int16_t *const scan = txb_info->scan_order->scan; const int coeff_idx = scan[scan_idx]; const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const int coeff_ctx_temp = get_nz_map_ctx( txb_info->levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, 1, txb_info->tx_size, tx_class); const int qc_eob_cost = get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp, tx_class); int64_t rd_eob = RDCOST(txb_info->rdmult, qc_eob_cost, stats->dist); if (stats->low_qc != 0) { const int low_qc_eob_cost = get_coeff_cost(stats->low_qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp, tx_class); int64_t rd_eob_low = RDCOST(txb_info->rdmult, low_qc_eob_cost, stats->dist_low); rd_eob = (rd_eob > rd_eob_low) ? rd_eob_low : rd_eob; } stats->nz_rd = AOMMIN(stats->rd_low, stats->rd) - rd_eob; } static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc, const TxbInfo *const txb_info) { txb_info->qcoeff[coeff_idx] = qc; txb_info->levels[get_padded_idx(coeff_idx, txb_info->bwl)] = (uint8_t)clamp(abs(qc), 0, INT8_MAX); } static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc, const TxbInfo *const txb_info) { update_qcoeff(coeff_idx, qc, txb_info); const int dqv = txb_info->dequant[coeff_idx != 0]; txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff( qc, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); } void av1_txb_init_levels_c(const tran_low_t *const coeff, const int width, const int height, uint8_t *const levels) { const int stride = width + TX_PAD_HOR; uint8_t *ls = levels; memset(levels - TX_PAD_TOP * stride, 0, sizeof(*levels) * TX_PAD_TOP * stride); memset(levels + stride * height, 0, sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END)); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { *ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX); } for (int j = 0; j < TX_PAD_HOR; j++) { *ls++ = 0; } } } void av1_get_nz_map_contexts_c(const uint8_t *const levels, const int16_t *const scan, const uint16_t eob, const TX_SIZE tx_size, const TX_CLASS tx_class, int8_t *const coeff_contexts) { const int bwl = get_txb_bwl(tx_size); const int height = get_txb_high(tx_size); for (int i = 0; i < eob; ++i) { const int pos = scan[i]; coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bwl, height, i, i == eob - 1, tx_size, tx_class); } } void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_writer *w, int blk_row, int blk_col, int plane, TX_SIZE tx_size, const tran_low_t *tcoeff, uint16_t eob, TXB_CTX *txb_ctx) { const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; aom_write_symbol(w, eob == 0, ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2); if (eob == 0) return; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); const TX_CLASS tx_class = tx_type_to_class[tx_type]; const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const int16_t *const scan = scan_order->scan; int c; const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); av1_txb_init_levels(tcoeff, width, height, levels); av1_write_tx_type(cm, xd, blk_row, blk_col, plane, tx_size, w); int eob_extra; const int eob_pt = get_eob_pos_token(eob, &eob_extra); const int eob_multi_size = txsize_log2_minus4[tx_size]; const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5); break; case 1: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6); break; case 2: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7); break; case 3: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8); break; case 4: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9); break; case 5: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10); break; default: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11); break; } if (k_eob_offset_bits[eob_pt] > 0) { const int eob_ctx = eob_pt - 3; int eob_shift = k_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_symbol(w, bit, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2); for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) { eob_shift = k_eob_offset_bits[eob_pt] - 1 - i; bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_bit(w, bit); } } av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); for (c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = tcoeff[pos]; const tran_low_t level = abs(v); if (c == eob - 1) { aom_write_symbol( w, AOMMIN(level, 3) - 1, ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3); } else { aom_write_symbol(w, AOMMIN(level, 3), ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx], 4); } if (level > NUM_BASE_LEVELS) { // level is above 1. const int base_range = level - 1 - NUM_BASE_LEVELS; const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class); for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); aom_write_symbol( w, k, ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx], BR_CDF_SIZE); if (k < BR_CDF_SIZE - 1) break; } } } // Loop to code all signs in the transform block, // starting with the sign of DC (if applicable) for (c = 0; c < eob; ++c) { const tran_low_t v = tcoeff[scan[c]]; const tran_low_t level = abs(v); const int sign = (v < 0) ? 1 : 0; if (level) { if (c == 0) { aom_write_symbol( w, sign, ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2); } else { aom_write_bit(w, sign); } if (level > COEFF_BASE_RANGE + NUM_BASE_LEVELS) write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS); } } } typedef struct encode_txb_args { const AV1_COMMON *cm; MACROBLOCK *x; aom_writer *w; } ENCODE_TXB_ARGS; static void write_coeffs_txb_wrap(const AV1_COMMON *cm, MACROBLOCK *x, aom_writer *w, int plane, int block, int blk_row, int blk_col, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); uint16_t eob = x->mbmi_ext->eobs[plane][block]; TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], x->mbmi_ext->dc_sign_ctx[plane][block] }; av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, eob, &txb_ctx); } void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, int mi_col, aom_writer *w, BLOCK_SIZE bsize) { MACROBLOCKD *xd = &x->e_mbd; const int num_planes = av1_num_planes(cm); int block[MAX_MB_PLANE] = { 0 }; int row, col; assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, xd->plane[0].subsampling_y)); const int max_blocks_wide = max_block_wide(xd, bsize, 0); const int max_blocks_high = max_block_high(xd, bsize, 0); const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); for (row = 0; row < max_blocks_high; row += mu_blocks_high) { for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; const int step = stepr * stepc; const int unit_height = ROUND_POWER_OF_TWO( AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); const int unit_width = ROUND_POWER_OF_TWO( AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; blk_row += stepr) { for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; blk_col += stepc) { write_coeffs_txb_wrap(cm, x, w, plane, block[plane], blk_row, blk_col, tx_size); block[plane] += step; } } } } } } // TODO(angiebird): use this function whenever it's possible static int get_tx_type_cost(const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, int plane, TX_SIZE tx_size, TX_TYPE tx_type) { if (plane > 0) return 0; const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; const MB_MODE_INFO *mbmi = xd->mi[0]; const int is_inter = is_inter_block(mbmi); if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && !xd->lossless[xd->mi[0]->segment_id]) { const int ext_tx_set = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); if (is_inter) { if (ext_tx_set > 0) return x->inter_tx_type_costs[ext_tx_set][square_tx_size][tx_type]; } else { if (ext_tx_set > 0) { PREDICTION_MODE intra_dir; if (mbmi->filter_intra_mode_info.use_filter_intra) intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info .filter_intra_mode]; else intra_dir = mbmi->mode; return x->intra_tx_type_costs[ext_tx_set][square_tx_size][intra_dir] [tx_type]; } } } return 0; } static AOM_FORCE_INLINE int warehouse_efficients_txb( const AV1_COMMON *const cm, const MACROBLOCK *x, const int plane, const int block, const TX_SIZE tx_size, const TXB_CTX *const txb_ctx, const struct macroblock_plane *p, const int eob, const PLANE_TYPE plane_type, const LV_MAP_COEFF_COST *const coeff_costs, const MACROBLOCKD *const xd, const TX_TYPE tx_type, const TX_CLASS tx_class) { const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); const int txb_skip_ctx = txb_ctx->txb_skip_ctx; const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const int16_t *const scan = scan_order->scan; uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); const int eob_multi_size = txsize_log2_minus4[tx_size]; const LV_MAP_EOB_COST *const eob_costs = &x->eob_costs[eob_multi_size][plane_type]; int cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0]; av1_txb_init_levels(qcoeff, width, height, levels); cost += get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); cost += get_eob_cost(eob, eob_costs, coeff_costs, tx_class); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); const int(*lps_cost)[COEFF_BASE_RANGE + 1] = coeff_costs->lps_cost; int c = eob - 1; { const int pos = scan[c]; const tran_low_t v = qcoeff[pos]; const int sign = v >> 31; const int level = (v ^ sign) - sign; const int coeff_ctx = coeff_contexts[pos]; cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1]; if (v) { // sign bit cost if (level > NUM_BASE_LEVELS) { const int ctx = get_br_ctx(levels, pos, bwl, tx_class); const int base_range = AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); cost += lps_cost[ctx][base_range]; cost += get_golomb_cost(level); } if (c) { cost += av1_cost_literal(1); } else { const int sign01 = (sign ^ sign) - sign; const int dc_sign_ctx = txb_ctx->dc_sign_ctx; cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01]; return cost; } } } const int(*base_cost)[4] = coeff_costs->base_cost; for (c = eob - 2; c >= 1; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = qcoeff[pos]; const int level = abs(v); const int cost0 = base_cost[coeff_ctx][AOMMIN(level, 3)]; if (v) { // sign bit cost cost += av1_cost_literal(1); if (level > NUM_BASE_LEVELS) { const int ctx = get_br_ctx(levels, pos, bwl, tx_class); const int base_range = AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); cost += lps_cost[ctx][base_range]; cost += get_golomb_cost(level); } } cost += cost0; } if (c == 0) { const int pos = scan[c]; const tran_low_t v = qcoeff[pos]; const int coeff_ctx = coeff_contexts[pos]; const int sign = v >> 31; const int level = (v ^ sign) - sign; cost += base_cost[coeff_ctx][AOMMIN(level, 3)]; if (v) { // sign bit cost const int sign01 = (sign ^ sign) - sign; const int dc_sign_ctx = txb_ctx->dc_sign_ctx; cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01]; if (level > NUM_BASE_LEVELS) { const int ctx = get_br_ctx(levels, pos, bwl, tx_class); const int base_range = AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); cost += lps_cost[ctx][base_range]; cost += get_golomb_cost(level); } } } return cost; } int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x, const int plane, const int block, const TX_SIZE tx_size, const TX_TYPE tx_type, const TXB_CTX *const txb_ctx) { const struct macroblock_plane *p = &x->plane[plane]; const int eob = p->eobs[block]; const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const PLANE_TYPE plane_type = get_plane_type(plane); const LV_MAP_COEFF_COST *const coeff_costs = &x->coeff_costs[txs_ctx][plane_type]; if (eob == 0) { return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1]; } const MACROBLOCKD *const xd = &x->e_mbd; const TX_CLASS tx_class = tx_type_to_class[tx_type]; #define WAREHOUSE_EFFICIENTS_TXB_CASE(tx_class_literal) \ case tx_class_literal: \ return warehouse_efficients_txb(cm, x, plane, block, tx_size, txb_ctx, p, \ eob, plane_type, coeff_costs, xd, tx_type, \ tx_class_literal); switch (tx_class) { WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_2D); WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_HORIZ); WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_VERT); #undef WAREHOUSE_EFFICIENTS_TXB_CASE default: assert(false); return 0; } } static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, int *rate_cost) { int update = 0; if (txb_info->eob == 0) return update; const int16_t *const scan = txb_info->scan_order->scan; // forward optimize the nz_map` const int init_eob = txb_info->eob; const TX_CLASS tx_class = tx_type_to_class[txb_info->tx_type]; const int eob_cost = get_eob_cost(init_eob, txb_eob_costs, txb_costs, tx_class); // backward optimize the level-k map int accu_rate = eob_cost; int64_t accu_dist = 0; int64_t prev_eob_rd_cost = INT64_MAX; int64_t cur_eob_rd_cost = 0; { const int si = init_eob - 1; const int coeff_idx = scan[si]; LevelDownStats stats; get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info, tx_class); if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) { update = 1; update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } } int si = init_eob - 2; int8_t has_nz_tail = 0; // eob is not fixed for (; si >= 0 && has_nz_tail < 2; --si) { assert(si != init_eob - 1); const int coeff_idx = scan[si]; tran_low_t qc = txb_info->qcoeff[coeff_idx]; if (qc == 0) { const int coeff_ctx = get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl, txb_info->tx_size, tx_class); accu_rate += txb_costs->base_cost[coeff_ctx][0]; } else { LevelDownStats stats; get_dist_cost_stats_with_eob(&stats, si, txb_costs, txb_info, tx_class); // check if it is better to make this the last significant coefficient int cur_eob_rate = get_eob_cost(si + 1, txb_eob_costs, txb_costs, tx_class); cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0); prev_eob_rd_cost = RDCOST(txb_info->rdmult, accu_rate, accu_dist) + stats.nz_rd; if (cur_eob_rd_cost <= prev_eob_rd_cost) { update = 1; for (int j = si + 1; j < txb_info->eob; j++) { const int coeff_pos_j = scan[j]; update_coeff(coeff_pos_j, 0, txb_info); } txb_info->eob = si + 1; // rerun cost calculation due to change of eob accu_rate = cur_eob_rate; accu_dist = 0; get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info, tx_class); if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) { update = 1; update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } // reset non zero tail when new eob is found has_nz_tail = 0; } else { int bUpdCoeff = 0; if (stats.rd_low < stats.rd) { if ((si < txb_info->eob - 1)) { bUpdCoeff = 1; update = 1; } } else { ++has_nz_tail; } if (bUpdCoeff) { update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } } } } // for (si) // eob is fixed for (; si >= 0; --si) { assert(si != init_eob - 1); const int coeff_idx = scan[si]; tran_low_t qc = txb_info->qcoeff[coeff_idx]; if (qc == 0) { const int coeff_ctx = get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl, txb_info->tx_size, tx_class); accu_rate += txb_costs->base_cost[coeff_ctx][0]; } else { LevelDownStats stats; get_dist_cost_stats(&stats, si, 0, txb_costs, txb_info, tx_class); int bUpdCoeff = 0; if (stats.rd_low < stats.rd) { if ((si < txb_info->eob - 1)) { bUpdCoeff = 1; update = 1; } } if (bUpdCoeff) { update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } } } // for (si) int non_zero_blk_rate = txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0]; prev_eob_rd_cost = RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist); int zero_blk_rate = txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1]; int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0); if (zero_blk_rd_cost <= prev_eob_rd_cost) { update = 1; for (int j = 0; j < txb_info->eob; j++) { const int coeff_pos_j = scan[j]; update_coeff(coeff_pos_j, 0, txb_info); } txb_info->eob = 0; } // record total rate cost *rate_cost = zero_blk_rd_cost <= prev_eob_rd_cost ? zero_blk_rate : accu_rate + non_zero_blk_rate; if (txb_info->eob > 0) { *rate_cost += txb_info->tx_type_cost; } return update; } // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 17, 13 }, { 16, 10 }, }; void hbt_init() { hbt_hash_table = aom_malloc(sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH); memset(hbt_hash_table, 0, sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH); av1_crc32c_calculator_init(&crc_calculator); // 31 bit: qc & ctx hbt_needs_init = 0; } void hbt_destroy() { aom_free(hbt_hash_table); } int hbt_hash_miss(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash, TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode, int *rate_cost) { (void)fast_mode; const int16_t *scan = txb_info->scan_order->scan; int prev_eob = txb_info->eob; assert(HBT_EOB <= 16); // Lengthen array if allowing longer eob. int32_t prev_coeff[16]; for (int i = 0; i < prev_eob; i++) { prev_coeff[i] = txb_info->qcoeff[scan[i]]; } for (int i = prev_eob; i < HBT_EOB; i++) { prev_coeff[i] = 0; // For compiler piece of mind. } av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height, txb_info->levels); const int update = optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost); // Overwrite old entry uint16_t hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE; uint16_t hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH; hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .rate_cost = *rate_cost; hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index].init = 1; hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .hbt_qc_hash = hbt_qc_hash; hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .hbt_ctx_hash = hbt_ctx_hash; assert(prev_eob >= txb_info->eob); // eob can't get longer for (int i = 0; i < txb_info->eob; i++) { // Record how coeff changed. Convention: towards zero is negative. if (txb_info->qcoeff[scan[i]] > 0) hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] = txb_info->qcoeff[scan[i]] - prev_coeff[i]; else hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] = prev_coeff[i] - txb_info->qcoeff[scan[i]]; } for (int i = txb_info->eob; i < prev_eob; i++) { // If eob got shorter, record that all after it changed to zero. if (prev_coeff[i] > 0) hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] = -prev_coeff[i]; else hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] = prev_coeff[i]; } for (int i = prev_eob; i < HBT_EOB; i++) { // Record 'no change' after optimized coefficients run out. hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] = 0; } if (update) { p->eobs[block] = txb_info->eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( txb_info->qcoeff, txb_info->scan_order, txb_info->eob); } return txb_info->eob; } int hbt_hash_hit(uint32_t hbt_table_index, int hbt_array_index, TxbInfo *txb_info, const struct macroblock_plane *p, int block, int *rate_cost) { const int16_t *scan = txb_info->scan_order->scan; int new_eob = 0; int update = 0; for (int i = 0; i < txb_info->eob; i++) { // Delta convention is negatives go towards zero, so only apply those ones. if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i] < 0) { if (txb_info->qcoeff[scan[i]] > 0) txb_info->qcoeff[scan[i]] += hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i]; else txb_info->qcoeff[scan[i]] -= hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .deltas[i]; update = 1; update_coeff(scan[i], txb_info->qcoeff[scan[i]], txb_info); } if (txb_info->qcoeff[scan[i]]) new_eob = i + 1; } // Rate_cost can be calculated here instead (av1_cost_coeffs_txb), but // it is expensive and gives little benefit as long as qc_hash is high bit *rate_cost = hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .rate_cost; if (update) { txb_info->eob = new_eob; p->eobs[block] = txb_info->eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( txb_info->qcoeff, txb_info->scan_order, txb_info->eob); } return txb_info->eob; } int hbt_search_match(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash, TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode, int *rate_cost) { // Check for qcoeff match int hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH; int hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE; if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .hbt_qc_hash == hbt_qc_hash && hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .hbt_ctx_hash == hbt_ctx_hash && hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] .init) { return hbt_hash_hit(hbt_table_index, hbt_array_index, txb_info, p, block, rate_cost); } else { return hbt_hash_miss(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs, txb_eob_costs, p, block, fast_mode, rate_cost); } } int hbt_create_hashes(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode, int *rate_cost) { // Initialize hash table if needed. if (hbt_needs_init) { hbt_init(); } //// Hash creation uint8_t txb_hash_data[256]; // Asserts below to ensure enough space. const int16_t *scan = txb_info->scan_order->scan; uint8_t chunk = 0; int hash_data_index = 0; // Make qc_hash. int packing_index = 0; // needed for packing. for (int i = 0; i < txb_info->eob; i++) { tran_low_t prechunk = txb_info->qcoeff[scan[i]]; // Softening: Improves speed. Aligns with signed deltas. if (prechunk < 0) prechunk *= -1; // Early kick out: Don't apply feature if there are large coeffs: // If this kickout value is removed or raised beyond int8_t, // widen deltas type in OptTxbQcoeff struct. assert((int8_t)HBT_KICKOUT == HBT_KICKOUT); // If not, widen types. if (prechunk > HBT_KICKOUT) { av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height, txb_info->levels); const int update = optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost); if (update) { p->eobs[block] = txb_info->eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( txb_info->qcoeff, txb_info->scan_order, txb_info->eob); } return txb_info->eob; } // Since coeffs are 0 to 3, only 2 bits are needed: pack into bytes if (packing_index == 0) txb_hash_data[hash_data_index] = 0; chunk = prechunk << packing_index; packing_index += 2; txb_hash_data[hash_data_index] |= chunk; // Full byte: if (packing_index == 8) { packing_index = 0; hash_data_index++; } } // Needed when packing_index != 0, to include final byte. hash_data_index++; assert(hash_data_index <= 64); // 31 bit qc_hash: index to array uint32_t hbt_qc_hash = av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index); // Make ctx_hash. hash_data_index = 0; tran_low_t prechunk; for (int i = 0; i < txb_info->eob; i++) { // Save as magnitudes towards or away from zero. if (txb_info->tcoeff[scan[i]] >= 0) prechunk = txb_info->tcoeff[scan[i]] - txb_info->dqcoeff[scan[i]]; else prechunk = txb_info->dqcoeff[scan[i]] - txb_info->tcoeff[scan[i]]; chunk = prechunk & 0xff; txb_hash_data[hash_data_index++] = chunk; } // Extra ctx data: // Include dequants. txb_hash_data[hash_data_index++] = txb_info->dequant[0] & 0xff; txb_hash_data[hash_data_index++] = txb_info->dequant[1] & 0xff; chunk = txb_info->txb_ctx->txb_skip_ctx & 0xff; txb_hash_data[hash_data_index++] = chunk; chunk = txb_info->txb_ctx->dc_sign_ctx & 0xff; txb_hash_data[hash_data_index++] = chunk; // eob chunk = txb_info->eob & 0xff; txb_hash_data[hash_data_index++] = chunk; // rdmult (int64) chunk = txb_info->rdmult & 0xff; txb_hash_data[hash_data_index++] = chunk; // tx_type chunk = txb_info->tx_type & 0xff; txb_hash_data[hash_data_index++] = chunk; // base_eob_cost for (int i = 1; i < 3; i++) { // i = 0 are softened away for (int j = 0; j < SIG_COEF_CONTEXTS_EOB; j++) { chunk = (txb_costs->base_eob_cost[j][i] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } } // eob_cost for (int i = 0; i < 11; i++) { for (int j = 0; j < 2; j++) { chunk = (txb_eob_costs->eob_cost[j][i] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } } // dc_sign_cost for (int i = 0; i < 2; i++) { for (int j = 0; j < DC_SIGN_CONTEXTS; j++) { chunk = (txb_costs->dc_sign_cost[j][i] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } } assert(hash_data_index <= 256); // 31 bit ctx_hash: used to index table uint32_t hbt_ctx_hash = av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index); //// End hash creation return hbt_search_match(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs, txb_eob_costs, p, block, fast_mode, rate_cost); } static AOM_FORCE_INLINE int get_coeff_cost_simple( int ci, tran_low_t abs_qc, int coeff_ctx, const LV_MAP_COEFF_COST *txb_costs, int bwl, TX_CLASS tx_class, const uint8_t *levels) { // this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0) // and not the last (scan_idx != eob - 1) assert(ci > 0); int cost = txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; if (abs_qc) { cost += av1_cost_literal(1); if (abs_qc > NUM_BASE_LEVELS) { const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class); cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]); cost += get_golomb_cost(abs_qc); } } return cost; } static INLINE int get_coeff_cost_general(int is_last, int ci, tran_low_t abs_qc, int sign, int coeff_ctx, int dc_sign_ctx, const LV_MAP_COEFF_COST *txb_costs, int bwl, TX_CLASS tx_class, const uint8_t *levels) { int cost = 0; if (is_last) { cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; } else { cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; } if (abs_qc != 0) { if (ci == 0) { cost += txb_costs->dc_sign_cost[dc_sign_ctx][sign]; } else { cost += av1_cost_literal(1); } if (abs_qc > NUM_BASE_LEVELS) { const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class); cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]); cost += get_golomb_cost(abs_qc); } } return cost; } static INLINE void get_qc_dqc_low(tran_low_t abs_qc, int sign, int dqv, int shift, tran_low_t *qc_low, tran_low_t *dqc_low) { tran_low_t abs_qc_low = abs_qc - 1; *qc_low = (-sign ^ abs_qc_low) + sign; assert((sign ? -abs_qc_low : abs_qc_low) == *qc_low); tran_low_t abs_dqc_low = (abs_qc_low * dqv) >> shift; *dqc_low = (-sign ^ abs_dqc_low) + sign; assert((sign ? -abs_dqc_low : abs_dqc_low) == *dqc_low); } static INLINE void update_coeff_general( int *accu_rate, int64_t *accu_dist, int si, int eob, TX_SIZE tx_size, TX_CLASS tx_class, int bwl, int height, int64_t rdmult, int shift, int dc_sign_ctx, const int16_t *dequant, const int16_t *scan, const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels) { const int dqv = dequant[si != 0]; const int ci = scan[si]; const tran_low_t qc = qcoeff[ci]; const int is_last = si == (eob - 1); const int coeff_ctx = get_lower_levels_ctx_general( is_last, si, bwl, height, levels, ci, tx_size, tx_class); if (qc == 0) { *accu_rate += txb_costs->base_cost[coeff_ctx][0]; } else { const int sign = (qc < 0) ? 1 : 0; const tran_low_t abs_qc = abs(qc); const tran_low_t tqc = tcoeff[ci]; const tran_low_t dqc = dqcoeff[ci]; const int64_t dist = get_coeff_dist(tqc, dqc, shift); const int64_t dist0 = get_coeff_dist(tqc, 0, shift); const int rate = get_coeff_cost_general(is_last, ci, abs_qc, sign, coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, levels); const int64_t rd = RDCOST(rdmult, rate, dist); tran_low_t qc_low, dqc_low; get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); const tran_low_t abs_qc_low = abs_qc - 1; const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift); const int rate_low = get_coeff_cost_general(is_last, ci, abs_qc_low, sign, coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, levels); const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low); if (rd_low < rd) { qcoeff[ci] = qc_low; dqcoeff[ci] = dqc_low; levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); *accu_rate += rate_low; *accu_dist += dist_low - dist0; } else { *accu_rate += rate; *accu_dist += dist - dist0; } } } static AOM_FORCE_INLINE void update_coeff_simple( int *accu_rate, int si, int eob, TX_SIZE tx_size, TX_CLASS tx_class, int bwl, int64_t rdmult, int shift, const int16_t *dequant, const int16_t *scan, const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels) { const int dqv = dequant[1]; (void)eob; // this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0) // and not the last (scan_idx != eob - 1) assert(si != eob - 1); assert(si > 0); const int ci = scan[si]; const tran_low_t qc = qcoeff[ci]; const int coeff_ctx = get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class); if (qc == 0) { *accu_rate += txb_costs->base_cost[coeff_ctx][0]; } else { const tran_low_t abs_qc = abs(qc); const tran_low_t tqc = tcoeff[ci]; const tran_low_t dqc = dqcoeff[ci]; const int rate = get_coeff_cost_simple(ci, abs_qc, coeff_ctx, txb_costs, bwl, tx_class, levels); if (abs(dqc) < abs(tqc)) { *accu_rate += rate; return; } const int64_t dist = get_coeff_dist(tqc, dqc, shift); const int64_t rd = RDCOST(rdmult, rate, dist); const int sign = (qc < 0) ? 1 : 0; tran_low_t qc_low, dqc_low; get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); const tran_low_t abs_qc_low = abs_qc - 1; const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift); const int rate_low = get_coeff_cost_simple( ci, abs_qc_low, coeff_ctx, txb_costs, bwl, tx_class, levels); const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low); if (rd_low < rd) { qcoeff[ci] = qc_low; dqcoeff[ci] = dqc_low; levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); *accu_rate += rate_low; } else { *accu_rate += rate; } } } static AOM_FORCE_INLINE void update_coeff_eob( int *accu_rate, int64_t *accu_dist, int *eob, int *nz_num, int *nz_ci, int si, TX_SIZE tx_size, TX_CLASS tx_class, int bwl, int height, int dc_sign_ctx, int64_t rdmult, int shift, const int16_t *dequant, const int16_t *scan, const LV_MAP_EOB_COST *txb_eob_costs, const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels, int sharpness) { const int dqv = dequant[si != 0]; assert(si != *eob - 1); const int ci = scan[si]; const tran_low_t qc = qcoeff[ci]; const int coeff_ctx = get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class); if (qc == 0) { *accu_rate += txb_costs->base_cost[coeff_ctx][0]; } else { int lower_level = 0; const tran_low_t abs_qc = abs(qc); const tran_low_t tqc = tcoeff[ci]; const tran_low_t dqc = dqcoeff[ci]; const int sign = (qc < 0) ? 1 : 0; const int64_t dist0 = get_coeff_dist(tqc, 0, shift); int64_t dist = get_coeff_dist(tqc, dqc, shift) - dist0; int rate = get_coeff_cost_general(0, ci, abs_qc, sign, coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, levels); int64_t rd = RDCOST(rdmult, *accu_rate + rate, *accu_dist + dist); tran_low_t qc_low, dqc_low; get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); const tran_low_t abs_qc_low = abs_qc - 1; const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift) - dist0; const int rate_low = get_coeff_cost_general(0, ci, abs_qc_low, sign, coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, levels); const int64_t rd_low = RDCOST(rdmult, *accu_rate + rate_low, *accu_dist + dist_low); int lower_level_new_eob = 0; const int new_eob = si + 1; uint8_t tmp_levels[3]; for (int ni = 0; ni < *nz_num; ++ni) { const int last_ci = nz_ci[ni]; tmp_levels[ni] = levels[get_padded_idx(last_ci, bwl)]; levels[get_padded_idx(last_ci, bwl)] = 0; } const int coeff_ctx_new_eob = get_lower_levels_ctx_general( 1, si, bwl, height, levels, ci, tx_size, tx_class); const int new_eob_cost = get_eob_cost(new_eob, txb_eob_costs, txb_costs, tx_class); int rate_coeff_eob = new_eob_cost + get_coeff_cost_general(1, ci, abs_qc, sign, coeff_ctx_new_eob, dc_sign_ctx, txb_costs, bwl, tx_class, levels); int64_t dist_new_eob = dist; int64_t rd_new_eob = RDCOST(rdmult, rate_coeff_eob, dist_new_eob); if (abs_qc_low > 0) { const int rate_coeff_eob_low = new_eob_cost + get_coeff_cost_general(1, ci, abs_qc_low, sign, coeff_ctx_new_eob, dc_sign_ctx, txb_costs, bwl, tx_class, levels); const int64_t dist_new_eob_low = dist_low; const int64_t rd_new_eob_low = RDCOST(rdmult, rate_coeff_eob_low, dist_new_eob_low); if (rd_new_eob_low < rd_new_eob) { lower_level_new_eob = 1; rd_new_eob = rd_new_eob_low; rate_coeff_eob = rate_coeff_eob_low; dist_new_eob = dist_new_eob_low; } } if (rd_low < rd) { lower_level = 1; rd = rd_low; rate = rate_low; dist = dist_low; } if (sharpness == 0 && rd_new_eob < rd) { for (int ni = 0; ni < *nz_num; ++ni) { int last_ci = nz_ci[ni]; // levels[get_padded_idx(last_ci, bwl)] = 0; qcoeff[last_ci] = 0; dqcoeff[last_ci] = 0; } *eob = new_eob; *nz_num = 0; *accu_rate = rate_coeff_eob; *accu_dist = dist_new_eob; lower_level = lower_level_new_eob; } else { for (int ni = 0; ni < *nz_num; ++ni) { const int last_ci = nz_ci[ni]; levels[get_padded_idx(last_ci, bwl)] = tmp_levels[ni]; } *accu_rate += rate; *accu_dist += dist; } if (lower_level) { qcoeff[ci] = qc_low; dqcoeff[ci] = dqc_low; levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); } if (qcoeff[ci]) { nz_ci[*nz_num] = ci; ++*nz_num; } } } static INLINE void update_skip(int *accu_rate, int64_t accu_dist, int *eob, int nz_num, int *nz_ci, int64_t rdmult, int skip_cost, int non_skip_cost, tran_low_t *qcoeff, tran_low_t *dqcoeff, int sharpness) { const int64_t rd = RDCOST(rdmult, *accu_rate + non_skip_cost, accu_dist); const int64_t rd_new_eob = RDCOST(rdmult, skip_cost, 0); if (sharpness == 0 && rd_new_eob < rd) { for (int i = 0; i < nz_num; ++i) { const int ci = nz_ci[i]; qcoeff[ci] = 0; dqcoeff[ci] = 0; // no need to set up levels because this is the last step // levels[get_padded_idx(ci, bwl)] = 0; } *accu_rate = 0; *eob = 0; } } int av1_optimize_txb_new(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, TX_TYPE tx_type, const TXB_CTX *const txb_ctx, int *rate_cost, int sharpness) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const TX_CLASS tx_class = tx_type_to_class[tx_type]; const MB_MODE_INFO *mbmi = xd->mi[0]; const struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block); const int16_t *dequant = p->dequant_QTX; const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); assert(width == (1 << bwl)); const int is_inter = is_inter_block(mbmi); const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type); const int16_t *scan = scan_order->scan; const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type]; const int eob_multi_size = txsize_log2_minus4[tx_size]; const LV_MAP_EOB_COST *txb_eob_costs = &x->eob_costs[eob_multi_size][plane_type]; const int shift = av1_get_tx_scale(tx_size); const int64_t rdmult = ((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) + 2) >> (sharpness + (cpi->oxcf.aq_mode == VARIANCE_AQ && mbmi->segment_id < 4 ? 7 - mbmi->segment_id : 2) + (cpi->oxcf.aq_mode != VARIANCE_AQ && cpi->oxcf.deltaq_mode > NO_DELTA_Q && x->sb_energy_level < 0 ? (3 - x->sb_energy_level) : 0)); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); av1_txb_init_levels(qcoeff, width, height, levels); // TODO(angirbird): check iqmatrix const int non_skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][0]; const int skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1]; int eob = p->eobs[block]; const int eob_cost = get_eob_cost(eob, txb_eob_costs, txb_costs, tx_class); int accu_rate = eob_cost; int64_t accu_dist = 0; int si = eob - 1; const int ci = scan[si]; const tran_low_t qc = qcoeff[ci]; const tran_low_t abs_qc = abs(qc); const int sign = qc < 0; const int max_nz_num = 2; int nz_num = 1; int nz_ci[3] = { ci, 0, 0 }; if (abs_qc >= 2) { update_coeff_general(&accu_rate, &accu_dist, si, eob, tx_size, tx_class, bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx, dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff, levels); --si; } else { assert(abs_qc == 1); const int coeff_ctx = get_lower_levels_ctx_general( 1, si, bwl, height, levels, ci, tx_size, tx_class); accu_rate += get_coeff_cost_general(1, ci, abs_qc, sign, coeff_ctx, txb_ctx->dc_sign_ctx, txb_costs, bwl, tx_class, levels); const tran_low_t tqc = tcoeff[ci]; const tran_low_t dqc = dqcoeff[ci]; const int64_t dist = get_coeff_dist(tqc, dqc, shift); const int64_t dist0 = get_coeff_dist(tqc, 0, shift); accu_dist += dist - dist0; --si; } #define UPDATE_COEFF_EOB_CASE(tx_class_literal) \ case tx_class_literal: \ for (; si >= 0 && nz_num <= max_nz_num; --si) { \ update_coeff_eob(&accu_rate, &accu_dist, &eob, &nz_num, nz_ci, si, \ tx_size, tx_class_literal, bwl, height, \ txb_ctx->dc_sign_ctx, rdmult, shift, dequant, scan, \ txb_eob_costs, txb_costs, tcoeff, qcoeff, dqcoeff, \ levels, sharpness); \ } \ break; switch (tx_class) { UPDATE_COEFF_EOB_CASE(TX_CLASS_2D); UPDATE_COEFF_EOB_CASE(TX_CLASS_HORIZ); UPDATE_COEFF_EOB_CASE(TX_CLASS_VERT); #undef UPDATE_COEFF_EOB_CASE default: assert(false); } if (si == -1 && nz_num <= max_nz_num) { update_skip(&accu_rate, accu_dist, &eob, nz_num, nz_ci, rdmult, skip_cost, non_skip_cost, qcoeff, dqcoeff, sharpness); } #define UPDATE_COEFF_SIMPLE_CASE(tx_class_literal) \ case tx_class_literal: \ for (; si >= 1; --si) { \ update_coeff_simple(&accu_rate, si, eob, tx_size, tx_class_literal, bwl, \ rdmult, shift, dequant, scan, txb_costs, tcoeff, \ qcoeff, dqcoeff, levels); \ } \ break; switch (tx_class) { UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_2D); UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_HORIZ); UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_VERT); #undef UPDATE_COEFF_SIMPLE_CASE default: assert(false); } // DC position if (si == 0) { // no need to update accu_dist because it's not used after this point int64_t dummy_dist = 0; update_coeff_general(&accu_rate, &dummy_dist, si, eob, tx_size, tx_class, bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx, dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff, levels); } const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); if (eob == 0) accu_rate += skip_cost; else accu_rate += non_skip_cost + tx_type_cost; p->eobs[block] = eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]); *rate_cost = accu_rate; return eob; } // This function is deprecated, but we keep it here because hash trellis // is not integrated with av1_optimize_txb_new yet int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, int blk_row, int blk_col, int block, TX_SIZE tx_size, TXB_CTX *txb_ctx, int fast_mode, int *rate_cost) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); const MB_MODE_INFO *mbmi = xd->mi[0]; const struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const int eob = p->eobs[block]; tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block); const int16_t *dequant = p->dequant_QTX; const int seg_eob = av1_get_max_eob(tx_size); const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const int is_inter = is_inter_block(mbmi); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type]; const int eob_multi_size = txsize_log2_minus4[tx_size]; const LV_MAP_EOB_COST txb_eob_costs = x->eob_costs[eob_multi_size][plane_type]; const int shift = av1_get_tx_scale(tx_size); const int64_t rdmult = ((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) + 2) >> 2; uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[mbmi->segment_id][qm_tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; assert(width == (1 << bwl)); const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); TxbInfo txb_info = { qcoeff, levels, dqcoeff, tcoeff, dequant, shift, tx_size, txs_ctx, tx_type, bwl, width, height, eob, seg_eob, scan_order, txb_ctx, rdmult, &cm->coeff_ctx_table, iqmatrix, tx_type_cost, }; // Hash based trellis (hbt) speed feature: avoid expensive optimize_txb calls // by storing the coefficient deltas in a hash table. // Currently disabled in speedfeatures.c if (eob <= HBT_EOB && eob > 0 && cpi->sf.use_hash_based_trellis) { return hbt_create_hashes(&txb_info, txb_costs, &txb_eob_costs, p, block, fast_mode, rate_cost); } av1_txb_init_levels(qcoeff, width, height, levels); const int update = optimize_txb(&txb_info, txb_costs, &txb_eob_costs, rate_cost); if (update) { p->eobs[block] = txb_info.eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(qcoeff, scan_order, txb_info.eob); } return txb_info.eob; } int av1_get_txb_entropy_context(const tran_low_t *qcoeff, const SCAN_ORDER *scan_order, int eob) { const int16_t *const scan = scan_order->scan; int cul_level = 0; int c; if (eob == 0) return 0; for (c = 0; c < eob; ++c) { cul_level += abs(qcoeff[scan[c]]); if (cul_level > COEFF_CONTEXT_MASK) break; } cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); set_dc_sign(&cul_level, qcoeff[0]); return cul_level; } void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const uint16_t eob = p->eobs[block]; const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob); av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, blk_row); } static void update_tx_type_count(const AV1_COMMON *cm, MACROBLOCKD *xd, int blk_row, int blk_col, int plane, TX_SIZE tx_size, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { MB_MODE_INFO *mbmi = xd->mi[0]; int is_inter = is_inter_block(mbmi); FRAME_CONTEXT *fc = xd->tile_ctx; #if !CONFIG_ENTROPY_STATS (void)counts; #endif // !CONFIG_ENTROPY_STATS // Only y plane's tx_type is updated if (plane > 0) return; TX_TYPE tx_type = av1_get_tx_type(PLANE_TYPE_Y, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); if (eset > 0) { const TxSetType tx_set_type = av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); if (is_inter) { if (allow_update_cdf) { update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]], av1_ext_tx_ind[tx_set_type][tx_type], av1_num_ext_tx_set[tx_set_type]); } #if CONFIG_ENTROPY_STATS ++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]] [av1_ext_tx_ind[tx_set_type][tx_type]]; #endif // CONFIG_ENTROPY_STATS } else { PREDICTION_MODE intra_dir; if (mbmi->filter_intra_mode_info.use_filter_intra) intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info .filter_intra_mode]; else intra_dir = mbmi->mode; #if CONFIG_ENTROPY_STATS ++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir] [av1_ext_tx_ind[tx_set_type][tx_type]]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf( fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir], av1_ext_tx_ind[tx_set_type][tx_type], av1_num_ext_tx_set[tx_set_type]); } } } } } void av1_update_and_record_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; MB_MODE_INFO *mbmi = xd->mi[0]; const int eob = p->eobs[block]; TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col, pd->left_context + blk_row, &txb_ctx); const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const uint8_t allow_update_cdf = args->allow_update_cdf; const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; #if CONFIG_ENTROPY_STATS int cdf_idx = cm->coef_cdf_category; #endif // CONFIG_ENTROPY_STATS #if CONFIG_ENTROPY_STATS ++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) { update_cdf(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0, 2); } x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx; x->mbmi_ext->eobs[plane][block] = eob; if (eob == 0) { av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col, blk_row); return; } tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); const int segment_id = mbmi->segment_id; const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size); const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); av1_txb_init_levels(tcoeff, width, height, levels); update_tx_type_count(cm, xd, blk_row, blk_col, plane, tx_size, td->counts, allow_update_cdf); const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, cm->reduced_tx_set_used); const TX_CLASS tx_class = tx_type_to_class[tx_type]; const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); const int16_t *const scan = scan_order->scan; #if CONFIG_ENTROPY_STATS av1_update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx, td->counts, allow_update_cdf); #else av1_update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx, allow_update_cdf); #endif DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); for (int c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = qcoeff[pos]; const tran_low_t level = abs(v); if (allow_update_cdf) { if (c == eob - 1) { assert(coeff_ctx < 4); update_cdf( ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(level, 3) - 1, 3); } else { update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(level, 3), 4); } } { if (c == eob - 1) { assert(coeff_ctx < 4); #if CONFIG_ENTROPY_STATS ++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3) - 1]; } else { ++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type] [coeff_ctx][AOMMIN(level, 3)]; #endif } } if (level > NUM_BASE_LEVELS) { const int base_range = level - 1 - NUM_BASE_LEVELS; const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class); for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); if (allow_update_cdf) { update_cdf(ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)] [plane_type][br_ctx], k, BR_CDF_SIZE); } for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) { #if CONFIG_ENTROPY_STATS ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type][lps] [br_ctx][lps == k]; #endif // CONFIG_ENTROPY_STATS if (lps == k) break; } #if CONFIG_ENTROPY_STATS ++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)] [plane_type][br_ctx][k]; #endif if (k < BR_CDF_SIZE - 1) break; } } } // Update the context needed to code the DC sign (if applicable) if (tcoeff[0] != 0) { const int dc_sign = (tcoeff[0] < 0) ? 1 : 0; const int dc_sign_ctx = txb_ctx.dc_sign_ctx; #if CONFIG_ENTROPY_STATS ++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign]; #endif // CONFIG_ENTROPY_STATS if (allow_update_cdf) update_cdf(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], dc_sign, 2); x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx; } const int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob); av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, blk_row); } void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td, RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, int mi_row, int mi_col, uint8_t allow_update_cdf) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf }; (void)rate; (void)mi_row; (void)mi_col; if (mbmi->skip) { av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes); return; } if (!dry_run) { av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, av1_update_and_record_txb_context, &arg, num_planes); } else if (dry_run == DRY_RUN_NORMAL) { av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, av1_update_txb_context_b, &arg, num_planes); } else { printf("DRY_RUN_COSTCOEFFS is not supported yet\n"); assert(0); } }