/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/hash.h" static void crc_calculator_process_data(CRC_CALCULATOR *p_crc_calculator, uint8_t *pData, uint32_t dataLength) { for (uint32_t i = 0; i < dataLength; i++) { const uint8_t index = (p_crc_calculator->remainder >> (p_crc_calculator->bits - 8)) ^ pData[i]; p_crc_calculator->remainder <<= 8; p_crc_calculator->remainder ^= p_crc_calculator->table[index]; } } static void crc_calculator_reset(CRC_CALCULATOR *p_crc_calculator) { p_crc_calculator->remainder = 0; } static uint32_t crc_calculator_get_crc(CRC_CALCULATOR *p_crc_calculator) { return p_crc_calculator->remainder & p_crc_calculator->final_result_mask; } static void crc_calculator_init_table(CRC_CALCULATOR *p_crc_calculator) { const uint32_t high_bit = 1 << (p_crc_calculator->bits - 1); const uint32_t byte_high_bit = 1 << (8 - 1); for (uint32_t value = 0; value < 256; value++) { uint32_t remainder = 0; for (uint8_t mask = byte_high_bit; mask != 0; mask >>= 1) { if (value & mask) { remainder ^= high_bit; } if (remainder & high_bit) { remainder <<= 1; remainder ^= p_crc_calculator->trunc_poly; } else { remainder <<= 1; } } p_crc_calculator->table[value] = remainder; } } void av1_crc_calculator_init(CRC_CALCULATOR *p_crc_calculator, uint32_t bits, uint32_t truncPoly) { p_crc_calculator->remainder = 0; p_crc_calculator->bits = bits; p_crc_calculator->trunc_poly = truncPoly; p_crc_calculator->final_result_mask = (1 << bits) - 1; crc_calculator_init_table(p_crc_calculator); } uint32_t av1_get_crc_value(void *crc_calculator, uint8_t *p, int length) { CRC_CALCULATOR *p_crc_calculator = (CRC_CALCULATOR *)crc_calculator; crc_calculator_reset(p_crc_calculator); crc_calculator_process_data(p_crc_calculator, p, length); return crc_calculator_get_crc(p_crc_calculator); } /* CRC-32C (iSCSI) polynomial in reversed bit order. */ #define POLY 0x82f63b78 /* Construct table for software CRC-32C calculation. */ void av1_crc32c_calculator_init(CRC32C *p_crc32c) { uint32_t crc; for (int n = 0; n < 256; n++) { crc = n; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; p_crc32c->table[0][n] = crc; } for (int n = 0; n < 256; n++) { crc = p_crc32c->table[0][n]; for (int k = 1; k < 8; k++) { crc = p_crc32c->table[0][crc & 0xff] ^ (crc >> 8); p_crc32c->table[k][n] = crc; } } } /* Table-driven software version as a fall-back. This is about 15 times slower than using the hardware instructions. This assumes little-endian integers, as is the case on Intel processors that the assembler code here is for. */ uint32_t av1_get_crc32c_value_c(CRC32C *p, uint8_t *buf, size_t len) { const uint8_t *next = (const uint8_t *)(buf); uint64_t crc; crc = 0 ^ 0xffffffff; while (len && ((uintptr_t)next & 7) != 0) { crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); len--; } while (len >= 8) { crc ^= *(uint64_t *)next; crc = p->table[7][crc & 0xff] ^ p->table[6][(crc >> 8) & 0xff] ^ p->table[5][(crc >> 16) & 0xff] ^ p->table[4][(crc >> 24) & 0xff] ^ p->table[3][(crc >> 32) & 0xff] ^ p->table[2][(crc >> 40) & 0xff] ^ p->table[1][(crc >> 48) & 0xff] ^ p->table[0][crc >> 56]; next += 8; len -= 8; } while (len) { crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); len--; } return (uint32_t)crc ^ 0xffffffff; }