/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" #include "av1/common/mvref_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/onyxc_int.h" #include "av1/common/obmc.h" #include "av1/encoder/reconinter_enc.h" static INLINE void calc_subpel_params( MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv, int plane, const int pre_x, const int pre_y, int x, int y, struct buf_2d *const pre_buf, uint8_t **pre, SubpelParams *subpel_params, int bw, int bh) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int ssx = pd->subsampling_x; int ssy = pd->subsampling_y; int orig_pos_y = (pre_y + y) << SUBPEL_BITS; orig_pos_y += mv.row * (1 << (1 - ssy)); int orig_pos_x = (pre_x + x) << SUBPEL_BITS; orig_pos_x += mv.col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); *pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; subpel_params->xs = sf->x_step_q4; subpel_params->ys = sf->y_step_q4; } else { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; *pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + (x + (mv_q4.col >> SUBPEL_BITS)); } } static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, int build_for_obmc, int bw, int bh, int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; int is_compound = has_second_ref(mi); int ref; const int is_intrabc = is_intrabc_block(mi); assert(IMPLIES(is_intrabc, !is_compound)); int is_global[2] = { 0, 0 }; for (ref = 0; ref < 1 + is_compound; ++ref) { const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; is_global[ref] = is_global_mv_block(mi, wm->wmtype); } const BLOCK_SIZE bsize = mi->sb_type; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) || (block_size_high[bsize] < 8 && ss_y); if (is_intrabc) sub8x8_inter = 0; // For sub8x8 chroma blocks, we may be covering more than one luma block's // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for // the top-left corner of the prediction source - the correct top-left corner // is at (pre_x, pre_y). const int row_start = (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; const int col_start = (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; sub8x8_inter = sub8x8_inter && !build_for_obmc; if (sub8x8_inter) { for (int row = row_start; row <= 0 && sub8x8_inter; ++row) { for (int col = col_start; col <= 0; ++col) { const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; if (!is_inter_block(this_mbmi)) sub8x8_inter = 0; if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0; } } } if (sub8x8_inter) { // block size const int b4_w = block_size_wide[bsize] >> ss_x; const int b4_h = block_size_high[bsize] >> ss_y; const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); const int b8_w = block_size_wide[plane_bsize] >> ss_x; const int b8_h = block_size_high[plane_bsize] >> ss_y; assert(!is_compound); const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; int row = row_start; for (int y = 0; y < b8_h; y += b4_h) { int col = col_start; for (int x = 0; x < b8_w; x += b4_w) { MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; is_compound = has_second_ref(this_mbmi); int tmp_dst_stride = 8; assert(bw < 8 || bh < 8); ConvolveParams conv_params = get_conv_params_no_round( 0, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd); conv_params.use_jnt_comp_avg = 0; struct buf_2d *const dst_buf = &pd->dst; uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; ref = 0; const RefBuffer *ref_buf = &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; pd->pre[ref].buf0 = (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; pd->pre[ref].buf = pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y, ref_buf->buf->uv_stride, &ref_buf->sf); pd->pre[ref].width = ref_buf->buf->uv_crop_width; pd->pre[ref].height = ref_buf->buf->uv_crop_height; pd->pre[ref].stride = ref_buf->buf->uv_stride; const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &ref_buf->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; const MV mv = this_mbmi->mv[ref].as_mv; uint8_t *pre; SubpelParams subpel_params; WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global[ref]; warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, &subpel_params, bw, bh); conv_params.do_average = ref; if (is_masked_compound_type(mi->interinter_comp.type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; } av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); ++col; } ++row; } for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; return; } { ConvolveParams conv_params = get_conv_params_no_round( 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset, &conv_params.bck_offset, &conv_params.use_jnt_comp_avg, is_compound); struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; const MV mv = mi->mv[ref].as_mv; uint8_t *pre; SubpelParams subpel_params; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, &pre, &subpel_params, bw, bh); WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global[ref]; warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; if (ref && is_masked_compound_type(mi->interinter_comp.type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; av1_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, bh, &conv_params, mi->interp_filters, plane, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd, cm->allow_warped_motion); } else { conv_params.do_average = ref; av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, bh, &conv_params, mi->interp_filters, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); } } } } static void build_inter_predictors_for_planes(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = pd->width; const int bh = pd->height; if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y); } } void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, 0); } void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { for (int plane_idx = 1; plane_idx < MAX_MB_PLANE; plane_idx++) { av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, plane_idx); } } void av1_build_inter_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize, int plane_idx) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, plane_idx, plane_idx); if (is_interintra_pred(xd->mi[0])) { BUFFER_SET default_ctx = { { NULL, NULL, NULL }, { 0, 0, 0 } }; if (!ctx) { default_ctx.plane[plane_idx] = xd->plane[plane_idx].dst.buf; default_ctx.stride[plane_idx] = xd->plane[plane_idx].dst.stride; ctx = &default_ctx; } av1_build_interintra_predictors_sbp(cm, xd, xd->plane[plane_idx].dst.buf, xd->plane[plane_idx].dst.stride, ctx, plane_idx, bsize); } } void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { const int num_planes = av1_num_planes(cm); av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); if (num_planes > 1) av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); } // TODO(sarahparker): // av1_build_inter_predictor should be combined with // av1_make_inter_predictor void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd, int can_use_previous) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); mv.col += SCALE_EXTRA_OFF; mv.row += SCALE_EXTRA_OFF; const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, mv.col & SCALE_SUBPEL_MASK, mv.row & SCALE_SUBPEL_MASK }; src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + (mv.col >> SCALE_SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf, w, h, conv_params, interp_filters, warp_types, p_col, p_row, plane, ref, xd->mi[0], 0, xd, can_use_previous); } static INLINE void build_prediction_by_above_pred( MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int above_mi_col = ctxt->mi_col + rel_mi_col; int mi_x, mi_y; MB_MODE_INFO backup_mbmi = *above_mbmi; av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width, above_mbmi, ctxt, num_planes); mi_x = above_mi_col << MI_SIZE_LOG2; mi_y = ctxt->mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; for (int j = 0; j < num_planes; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; build_inter_predictors(ctxt->cm, xd, j, above_mbmi, 1, bw, bh, mi_x, mi_y); } *above_mbmi = backup_mbmi; } void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->up_available) return; // Adjust mb_to_bottom_edge to have the correct value for the OBMC // prediction block. This is half the height of the original block, // except for 128-wide blocks, where we only use a height of 32. int this_height = xd->n4_h * MI_SIZE; int pred_height = AOMMIN(this_height / 2, 32); xd->mb_to_bottom_edge += (this_height - pred_height) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge }; BLOCK_SIZE bsize = xd->mi[0]->sb_type; foreach_overlappable_nb_above(cm, xd, mi_col, max_neighbor_obmc[mi_size_wide_log2[bsize]], build_prediction_by_above_pred, &ctxt); xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ctxt.mb_to_far_edge; xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; } static INLINE void build_prediction_by_left_pred( MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int left_mi_row = ctxt->mi_row + rel_mi_row; int mi_x, mi_y; MB_MODE_INFO backup_mbmi = *left_mbmi; av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height, left_mbmi, ctxt, num_planes); mi_x = ctxt->mi_col << MI_SIZE_LOG2; mi_y = left_mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; for (int j = 0; j < num_planes; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; build_inter_predictors(ctxt->cm, xd, j, left_mbmi, 1, bw, bh, mi_x, mi_y); } *left_mbmi = backup_mbmi; } void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->left_available) return; // Adjust mb_to_right_edge to have the correct value for the OBMC // prediction block. This is half the width of the original block, // except for 128-wide blocks, where we only use a width of 32. int this_width = xd->n4_w * MI_SIZE; int pred_width = AOMMIN(this_width / 2, 32); xd->mb_to_right_edge += (this_width - pred_width) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge }; BLOCK_SIZE bsize = xd->mi[0]->sb_type; foreach_overlappable_nb_left(cm, xd, mi_row, max_neighbor_obmc[mi_size_high_log2[bsize]], build_prediction_by_left_pred, &ctxt); xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_right_edge -= (this_width - pred_width) * 8; xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; } void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { const int num_planes = av1_num_planes(cm); uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]); dst_buf1[1] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]); dst_buf2[1] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len); } else { dst_buf1[0] = xd->tmp_obmc_bufs[0]; dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; dst_buf2[0] = xd->tmp_obmc_bufs[1]; dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; } av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm), mi_row, mi_col, 0, num_planes); av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride, int can_use_previous) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MB_MODE_INFO *mi = xd->mi[0]; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; uint8_t *const dst = get_buf_by_bd(xd, ext_dst) + ext_dst_stride * y + x; const MV mv = mi->mv[ref].as_mv; ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); WarpTypesAllowed warp_types; const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype); warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; const int pre_x = (mi_x) >> pd->subsampling_x; const int pre_y = (mi_y) >> pd->subsampling_y; uint8_t *pre; SubpelParams subpel_params; calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, &subpel_params, bw, bh); av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, &subpel_params, sf, w, h, &conv_params, mi->interp_filters, &warp_types, pre_x + x, pre_y + y, plane, ref, mi, 0, xd, can_use_previous); } void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3], int can_use_previous) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane], can_use_previous); } } static void build_masked_compound( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh); } static void build_masked_compound_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); // const uint8_t *mask = // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh, bd); } static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { MB_MODE_INFO *const mbmi = xd->mi[0]; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; mbmi->interinter_comp.seg_mask = xd->seg_mask; const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp; if (is_compound && is_masked_compound_type(comp_data->type)) { if (!plane && comp_data->type == COMPOUND_DIFFWTD) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_build_compound_diffwtd_mask_highbd( comp_data->seg_mask, comp_data->mask_type, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd); else av1_build_compound_diffwtd_mask( comp_data->seg_mask, comp_data->mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w); } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, mbmi->sb_type, h, w, xd->bd); else build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type, h, w); } else { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, xd->bd); else aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h); } } void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } }