/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "av1/common/alloccommon.h" #include "av1/common/onyxc_int.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/odintrin.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/extend.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/encoder.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/temporal_filter.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/aom_timer.h" #include "aom_scale/aom_scale.h" static void temporal_filter_predictors_mb_c( MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr, int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col, uint8_t *pred, struct scale_factors *scale, int x, int y, int can_use_previous, int num_planes) { const MV mv = { mv_row, mv_col }; enum mv_precision mv_precision_uv; int uv_stride; // TODO(angiebird): change plane setting accordingly ConvolveParams conv_params = get_conv_params(0, 0, xd->bd); const InterpFilters interp_filters = xd->mi[0]->interp_filters; WarpTypesAllowed warp_types; memset(&warp_types, 0, sizeof(WarpTypesAllowed)); if (uv_block_width == 8) { uv_stride = (stride + 1) >> 1; mv_precision_uv = MV_PRECISION_Q4; } else { uv_stride = stride; mv_precision_uv = MV_PRECISION_Q3; } av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16, &conv_params, interp_filters, &warp_types, x, y, 0, 0, MV_PRECISION_Q3, x, y, xd, can_use_previous); if (num_planes > 1) { av1_build_inter_predictor( u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale, uv_block_width, uv_block_height, &conv_params, interp_filters, &warp_types, x, y, 1, 0, mv_precision_uv, x, y, xd, can_use_previous); av1_build_inter_predictor( v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale, uv_block_width, uv_block_height, &conv_params, interp_filters, &warp_types, x, y, 2, 0, mv_precision_uv, x, y, xd, can_use_previous); } } void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride, uint8_t *frame2, unsigned int block_width, unsigned int block_height, int strength, int filter_weight, unsigned int *accumulator, uint16_t *count) { unsigned int i, j, k; int modifier; int byte = 0; const int rounding = strength > 0 ? 1 << (strength - 1) : 0; for (i = 0, k = 0; i < block_height; i++) { for (j = 0; j < block_width; j++, k++) { int pixel_value = *frame2; // non-local mean approach int diff_sse[9] = { 0 }; int idx, idy, index = 0; for (idy = -1; idy <= 1; ++idy) { for (idx = -1; idx <= 1; ++idx) { int row = (int)i + idy; int col = (int)j + idx; if (row >= 0 && row < (int)block_height && col >= 0 && col < (int)block_width) { int diff = frame1[byte + idy * (int)stride + idx] - frame2[idy * (int)block_width + idx]; diff_sse[index] = diff * diff; ++index; } } } assert(index > 0); modifier = 0; for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; modifier *= 3; modifier /= index; ++frame2; modifier += rounding; modifier >>= strength; if (modifier > 16) modifier = 16; modifier = 16 - modifier; modifier *= filter_weight; count[k] += modifier; accumulator[k] += modifier * pixel_value; byte++; } byte += stride - block_width; } } void av1_highbd_temporal_filter_apply_c( uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8, unsigned int block_width, unsigned int block_height, int strength, int filter_weight, unsigned int *accumulator, uint16_t *count) { uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8); uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8); unsigned int i, j, k; int modifier; int byte = 0; const int rounding = strength > 0 ? 1 << (strength - 1) : 0; for (i = 0, k = 0; i < block_height; i++) { for (j = 0; j < block_width; j++, k++) { int pixel_value = *frame2; // non-local mean approach int diff_sse[9] = { 0 }; int idx, idy, index = 0; for (idy = -1; idy <= 1; ++idy) { for (idx = -1; idx <= 1; ++idx) { int row = (int)i + idy; int col = (int)j + idx; if (row >= 0 && row < (int)block_height && col >= 0 && col < (int)block_width) { int diff = frame1[byte + idy * (int)stride + idx] - frame2[idy * (int)block_width + idx]; diff_sse[index] = diff * diff; ++index; } } } assert(index > 0); modifier = 0; for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; modifier *= 3; modifier /= index; ++frame2; modifier += rounding; modifier >>= strength; if (modifier > 16) modifier = 16; modifier = 16 - modifier; modifier *= filter_weight; count[k] += modifier; accumulator[k] += modifier * pixel_value; byte++; } byte += stride - block_width; } } static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi, uint8_t *arf_frame_buf, uint8_t *frame_ptr_buf, int stride, int x_pos, int y_pos) { MACROBLOCK *const x = &cpi->td.mb; MACROBLOCKD *const xd = &x->e_mbd; const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; int step_param; int sadpb = x->sadperbit16; int bestsme = INT_MAX; int distortion; unsigned int sse; int cost_list[5]; MvLimits tmp_mv_limits = x->mv_limits; MV best_ref_mv1 = kZeroMv; MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ // Save input state struct buf_2d src = x->plane[0].src; struct buf_2d pre = xd->plane[0].pre[0]; best_ref_mv1_full.col = best_ref_mv1.col >> 3; best_ref_mv1_full.row = best_ref_mv1.row >> 3; // Setup frame pointers x->plane[0].src.buf = arf_frame_buf; x->plane[0].src.stride = stride; xd->plane[0].pre[0].buf = frame_ptr_buf; xd->plane[0].pre[0].stride = stride; step_param = mv_sf->reduce_first_step_size; step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1); x->mvcost = x->mv_cost_stack; x->nmvjointcost = x->nmv_vec_cost; av1_full_pixel_search(cpi, x, BLOCK_16X16, &best_ref_mv1_full, step_param, NSTEP, 1, sadpb, cond_cost_list(cpi, cost_list), &best_ref_mv1, 0, 0, x_pos, y_pos, 0); x->mv_limits = tmp_mv_limits; // Ignore mv costing by sending NULL pointer instead of cost array if (cpi->common.cur_frame_force_integer_mv == 1) { const uint8_t *const src_address = x->plane[0].src.buf; const int src_stride = x->plane[0].src.stride; const uint8_t *const y = xd->plane[0].pre[0].buf; const int y_stride = xd->plane[0].pre[0].stride; const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col; x->best_mv.as_mv.row *= 8; x->best_mv.as_mv.col *= 8; bestsme = cpi->fn_ptr[BLOCK_16X16].vf(y + offset, y_stride, src_address, src_stride, &sse); } else { bestsme = cpi->find_fractional_mv_step( x, &cpi->common, 0, 0, &best_ref_mv1, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step, cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, NULL, 0, 0, 0, 0, 0); } x->e_mbd.mi[0]->mv[0] = x->best_mv; // Restore input state x->plane[0].src = src; xd->plane[0].pre[0] = pre; return bestsme; } static void temporal_filter_iterate_c(AV1_COMP *cpi, YV12_BUFFER_CONFIG **frames, int frame_count, int alt_ref_index, int strength, struct scale_factors *scale) { const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); int byte; int frame; int mb_col, mb_row; unsigned int filter_weight; int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4; int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4; int mb_y_offset = 0; int mb_uv_offset = 0; DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]); DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]); MACROBLOCKD *mbd = &cpi->td.mb.e_mbd; YV12_BUFFER_CONFIG *f = frames[alt_ref_index]; uint8_t *dst1, *dst2; DECLARE_ALIGNED(32, uint16_t, predictor16[16 * 16 * 3]); DECLARE_ALIGNED(32, uint8_t, predictor8[16 * 16 * 3]); uint8_t *predictor; const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y; const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x; // Save input state uint8_t *input_buffer[MAX_MB_PLANE]; int i; if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { predictor = CONVERT_TO_BYTEPTR(predictor16); } else { predictor = predictor8; } for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf; for (mb_row = 0; mb_row < mb_rows; mb_row++) { // Source frames are extended to 16 pixels. This is different than // L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS) // A 6/8 tap filter is used for motion search. This requires 2 pixels // before and 3 pixels after. So the largest Y mv on a border would // then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the // Y and therefore only extended by 8. The largest mv that a UV block // can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv. // (16 - AOM_INTERP_EXTEND) >> 1 which is greater than // 8 - AOM_INTERP_EXTEND. // To keep the mv in play for both Y and UV planes the max that it // can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1). cpi->td.mb.mv_limits.row_min = -((mb_row * 16) + (17 - 2 * AOM_INTERP_EXTEND)); cpi->td.mb.mv_limits.row_max = ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * AOM_INTERP_EXTEND); for (mb_col = 0; mb_col < mb_cols; mb_col++) { int j, k; int stride; memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0])); memset(count, 0, 16 * 16 * 3 * sizeof(count[0])); cpi->td.mb.mv_limits.col_min = -((mb_col * 16) + (17 - 2 * AOM_INTERP_EXTEND)); cpi->td.mb.mv_limits.col_max = ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * AOM_INTERP_EXTEND); for (frame = 0; frame < frame_count; frame++) { const int thresh_low = 10000; const int thresh_high = 20000; if (frames[frame] == NULL) continue; mbd->mi[0]->mv[0].as_mv.row = 0; mbd->mi[0]->mv[0].as_mv.col = 0; mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION; if (frame == alt_ref_index) { filter_weight = 2; } else { // Find best match in this frame by MC int err = temporal_filter_find_matching_mb_c( cpi, frames[alt_ref_index]->y_buffer + mb_y_offset, frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride, mb_col * 16, mb_row * 16); // Assign higher weight to matching MB if it's error // score is lower. If not applying MC default behavior // is to weight all MBs equal. filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0; } if (filter_weight != 0) { // Construct the predictors temporal_filter_predictors_mb_c( mbd, frames[frame]->y_buffer + mb_y_offset, frames[frame]->u_buffer + mb_uv_offset, frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride, mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row, mbd->mi[0]->mv[0].as_mv.col, predictor, scale, mb_col * 16, mb_row * 16, cm->allow_warped_motion, num_planes); // Apply the filter (YUV) if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int adj_strength = strength + 2 * (mbd->bd - 8); av1_highbd_temporal_filter_apply( f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, adj_strength, filter_weight, accumulator, count); if (num_planes > 1) { av1_highbd_temporal_filter_apply( f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, mb_uv_width, mb_uv_height, adj_strength, filter_weight, accumulator + 256, count + 256); av1_highbd_temporal_filter_apply( f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, mb_uv_width, mb_uv_height, adj_strength, filter_weight, accumulator + 512, count + 512); } } else { av1_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, strength, filter_weight, accumulator, count); if (num_planes > 1) { av1_temporal_filter_apply_c( f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, mb_uv_width, mb_uv_height, strength, filter_weight, accumulator + 256, count + 256); av1_temporal_filter_apply_c( f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, mb_uv_width, mb_uv_height, strength, filter_weight, accumulator + 512, count + 512); } } } } // Normalize filter output to produce AltRef frame if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *dst1_16; uint16_t *dst2_16; dst1 = cpi->alt_ref_buffer.y_buffer; dst1_16 = CONVERT_TO_SHORTPTR(dst1); stride = cpi->alt_ref_buffer.y_stride; byte = mb_y_offset; for (i = 0, k = 0; i < 16; i++) { for (j = 0; j < 16; j++, k++) { dst1_16[byte] = (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); // move to next pixel byte++; } byte += stride - 16; } if (num_planes > 1) { dst1 = cpi->alt_ref_buffer.u_buffer; dst2 = cpi->alt_ref_buffer.v_buffer; dst1_16 = CONVERT_TO_SHORTPTR(dst1); dst2_16 = CONVERT_TO_SHORTPTR(dst2); stride = cpi->alt_ref_buffer.uv_stride; byte = mb_uv_offset; for (i = 0, k = 256; i < mb_uv_height; i++) { for (j = 0; j < mb_uv_width; j++, k++) { int m = k + 256; // U dst1_16[byte] = (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); // V dst2_16[byte] = (uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); // move to next pixel byte++; } byte += stride - mb_uv_width; } } } else { dst1 = cpi->alt_ref_buffer.y_buffer; stride = cpi->alt_ref_buffer.y_stride; byte = mb_y_offset; for (i = 0, k = 0; i < 16; i++) { for (j = 0; j < 16; j++, k++) { dst1[byte] = (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); // move to next pixel byte++; } byte += stride - 16; } if (num_planes > 1) { dst1 = cpi->alt_ref_buffer.u_buffer; dst2 = cpi->alt_ref_buffer.v_buffer; stride = cpi->alt_ref_buffer.uv_stride; byte = mb_uv_offset; for (i = 0, k = 256; i < mb_uv_height; i++) { for (j = 0; j < mb_uv_width; j++, k++) { int m = k + 256; // U dst1[byte] = (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); // V dst2[byte] = (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); // move to next pixel byte++; } byte += stride - mb_uv_width; } } } mb_y_offset += 16; mb_uv_offset += mb_uv_width; } mb_y_offset += 16 * (f->y_stride - mb_cols); mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols; } // Restore input state for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i]; } // Apply buffer limits and context specific adjustments to arnr filter. static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost, int *arnr_frames, int *arnr_strength) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; const int frames_after_arf = av1_lookahead_depth(cpi->lookahead) - distance - 1; int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; int frames_bwd; int q, frames, strength; // Define the forward and backwards filter limits for this arnr group. if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > distance) frames_fwd = distance; frames_bwd = frames_fwd; // For even length filter there is one more frame backward // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1; // Set the baseline active filter size. frames = frames_bwd + 1 + frames_fwd; // Adjust the strength based on active max q. if (cpi->common.current_video_frame > 1) q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth)); else q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME], cpi->common.seq_params.bit_depth)); if (q > 16) { strength = oxcf->arnr_strength; } else { strength = oxcf->arnr_strength - ((16 - q) / 2); if (strength < 0) strength = 0; } // Adjust number of frames in filter and strength based on gf boost level. if (frames > group_boost / 150) { frames = group_boost / 150; frames += !(frames & 1); } if (strength > group_boost / 300) { strength = group_boost / 300; } *arnr_frames = frames; *arnr_strength = strength; } void av1_temporal_filter(AV1_COMP *cpi, int distance) { RATE_CONTROL *const rc = &cpi->rc; int frame; int frames_to_blur; int start_frame; int strength; int frames_to_blur_backward; int frames_to_blur_forward; struct scale_factors sf; YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; const GF_GROUP *const gf_group = &cpi->twopass.gf_group; // Apply context specific adjustments to the arnr filter parameters. adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength); // TODO(weitinglin): Currently, we enforce the filtering strength on // extra ARFs' to be zeros. We should investigate in which // case it is more beneficial to use non-zero strength // filtering. if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { strength = 0; frames_to_blur = 1; } int which_arf = gf_group->arf_update_idx[gf_group->index]; // Set the temporal filtering status for the corresponding OVERLAY frame if (strength == 0 && frames_to_blur == 1) cpi->is_arf_filter_off[which_arf] = 1; else cpi->is_arf_filter_off[which_arf] = 0; cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf]; frames_to_blur_backward = (frames_to_blur / 2); frames_to_blur_forward = ((frames_to_blur - 1) / 2); start_frame = distance + frames_to_blur_forward; // Setup frame pointers, NULL indicates frame not included in filter. for (frame = 0; frame < frames_to_blur; ++frame) { const int which_buffer = start_frame - frame; struct lookahead_entry *buf = av1_lookahead_peek(cpi->lookahead, which_buffer); frames[frames_to_blur - 1 - frame] = &buf->img; } if (frames_to_blur > 0) { // Setup scaling factors. Scaling on each of the arnr frames is not // supported. // ARF is produced at the native frame size and resized when coded. av1_setup_scale_factors_for_frame( &sf, frames[0]->y_crop_width, frames[0]->y_crop_height, frames[0]->y_crop_width, frames[0]->y_crop_height); } temporal_filter_iterate_c(cpi, frames, frames_to_blur, frames_to_blur_backward, strength, &sf); }