/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/av1_rtcd.h" #include "av1/common/enums.h" #include "av1/common/av1_txfm.h" #include "av1/common/x86/av1_txfm_sse2.h" #include "av1/common/x86/highbd_txfm_utility_sse4.h" #include "av1/encoder/av1_fwd_txfm1d_cfg.h" #include "av1/encoder/x86/av1_txfm1d_sse4.h" #include "av1/encoder/x86/av1_fwd_txfm_sse2.h" static INLINE void int16_array_with_stride_to_int32_array_without_stride( const int16_t *input, int stride, int32_t *output, int txfm1d_size) { int r, c; for (r = 0; r < txfm1d_size; r++) { for (c = 0; c < txfm1d_size; c++) { output[r * txfm1d_size + c] = (int32_t)input[r * stride + c]; } } } typedef void (*TxfmFuncSSE2)(const __m128i *input, __m128i *output, const int8_t cos_bit, const int8_t *stage_range); static void fdct32_new_sse4_1(const __m128i *input, __m128i *output, const int8_t cos_bit, const int8_t *stage_range) { const int txfm_size = 32; const int num_per_128 = 4; __m128i buf0[32]; __m128i buf1[32]; int col_num = txfm_size / num_per_128; int col; (void)stage_range; for (col = 0; col < col_num; col++) { int j; for (j = 0; j < 32; ++j) { buf0[j] = input[j * col_num + col]; } av1_fdct32_new_sse4_1(buf0, buf1, cos_bit); for (j = 0; j < 32; ++j) { output[j * col_num + col] = buf1[j]; } } } static void fdct64_new_sse4_1(const __m128i *input, __m128i *output, const int8_t cos_bit, const int8_t *stage_range) { const int txfm_size = 64; const int num_per_128 = 4; int col_num = txfm_size / num_per_128; (void)stage_range; for (int col = 0; col < col_num; col++) { av1_fdct64_new_sse4_1((input + col), (output + col), cos_bit, col_num, col_num); } } static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { switch (txfm_type) { case TXFM_TYPE_DCT32: return fdct32_new_sse4_1; break; case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break; default: assert(0); } return NULL; } static INLINE void fwd_txfm2d_sse4_1(const int16_t *input, int32_t *output, const int stride, const TXFM_2D_FLIP_CFG *cfg, int32_t *txfm_buf) { // TODO(sarahparker) This does not currently support rectangular transforms // and will break without splitting txfm_size out into row and col size. // Rectangular transforms use c code only, so it should be ok for now. // It will be corrected when there are sse implementations for rectangular // transforms. assert(cfg->tx_size < TX_SIZES); const int txfm_size = tx_size_wide[cfg->tx_size]; const int8_t *shift = cfg->shift; const int8_t *stage_range_col = cfg->stage_range_col; const int8_t *stage_range_row = cfg->stage_range_row; const int8_t cos_bit_col = cfg->cos_bit_col; const int8_t cos_bit_row = cfg->cos_bit_row; const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); const TxfmFuncSSE2 txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); __m128i *buf_128 = (__m128i *)txfm_buf; __m128i *out_128 = (__m128i *)output; int num_per_128 = 4; int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; int16_array_with_stride_to_int32_array_without_stride(input, stride, txfm_buf, txfm_size); av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[0]); txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); transpose_32(txfm_size, out_128, buf_128); txfm_func_row(buf_128, out_128, cos_bit_row, stage_range_row); av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); transpose_32(txfm_size, buf_128, out_128); } static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, const int stride, const TXFM_2D_FLIP_CFG *cfg, int32_t *txfm_buf) { assert(cfg->tx_size < TX_SIZES); const int txfm_size = tx_size_wide[cfg->tx_size]; const int8_t *shift = cfg->shift; const int8_t *stage_range_col = cfg->stage_range_col; const int8_t cos_bit_col = cfg->cos_bit_col; const int8_t cos_bit_row = cfg->cos_bit_row; const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); __m128i *buf_128 = (__m128i *)txfm_buf; __m128i *out_128 = (__m128i *)output; const int num_per_128 = 4; int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; int col_num = txfm_size / num_per_128; int16_array_with_stride_to_int32_array_without_stride(input, stride, output, txfm_size); /*col wise transform*/ txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); transpose_32(txfm_size, out_128, buf_128); /*row wise transform*/ for (int col = 0; col < (col_num >> 1); col++) { av1_fdct64_new_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row, col_num, (col_num >> 1)); } txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1); av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); transpose_32x32(buf_128, out_128); } void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(16, int32_t, txfm_buf[1024]); TXFM_2D_FLIP_CFG cfg; av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); (void)bd; fwd_txfm2d_sse4_1(input, output, stride, &cfg, txfm_buf); } void av1_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { DECLARE_ALIGNED(16, int32_t, txfm_buf[4096]); TXFM_2D_FLIP_CFG cfg; av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); (void)bd; fwd_txfm2d_64x64_sse4_1(input, output, stride, &cfg, txfm_buf); } static INLINE void transpose_32_4x4x2(int stride, const __m128i *inputA, const __m128i *inputB, __m128i *output) { __m128i temp0 = _mm_unpacklo_epi32(inputA[0], inputA[2]); __m128i temp1 = _mm_unpackhi_epi32(inputA[0], inputA[2]); __m128i temp2 = _mm_unpacklo_epi32(inputA[1], inputA[3]); __m128i temp3 = _mm_unpackhi_epi32(inputA[1], inputA[3]); output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2); output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2); output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3); output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3); temp0 = _mm_unpacklo_epi32(inputB[0], inputB[2]); temp1 = _mm_unpackhi_epi32(inputB[0], inputB[2]); temp2 = _mm_unpacklo_epi32(inputB[1], inputB[3]); temp3 = _mm_unpackhi_epi32(inputB[1], inputB[3]); output[4 * stride] = _mm_unpacklo_epi32(temp0, temp2); output[5 * stride] = _mm_unpackhi_epi32(temp0, temp2); output[6 * stride] = _mm_unpacklo_epi32(temp1, temp3); output[7 * stride] = _mm_unpackhi_epi32(temp1, temp3); } static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { (void)bd; (void)tx_type; assert(tx_type == DCT_DCT); const TX_SIZE tx_size = TX_64X64; __m128i buf0[64], buf1[512]; const int8_t *shift = fwd_txfm_shift_ls[tx_size]; const int txw_idx = get_txw_idx(tx_size); const int txh_idx = get_txh_idx(tx_size); const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; const int width_div8 = (width >> 3); const int height_div8 = (height >> 3); for (int i = 0; i < width_div8; i++) { load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); round_shift_16bit(buf0, height, shift[0]); col_txfm(buf0, buf0, cos_bit_col); round_shift_16bit(buf0, height, shift[1]); for (int j = 0; j < AOMMIN(4, height_div8); ++j) { transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); } } for (int i = 0; i < AOMMIN(4, height_div8); i++) { __m128i bufA[64]; __m128i bufB[64]; __m128i *buf = buf1 + width * i; for (int j = 0; j < width; ++j) { bufA[j] = _mm_cvtepi16_epi32(buf[j]); bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); } av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]); av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]); int32_t *output8 = output + 8 * 32 * i; for (int j = 0; j < width_div8; ++j) { __m128i *out = (__m128i *)(output8 + 4 * j); transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); } } } static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { (void)bd; const TX_SIZE tx_size = TX_64X32; __m128i buf0[64], buf1[256]; const int8_t *shift = fwd_txfm_shift_ls[tx_size]; const int txw_idx = get_txw_idx(tx_size); const int txh_idx = get_txh_idx(tx_size); const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; const int width_div8 = (width >> 3); const int height_div8 = (height >> 3); for (int i = 0; i < width_div8; i++) { load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); round_shift_16bit(buf0, height, shift[0]); col_txfm(buf0, buf0, cos_bit_col); round_shift_16bit(buf0, height, shift[1]); for (int j = 0; j < AOMMIN(4, height_div8); ++j) { transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); } } assert(tx_type == DCT_DCT); for (int i = 0; i < AOMMIN(4, height_div8); i++) { __m128i bufA[64]; __m128i bufB[64]; __m128i *buf = buf1 + width * i; for (int j = 0; j < width; ++j) { bufA[j] = _mm_cvtepi16_epi32(buf[j]); bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); } av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); int32_t *output8 = output + 8 * 32 * i; for (int j = 0; j < width_div8; ++j) { __m128i *out = (__m128i *)(output8 + 4 * j); transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); } } } static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd) { (void)bd; (void)tx_type; assert(tx_type == DCT_DCT); const TX_SIZE tx_size = TX_32X64; __m128i buf0[64], buf1[256]; const int8_t *shift = fwd_txfm_shift_ls[tx_size]; const int txw_idx = get_txw_idx(tx_size); const int txh_idx = get_txh_idx(tx_size); const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; const int width = tx_size_wide[tx_size]; const int height = tx_size_high[tx_size]; const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; const int width_div8 = (width >> 3); const int height_div8 = (height >> 3); for (int i = 0; i < width_div8; i++) { load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); round_shift_16bit(buf0, height, shift[0]); col_txfm(buf0, buf0, cos_bit_col); round_shift_16bit(buf0, height, shift[1]); for (int j = 0; j < AOMMIN(4, height_div8); ++j) { transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); } } for (int i = 0; i < AOMMIN(4, height_div8); i++) { __m128i bufA[32]; __m128i bufB[32]; __m128i *buf = buf1 + width * i; for (int j = 0; j < width; ++j) { bufA[j] = _mm_cvtepi16_epi32(buf[j]); bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); } av1_fdct32_new_sse4_1(bufA, bufA, cos_bit_row); av1_fdct32_new_sse4_1(bufB, bufB, cos_bit_row); av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); int32_t *output8 = output + 8 * 32 * i; for (int j = 0; j < (32 / 4); ++j) { __m128i *out = (__m128i *)(output8 + 4 * j); transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); } } } static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform av1_lowbd_fwd_txfm2d_16x16_sse2, // 16x16 transform av1_lowbd_fwd_txfm2d_32x32_sse2, // 32x32 transform lowbd_fwd_txfm2d_64x64_sse4_1, // 64x64 transform av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform av1_lowbd_fwd_txfm2d_16x32_sse2, // 16x32 transform av1_lowbd_fwd_txfm2d_32x16_sse2, // 32x16 transform lowbd_fwd_txfm2d_32x64_sse4_1, // 32x64 transform lowbd_fwd_txfm2d_64x32_sse4_1, // 64x32 transform av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform av1_lowbd_fwd_txfm2d_16x64_sse2, // 16x64 transform av1_lowbd_fwd_txfm2d_64x16_sse2, // 64x16 transform }; void av1_lowbd_fwd_txfm_sse4_1(const int16_t *src_diff, tran_low_t *coeff, int diff_stride, TxfmParam *txfm_param) { FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; if ((fwd_txfm2d_func == NULL) || (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) { av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); } else { fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, txfm_param->bd); } }